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Biomarkers that can identify age-related decline in walking function have potential to
promote healthier aging by triggering timely interventions that can mitigate or reverse
impairments. Recent evidence suggests that changes in neuromuscular control precede
changes in walking function; however, it is unclear which measures are best suited
for identifying age-related changes. In this study, non-negative matrix factorization of
electromyography data collected during treadmill walking was used to calculate two
measures of the complexity of muscle co-activations during walking for 36 adults: (1) the
number of muscle synergies and (2) the dynamic motor control index. Study participants
were grouped into young (18–35 years old), young-old (65–74 years old), and old–old
(75+ years old) subsets. We found that the dynamic motor control index [χ2(2) = 9.41,
p = 0.009], and not the number of muscle synergies [χ2(2) = 5.42, p = 0.067],
differentiates between age groups [χ2(4) = 10.62, p = 0.031, Nagelkerke R2 = 0.297].
Moreover, an impairment threshold set at a dynamic motor control index of 90 (i.e.,
one standard deviation below the young adults) was able to differentiate between age
groups [χ2(2) = 9.351, p = 0.009]. The dynamic motor control index identifies age-
related differences in neuromuscular complexity not measured by the number of muscle
synergies and may have clinical utility as a marker of neuromotor impairment.
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INTRODUCTION

During adult aging, physiological changes lead to impaired muscle strength (Janssen et al.,
2002; Doherty, 2003; Lauretani et al., 2003; Goodpaster et al., 2006; King et al., 2016; Morrison
and Newell, 2019), increased muscular atrophy (Janssen et al., 2002; Doherty, 2003; Lauretani
et al., 2003; Goodpaster et al., 2006), and reduced neuromuscular control (i.e., impaired muscle
recruitment and coordination) (Clark et al., 2010; Dingwell et al., 2017; Morrison and Newell, 2019;
Kara et al., 2020). As a result, older adults tend to have poorer balance (King et al., 2016; Cruz-
Jimenez, 2017), walk at slower speeds (Menz et al., 2003; Kim and Kim, 2014; Cruz-Jimenez, 2017),
and take fewer steps per day (Bassett et al., 2010) than younger adults. These deficits continue to
progress with further aging; endurance (Gardener et al., 2006; Schrack et al., 2016), walking speed
(Xie et al., 2017; Morrison and Newell, 2019), balance (Xie et al., 2017), and muscle mass (Doherty,
2003; Castell et al., 2013; Rong et al., 2020) significantly decrease with increasing age from 50 to
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80+ years old. Untreated, these impairments can lead to
significantly reduced participation in the community (Allison
et al., 2013; Warren et al., 2016) and an increased risk of falling
(Verghese et al., 2009; Toebes et al., 2012; Ambrose et al., 2013;
Lusardi et al., 2017), one of the leading causes of morbidity
among older adults (Burns and Kakara, 2018).

For older adults, the evaluation and treatment of mobility
impairments are centered on clinical data collected from
functional assessments, such as gait speed and the short
performance physical battery (Middleton and Fritz, 2013; Soubra
et al., 2019). These assessments quantify observed functional
deficits and can track recovery with rehabilitation (The LIFE
Study Investigators, 2006; Brach and Vanswearingen, 2013);
however, prognostic biomarkers that can predict age-related
functional decline have the potential to promote healthier aging
by triggering early, targeted interventions that can mitigate
or reverse the mobility deficits that contribute to a higher
fall risk and reduced quality of life. Recent evidence suggests
that among older adults, measurable changes in neuromuscular
control precede functional changes (Clark et al., 2013; Dingwell
et al., 2017). Thus, the incorporation of neuromuscular control
measurements into routine clinical evaluations may enable timely
identification of emerging deficits.

Common measures of neuromuscular control evaluate the
relationship between the descending inputs from the central
nervous system and coordination of muscular outputs (Ivanenko
et al., 2004; Clark et al., 2013; Kamp et al., 2013; Palmer
et al., 2016; Liu et al., 2019; Rozand et al., 2019; Awad et al.,
2020; Opie et al., 2020). A popular measure of neuromuscular
control that quantifies the coordinated co-activation of muscles
during walking is a muscle synergy analysis, with different
muscle synergy metrics, such as the number of synergies and
the composition and timing of those synergies, used to express
different aspects of control in young adults (Ivanenko et al.,
2004; Chvatal and Ting, 2013), older adults (Sawers and Bhatt,
2018; Baggen et al., 2020; Santuz et al., 2020), and individuals
with neurological diagnoses (Clark et al., 2010; Ting et al., 2015).
The number of muscle synergies that underlie a motor task
has consistently been used as a measure of the complexity of
neuromuscular control and is associated with functional abilities
(Furuya and Altenmüller, 2013; Sawers et al., 2015; Yaserifar
et al., 2021) and fall risk (Allen and Franz, 2018; Sawers and
Bhatt, 2018). These findings are often used to motivate using the
number of synergies to characterize deficits in the neuromuscular
control of walking.

