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Abstract— We propose a novel system to track human lower-
body motion as part of a larger movement assessment system
for clinical evaluation. Our system combines multiple wearable
Inertial Measurement Unit (IMU) sensors and a single external
RGB-D camera. We use a factor graph with a Sliding Window
Filter (SWF) formulation that merges 2-D joint data extracted
from the RGB images via a Deep Neural Network, raw depth
information, raw IMU gyroscope readings, and estimated foot
contacts extracted from IMU gyroscope and accelerometer data.
For the system, we use an articulated model of human body
motion based on differential manifolds. We compare the results
of our system against a gold-standard motion capture system
and a vision-only alternative. Our proposed system qualitatively
presents smoother 3D joint trajectories when compared to noisy
depth data, allowing for more realistic gait estimations. At the
same time, with respect to the vision-only baseline, it improves
the median of the joint trajectories by around 2 cm, while
considerably reducing outliers by up to 0.6m.

I. INTRODUCTION

Frail older adults constitute a fast-growing segment of
the population. Many aged individuals suffer from multi-
ple disorders associated with the loss or impairment of
motor functions [1]. Modern health care systems fail on
most accounts to detect the changes in a person’s health
status that often precede catastrophic events, thus leading
to intensive, high-cost, and institution-based interventions
that may have been avoided with better monitoring. Changes
in physical activity and movement dysfunctions are often
the first indicators of frailty. Home-based technologies that
continuously assess real world mobility have high potential
to facilitate early detection and treatments. In this light, we
propose a multimodal movement estimation system that could
be used for home-based mobility monitoring, and ultimately
for the timely diagnosis of movement impairments.

Fig. 1 illustrates the overall architecture of the proposed
system. In the current instance, we use a single stationary
3D depth-sensing camera and four Inertial Measurement
Unit (IMU) sensors strapped on the lower body of the
subject. We use a pre-trained Deep Neural Network (DNN)
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Fig. 1: Proposed System Architecture. The system fuses information
from IMU sensors and pose information from a pre-trained DNN
to provide more robust pose estimation.

model (OpenPose [2]) to extract 2-D joint data from the
RGB images, and a Logistic Regressor (LR) classifier to
estimate foot contacts. These computed measurements are
then combined via a factor graph with raw depth and IMU
gyroscope measurements, based on a differential manifold
representation of an articulated human model; we use the
Georgia Tech Smoothing and Mapping (GTSAM) [3] for
inference on the factor graph.

Related Work. There is substantial interest in measuring
human motion using vision and inertial measurement ap-
proaches. For example, the authors of [4] track the upper
limb of patients undergoing rehabilitation with the use of
two IMU sensors and a kinematic model. The authors of [5]
and [6] similarly use a dynamic and kinematic model to
estimate the pose of a pedestrian from a single RGB camera.
Furthermore, the authors of [7] use IMU sensors to track
the human body with the aid of a kinematic model from a
Kinect sensor. Lastly, several algorithms that require RGB-
D data [8], [9] such as of [10] and [11] propose multi-
segment tracking algorithms that decomposed RGB-D data
volumetrically into regions that represent the human body
skeleton. In comparison to these studies, the proposed system
uses a tighter integration of machine learning and a filtering
framework with an additional foot contact detector. This
improves our system with the capabilities of machine learning
algorithms, while still benefiting from the robustness of model
based approaches.

In parallel, the fusion of vision and inertial measurements
represents a cornerstone of state estimation for robots,
typically referred to as Visual-Inertial Odometry (VIO).
Approaches in this domain can be divided into two categories:



loosely coupled and tightly coupled [12], [13]. Loosely
coupled approaches use the IMU for the update step of
the estimation together with simple models (e.g., constant
velocity) for the prediction. On the other hand, tightly coupled
approaches use the IMU data directly in the prediction
step, without requiring a priori models for the system
dynamics. Virtually all recent VIO approaches are based
on a tightly coupled architecture. These approaches can be
further divided into two categories: filtering methods and
nonlinear optimization methods. The most representative work
for filtering methods is the Multi-State Constraint Kalman
Filter (MSCKF) [14], [15], which expands upon the Extended
Kalman Filter (EKF). Historically, filtering methods were
mainly used for their low computational requirements, which
easily allowed real-time performance. More recently, Sliding
Window Filtering (SWF) approaches based on nonlinear
optimization via factor graphs [16], [17] have emerged
as the state of the art paradigm; these methods perform
maximum likelihood estimation on a limited sliding window
of measurements. Although computationally more intensive,
they provide better performance [18].

Paper contributions. Our system applies recent advance-
ments from the VIO literature to the domain of human motion
estimation, showing that it is possible to augment the raw
measurements with the outputs of machine learning algo-
rithms, and that such outputs can be successfully integrated
in factor graph methods. We report performance of the system
when used as part of clinically-relevant mobility testing.

II. PRELIMINARIES

In this section we cover the mathematical background and
preliminaries required to implement the proposed SWF for
3D human walker tracking. For additional details, we refer
to existing literature on Lie groups [19], [20], optimization
on manifolds [21], and factor graphs [3].