Although the number of muscle synergies differentiates
between the extremes of skill and impairment, a wide range of
clinical presentations are found among individuals with the same
number of muscle synergies. Indeed, older adults do not show
a reduction in the number of muscle synergies compared to
younger adults (Monaco et al., 2010; Baggen et al., 2020; Santuz
et al., 2020), despite known walking deficits (Menz et al., 2003;
Kim and Kim, 2014; Cruz-Jimenez, 2017). This suggests that the
number of muscle synergies may not be suitable for the detection
of age-related impairments in the neuromuscular control of
walking. More recently, the dynamic motor control index—a
summary metric of muscle co-activations during walking—has
emerged as an alternative measure of neuromuscular complexity

(Steele et al., 2015; Schwartz et al., 2016; Shuman et al., 2019).
This measure computes the variability accounted for (VAF) from
the one-synergy solution and scales it to a z-score based on
a reference group (see section “Materials and Methods”), with
a higher index representing higher neuromuscular complexity
(Steele et al., 2015). By expressing neuromuscular complexity
in this way, the dynamic motor control index is an intuitive
measure that can be quickly interpreted by both researchers and
clinicians. Previous work has shown that the dynamic motor
control index can differentiate between neurologically intact
children and children with cerebral palsy assessed at different
levels of the Gross Motor Functional Classification System and
Gillette Functional Assessment Questionnaire (Steele et al., 2015).
Recently, da Silva Costa et al. (2020) demonstrated that the
one-synergy VAF differs between younger and older adults
performing complex walking balance tasks, whereas the number
of muscle synergies does not.

To build upon this work, the primary aim of this study was
to determine if, compared to the number of muscle synergies,
the dynamic motor control index (i.e., a scaled version of the
one-synergy VAF) could better quantify age-related differences in
neuromuscular control during treadmill walking. We examined
the index as both a continuous predictor of age-related changes
and a categorical predictor of impairment based on a cutoff of one
standard deviation lower than controls. We hypothesized that the
dynamic motor control index would be better than the number
of muscle synergies at differentiating between younger and older
adults, as well as between young-old and old–old subgroups. We
also hypothesized that as a categorical predictor of impairment,
the dynamic motor control index would identify differences in
the number of impaired individuals across increasing age-groups.

MATERIALS AND METHODS

Participants
Data from 38 adults were gathered from a publicly available data
set (Santuz et al., 2020). Inclusion criteria included age between
18 and 80 years old and no known neurological impairments.
Participants were grouped by age into younger (<35 years old;
YA) and older (≥65 years old; OA) adults. The older adults
were then subdivided into two groups: young-old (<75 years
old; YO) and old–old (≥75 years old; OO). These subsets have
been shown to differ in amount of sedentary time (Kim and Lee,
2019), quality of life (Kim and Lee, 2019), and prevalence of frailty
and chronic conditions (Fried et al., 2001; Hayutin and Dietz,
2010). All procedures were approved by the Ethics Committees
of the Humboldt-Universität zu Berlin, Kassel University, and
Heidelberg University.

Data Collection
Data collection procedures are detailed by Santuz et al. (2020).
For our analyses, we extracted raw EMG data from 1 min of
treadmill walking (i.e., the second unperturbed walking trial
from experimental protocol E3) and re-analyzed these data for
all participants. The younger cohort walked at 1.2 m/s and the
older cohort walked at 1.1 m/s, based on the average comfortable
walking speed for younger and older adults from a pilot study
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(Santuz et al., 2020). Electromyography data were collected
from 12 right lower limb muscles (Figure 1A): vastus medialis,
rectus femoris, vastus lateralis, tensor fascia latae, soleus, medial
gastrocnemius, peroneus longus, tibialis anterior, biceps femoris,
medial hamstrings, gluteus maximus, and gluteus medius.

Data Processing
EMG signals for all participants were processed using custom
MATLAB scripts. The data were high-pass filtered at 40 Hz using
a 4th order Butterworth filter, de-meaned, rectified, low-pass
filtered at 4 Hz using a 4th order Butterworth filter, and resampled
to 1000 Hz. Strides containing signal artifacts were removed from
the EMG data through visual inspection, and the last 30 clean
strides were used for subsequent analyses. Each stride was then
resampled to 101 points to normalize to percentage of the gait
cycle. Following visual inspection, the tensor fascia latae was
removed for all participants due to poor data quality.

The number of muscle synergies was calculated for each
participant using non-negative matrix factorization with a
modified version of a MATLAB script made publicly available
by Ting and Chvatal (2010). The cutoff criteria for the number
of muscle synergies was set to 90% of the variability in data
accounted for (VAF) or until the addition of a new synergy did
not increase the total VAF by more than 5%. Dynamic motor
control index values were also calculated using non-negative
matrix factorization, but the total number of allowable synergies
was constrained to one. Constraining the number of muscle
synergies to one minimizes the impact of pre-processing and
cutoff criteria, which have been shown to be variable across
research groups and produce different results in the number
of muscle synergies (Ivanenko et al., 2004; Coscia et al., 2015;
Shuman et al., 2017; Kieliba et al., 2018). As a result, the dynamic
motor control index has high potential to serve as a robust
summary metric of muscle co-activation during walking.

The one-synergy VAF values were converted into dynamic
motor control indices using the following equation first presented
by Steele et al. (2015), with young-adults serving as the control
group:

Dynamic Motor Control Index = 100

+10

(
AVG VAF1 synergy−Control − VAF1 synergy−Exp

SD VAF1 synergy−Control

)
where AVG VAF1synergy−Control is the average of the VAF of
the one-synergy solution of the young adult control group, SD
VAF1synergy−Control is the standard deviation of the VAF of the
one-synergy solution of the young adult control group, and
VAF1synergy−Exp is the VAF of the one-synergy solution for each
individual in the experimental groups (i.e., young-old and old–
old adults).

Data Analysis
Binomial logistic regression was used to test if the dynamic motor
control index was significantly predictive of age group (young
or old) after adjusting for the number of muscle synergies. The
first block contained the main effects of muscle synergies and

the dynamic motor control index, and the second block included
their interaction. The same predictors were used in a multinomial
logistic regression comparing younger, young-old, and old–old
groups. The old–old group was used as the reference comparison
in the multinomial logistic regression. The number of muscle
synergies and dynamic motor control index were both mean-
centered.

A chi-square test examined the differences in the number of
individuals classified as impaired across the three age groups. An
individual was considered impaired if they had a dynamic motor
control index value more than one-standard deviation less than
the mean of the young adult group (i.e., <90).

RESULTS

Data for two individuals were removed from all analyses; the
first was a young adult who had high signal artifacts across
several muscles, and the second was an older adult who was
identified as an outlier based on examination of residuals, leaving
36 study participants. The primary analyses were conducted with
and without the single outlier, without a notable effect on the
results. On average, the young adults (N = 18; 11 female) were
27 ± 3 years old and the older adults (N = 18; 13 female)
were 72 ± 5 years old. After subdividing the older group into
those younger than and older than 75 years old, the young-old
subgroup (N = 13; 10 female) was 70 ± 3 years old and the old–
old subgroup (N = 5; 3 female) was 78± 2 years old, on average.

The total variance accounted for by 1 to 4 synergies is reported
for the young, young-old, and old-old groups in Figure 1B. Using
the cutoff criteria described in Data Processing, these groups had,
on average, 2.78 ± 0.43, 2.92 ± 0.49, and 3.0 ± 0.71 muscle
synergies (Figure 1C) and a dynamic motor control index of
100± 10, 96.4± 10.79, and 88.9± 9.67 (Figure 1D), respectively.
In total there were 7 individuals with two muscle synergies,
27 individuals with three muscle synergies, and 2 individuals
with four muscle synergies. Additionally, 12 participants had a
dynamic motor control index below our impairment threshold of
90. Individual subject results are reported in Table 1.

The logistic regression model predicting dichotomous age
group by the main effects of muscle synergies and the dynamic
motor control index was significant [χ2(2) = 6.20, p = 0.045,
Nagelkerke R2 = 0.211]. The dynamic motor control index
significantly predicted age group (p = 0.039, OR = 1.089),
while the number of synergies was not significant (p = 0.077,
OR = 0.222). When added to the model, the interaction between
the two variables was also not significant (p = 0.239). Model
results are presented in Table 2.

The multinomial logistic regression model predicting
subgroups of young, young-old, and old–old by the main effects
of muscle synergies and dynamic motor control index, was
significant [χ2(4) = 10.62, p = 0.031, Nagelkerke R2 = 0.297].
Again, the dynamic motor control index was significant
[χ2(2) = 9.41, p = 0.009] while the number of synergies was
not [χ2(2) = 5.42, p = 0.067]. Specifically, after adjusting for
the number of synergies, the dynamic motor control index
was significantly positively predictive of being in the old–old
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FIGURE 1 | (A) Muscle activity was measured unilaterally from younger and older adults from 12 muscles. (B) Average ± standard deviation of the total variance
accounted for by one to four synergies for each group. (C) The number of muscle synergies does not differentiate between age groups. Errors bars are standard
error. Mean age ± standard deviation are shown for each group. (D) The dynamic motor control index does differentiate between age groups and identifies a
significantly different percentage of individuals with impaired neuromuscular complexity between groups [χ2(2) = 9.35, p = 0.009]. Errors bars are standard error.
Mean age ± standard deviation shown for each group.

age group compared to the young age group (Wald χ2 = 5.16,
p = 0.023, OR = 1.26), but was not significant for the young-old
group (Wald χ2 = 2.97, p = 0.085, OR = 1.19). When added to
the model, the interaction between the number of synergies and
the dynamic motor control index was not significant (p = 0.060).
Model results are presented in Table 3.

Using a dynamic motor control index impairment threshold
of 90 to identify individuals with impairment in neuromuscular
complexity, we observed between-group differences in the
number of impaired individuals [χ2(2) = 9.351, p = 0.009]. More
specifically, 11.1% of young adults, 38.5% of young-old adults,
and 80% of old–old adults were impaired (Figure 1D).

DISCUSSION

The primary finding of this study is that the dynamic motor
control index captures changes in neuromuscular control with
progressing age that the number of independent muscle synergies

does not. Consistent with our hypothesis, the number of muscle
synergies was not a significant indicator of age group, even when
sub-dividing older adults into young-old and old–old groups. In
partial support of our hypothesis, the dynamic motor control
index was able to differentiate between younger adults and all
older adults, and differentiate between the old–old and young
adult subgroups, but was not able to differentiate between young-
old and old–old subgroups.

Our findings build on previous work which showed that the
one-synergy VAF (i.e., unscaled dynamic motor control index) of
electromyography data collected during complex walking balance
tasks is significantly different between younger and older adults
(da Silva Costa et al., 2020). The high task difficulty of the balance
tasks (i.e., walking on a narrow piece of tape and walking on
a narrow beam) is thought to have magnified differences in
neuromuscular control across the age groups. In contrast, our
results suggest that even a simple treadmill walking task can
identify impairments in neuromuscular control in older adults,
particularly those older than 75 years. However, our failure to
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TABLE 1 | Participant characteristics and neuromuscular complexity.

Participant Subgroup Sex Age # of muscle
synergies

Dynamic
motor control

index

H1 YA F 22 3 98.320

H2 YA F 24 3 92.847

H3 YA F 24 3 102.397

H4 YA F 25 3 91.030

H5 YA F 25 3 91.202

H6 YA F 25 3 99.074

H7 YA F 25 3 99.549

H8 YA F 25 3 107.443

H9 YA F 26 2 84.930

H10 YA F 26 3 93.793

H11 YA M 27 2 91.863

H12 YA M 28 3 116.856

H13 YA M 29 3 119.134

H14 YA M 30 3 88.414

H15 YA M 30 2 101.512

H16 YA F 31 2 97.930

H17 YA M 33 3 115.174

H18 YA M 35 3 108.533

H19 YO F 65 2 89.996

H20 YO F 65 3 80.554

H21 YO F 68 3 97.565

H22 YO F 69 3 102.564

H23 YO F 69 3 113.427

H24 YO F 70 3 82.939

H25 YO F 70 3 97.489

H26 YO F 71 2 86.748

H27 YO F 71 3 93.341

H28 YO M 72 3 87.949

H29 YO M 72 3 99.794

H30 YO M 72 4 109.551

H31 YO F 74 3 111.707

H32 OO M 76 3 86.600

H33 OO F 77 2 77.533

H34 OO F 78 3 87.195

H35 OO M 80 3 88.712

H36 OO F 80 4 104.281

observe a significant difference between the young-old and old–
old subgroups may be due to the simplicity of the treadmill
walking task. The timely identification of emerging age-related
deficits may require evaluating neuromuscular control across
different walking tasks that range in complexity.

The proportion of individuals classified as having a
neuromuscular impairment (i.e., those with a dynamic motor
control index less than 90) was significantly different across age
groups (Figure 1D). These results not only demonstrate the
ability of the dynamic motor control index to identify increasing
neuromuscular impairment across age groups, but also highlight
the interpretability and potential clinical utility of this metric. By
scaling each person’s one-synergy VAF to a z-score, clinicians can
quickly identify a meaningful neuromuscular impairment based

on the difference from 100 (i.e., the average score of the reference
group). Classification based on the one-synergy VAF is also
possible but would be much less intuitive. Our study suggests
that a cutoff of 90 may be useful for screening for age-related
neuromuscular impairment. Interestingly, two individuals in
the young adult group were classified as “impaired” based on
their dynamic motor control indices being less than 90. Without
corroborating clinical data, it is not known if these two young
adults have actual neuromuscular impairments or if this finding
is a limitation in the specificity of the metric. Indeed, because
our threshold for impairment (i.e., a score of 90) is one standard
deviation from the mean of the young adult group, by definition
some young adults will be classified as “impaired.” Substantial
future work is needed to evaluate the diagnostic accuracy of
different dynamic motor control index impairment thresholds.
Anchoring the impairment threshold on statistical, clinical,
or patient-perceived criteria and using these to derive small,
moderate, and large meaningful difference scores would further
improve clinical usability.

The number of muscle synergies has been used as a
measure of motor ability (Furuya and Altenmüller, 2013; Sawers
et al., 2015; Yaserifar et al., 2021) and impairment (Allen and
Franz, 2018; Sawers and Bhatt, 2018); however, its suitability
for the detection of age-related neuromuscular impairment is
questionable (Monaco et al., 2010; Baggen et al., 2020; da
Silva Costa et al., 2020; Santuz et al., 2020). Thus, a primary
goal for this study was to evaluate if the dynamic motor
control index could better quantify age-related differences in
neuromuscular complexity. As a continuous summary metric
of muscle activity during walking, the dynamic motor control
index highly contrasts with the discrete nature of the number
of muscle synergies. That is, unlike the dynamic motor control
index, the number of muscle synergies identified during walking
spans a relatively small range of values, resulting in low
measurement resolution and a limited ability to distinguish
between individuals. This weakness has required examination of
other muscle synergy metrics [e.g., analysis of the weightings and
timings of the synergies (Steele et al., 2017; Jacobs et al., 2018;
Baggen et al., 2020; Santuz et al., 2020)] to identify neuromuscular
impairments among those with the same number of synergies,
but even those metrics are limited in their ability to identify
age-related neuromuscular impairments (Monaco et al., 2010).

An additional benefit of the dynamic motor control index
is that it is not influenced by filtering approach and cutoff
criteria in the same ways as the number of muscle synergies
(Shuman et al., 2017; Kieliba et al., 2018). In the literature, the
number of synergies reported during walking ranges from 3
to 7, with 4 synergies as the most common finding (Ivanenko
et al., 2004; Chvatal and Ting, 2013; Sawers et al., 2015; Allen
and Franz, 2018). These differences are heavily influenced by
the number and type of muscles studied, filtering techniques,
and cutoff criteria (Ivanenko et al., 2004; Coscia et al., 2015;
Shuman et al., 2017; Kieliba et al., 2018). Our finding of three
synergies for the majority of the adults included in our study
is similar to the results of Steele et al. (2017) and Coscia et al.
(2015). Moreover, Monaco et al. (2010) reported that three
primary synergies accounted for most of the variance in muscle
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TABLE 2 | Binomial logistic regression results: younger and older adults.

Model statistics Predictor statistics

Model R2 X2 p Predictors β OR p

Model 1 Muscle synergies and dynamic
motor control index

0.211 6.20 0.045 Constant 0.013 1.013 0.971

Muscle synergies −1.507 0.222 0.077

Dynamic motor control index 0.085 1.089 0.039

Model 2 Muscle synergies, dynamic motor
control index, and interaction

0.303 9.283 0.026 Constant 0.366 1.442 0.409

Muscle synergies −2.602 0.074 0.144

Dynamic motor control index 0.100 1.105 0.029

Muscle synergies
× dynamic motor control index

−0.218 0.804 0.239

TABLE 3 | Multinomial logistic regression results: young, young-old, and old–old adults.

Model statistics Subgroup analysis (OO reference group)

Model R2 X2 p Subgroup Predictors β OR p

Model 1 Muscle synergies and dynamic 0.297 10.62 0.031 Model 1 YA Constant 2.297 0.023

motor control index Muscle synergies −3.369 0.034 0.068

Model 2 Muscle synergies, dynamic motor 0.422 16.251 0.012 Dynamic motor control index 0.230 1.258 0.023

control index, and interaction YO Constant 2.045 0.044

Predictor statistics Muscle synergies −2.194 0.111 0.227

Dynamic motor control index 0.169 1.185 0.085Predictors X2 p

Model 1 Constant 11.266 0.004 Model 2 YA Constant 3.863 0.020

Muscle synergies 5.416 0.067 Muscle synergies −5.835 0.003 0.034

Dynamic motor control index 9.412 0.009 Dynamic motor control index 0.342 1.408 0.020

Model 2 Constant 16.309 0.000 Muscle synergies × dynamic motor −0.357 0.700 0.098

Muscle synergies 9.452 0.009 control index

Dynamic motor control index 12.561 0.002 YO Constant 3.336 0.043

Muscle synergies × dynamic motor 5.631 0.060 Muscle synergies −3.678 0.025 0.092

control index Dynamic motor control index 0.268 1.307 0.060

Muscle synergies × dynamic motor
control index

−0.156 0.855 0.182

activity during walking, with additional synergies identified by
the algorithm accounting for only an additional 15% of the
variance without providing additional information about muscle
coordination. While the average number of synergies observed
in our study sample is on the lower end of the range reported
in the literature, our results are consistent with prior research
showing no significant difference in the number of synergies
between older and younger adults (Monaco et al., 2010; Baggen
et al., 2020; da Silva Costa et al., 2020; Santuz et al., 2020).
Methodological differences across studies highlight the need for
more standardized approaches for muscle synergy analyses. To
that end, whereas the number of muscle synergies is often not
comparable across research groups, the dynamic motor control
index (which can be derived from the same data used to compute
the number of synergies) has potential to serve as a more
universal approach to measuring neuromuscular complexity.

Although limited in the ability to distinguish among
individuals with the same number of synergies, prior work
has shown that a reduced number of synergies can identify

individuals at the extremes in neuromuscular complexity,
including older adults with a history of falls (Allen and Franz,
2018; Sawers and Bhatt, 2018). Indeed, individuals in our study
with only two independent muscle synergies were more likely
to have an impaired dynamic motor control index (i.e., four
of seven, 57%) compared to individuals with three muscle
synergies (i.e., seven of 27, 26%). Moreover, although not a
significant independent predictor in either of our regression
models, the number of synergies approached significance in both
the binomial (p = 0.077) and multinomial (p = 0.067) models.
These results suggest that the number of muscle synergies and the
dynamic motor control index may offer synergistic information
about neuromuscular complexity and future work is needed to
further investigate this relationship.

Limitations
There are several limitations of this study. Although previous
research has shown high variability in the number of synergies
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observed during walking across older adults (e.g., Clark et al.,
2010), it is noteworthy that 75% of the participants in our study
had three synergies. Re-analysis in a more heterogeneous cohort
may be valuable. However, it should be noted that although our
study sample may be homogenous in terms of the number of
muscle synergies, it is not homogenous in terms of the age-related
neuromuscular impairment that is captured by the dynamic
motor control index.

While the results of this study demonstrate the ability
of the dynamic motor control index to identify changes in
neuromuscular control with age, studying its usefulness as a
measure to identify walking impairments prior to a functional
decline is beyond the scope of this study and will be investigated
in future work. Finally, we focused on the number of synergies,
which is used as a measure of neuromuscular complexity, and
not the muscle composition or timing of the individual synergies.
These may be useful in characterizing neuromuscular control
deficits in a way that the dynamic motor control index cannot.
Ultimately, a combination of neuromuscular control metrics may
be necessary to fully characterize impairments.

CONCLUSION

The dynamic motor control index can identify age-related
differences in the complexity of muscle activations during
walking that the number of muscle synergies does not. Moreover,
a dynamic motor control index of 90 appears to be a meaningful
threshold indicator of age-related neuromotor impairment.
Together, these findings support evaluation of the dynamic
motor control index’s potential to facilitate timely detection of
age-related functional decline. Additionally, the findings of this
study show that lower extremity electromyography data from
a simple treadmill walking task are sufficient to differentiate
between age groups, a finding of importance to advancing the
overall accessibility of approaches to measuring neuromuscular
control deficits.
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