A. The rotation group SO(3)

The space of 3-D rotations is defined as SO(3) = {R ∈
R3×3 : RTR = I3} and is a Lie group (i.e., it has a group
structure given by the matrix multiplication and is also a
differential manifold). Its tangent space at the identity, the
Lie algebra so(3), is given by the space of 3 × 3 skew
symmetric matrices; it can be identified with R3 via the hat
operator, which maps a vector ω ∈ R3 to a matrix ω∧ ∈ so(3)
encoding the cross product, i.e., ω∧v = ω×v for any v ∈ R3.
Tangents to a time-varying curve R can be written in the form
of Ṙ = Rω∧. The exponential map at the identity, denoted
by exp : so(3) 7→ SO(3), maps an element ω ∈ so(3) to a
rotation R along the geodesic (under the standard Riemannian
metric on SO(3)) in the direction ω. The logarithm map
log : SO(3) 7→ so(3) is locally defined as the inverse of
the exponential map. The left and right Jacobian of the
exponential and logarithm maps give the relation between
tangents of curves in so(3) and tangents of curves on SO(3),
and can be computed in closed form (see [22] for details).

B. Optimization on manifolds

Let M be a Riemannian manifold. A retraction RX on
M is a map from the tangent space at X to the manifold (the
exponential map exp defined in Sec. II-A is an example).

Let us consider minX∈M g(X ) as an optimization problem
over M. The cost function g(X ) can be lifted [23] via a
retraction to the tangent space, i.e., g(X ) can be transformed
to ḡ(RX (δX )), where δX is an element of the tangent space.
Algorithms for optimization on manifolds then follow a two-
step process: 1) use the lifted cost function to determine
a direction δX that locally decreases the cost; 2) use the
retraction to move X to R(X ). The first step typically requires
computing the gradient of the lifted cost ḡ, which in turn
requires the Jacobian of the retraction.

C. Factor graphs

A factor graph G = (S,F) is a bipartite graphical
model that represents a probability distribution given by the
multiplication of factors F = {fk} that are functions of
subsets sk of the states S =

⋃
k sk [24]; typically, each factor

will depend also on a subset zk of external measurements
Z = {zk}. Factor graphs are at the base of the current state-
of-the-art results in Simultaneous Location And Mapping
(SLAM) [25]. More in detail, the likelihood of S given Z is
defined as from the factors F as

P (S|Z) ∝
∏
k

fk(sk; zk). (1)

The maximum likelihood (ML) estimate of S corresponds
to maximizing (1), or equivalently, minimizing its negative
log-likelihood. As it is common in the literature [3], [26],
we assume that each factor fk is given by residuals rk that
follow a zero-mean Gaussian distributions with a covariance
Σk. The final optimization problem associated to G can then
be written as a nonlinear least-squares optimization problem:

S∗ = argmin
S
− ln

∏
k

fk(S) = argmin
S

∑
k

‖rk(S)‖2Σk
.

(2)
When S includes variables in Riemannian manifolds, this
optimization problem is solved using the techniques reviewed
in Sec. II-B. Intuitively, the covariances Σk in (2) define
the relative weights of each factor; while some covariance
matrices can be estimated via calibration (e.g., for inertial
measurements), others are commonly treated as design pa-
rameters (e.g., for the output of machine learning algorithms).

The complexity for solving (2) increases with the total
number of factors. In order to achieve real-time computations,
we use a Sliding Window Filtering approach, where only a
subset of the n most recent measurements are kept, leading
to an approximately constant computational cost.

In applications where temporal data is factored in, filtering
methods are required to limit its complexity.



Fig. 2: Graphic representation of the human tree H, with the links’
length variables lij and their respective orientations (the z axes
correspond to the blue arrows). The tree nodes nk are depicted by
green circles, and the IMUs are represented by orange rectangles.

III. PROBLEM FORMULATION

A. Human walker model

We represent a human walker by a tree H = (V, E). The
nodes ni ∈ R3, i ∈ V correspond to 3-D joint positions
expressed in a fixed inertial frame, and with i = 0 representing
the root node). The edges (i, j) ∈ E correspond to links; for
each one, we associate a length lij ∈ R that is independent
of tk, and a rotation Rij

k ∈ SO(3) for each time tk, defined
as a rotation from the link to the fixed inertial frame with
its z axis pointing downward along the direction of the link.
See Fig. 2 for a graphical depiction of the model.

The kinematic relation for each edge (i, j) ∈ E is:

njk = nik + lijRij
k e3 = nik + lij exp(rijk )e3, (3)

where rijk = log(Rij
k ), and e3 =

[
0
0
1

]
corresponds to the

standard basis z axis coordinates. Our model parametrization
(in contrast, e.g., to a naive Cartesian joint representation),
allows us to separate extrinsic quantities (rotations) from
intrinsic model parameters (lengths).

B. Measurements

We capture temporal data from Inertial Measurement Units
(IMUs), and spatial data from an RGB-D camera, from which
we extract four different types of measurements. The time
instants tk are given by the camera time stamps.

1) Inertial Measurement Units: We assume that the average
angular velocities for four links (two thights and two shanks)
are measured by IMUs placed in the middle of each link (see
Fig. 2). We assume a consistent placement of the IMUs with
respect to the body, so that the measurements can be expressed
in the correct reference frame via a fixed rotation. Since IMU
measurements are received at a higher rate than image-based
measurements, we use preintegration [17] to combine multiple
IMU measurements into a single relative rotation ∆R̃ij

k such

that ∆R̃ij
k = Rij

k−1

T
Rij

k in the absence of noise. We denote
as Ik = {∆R̃ij

k } the full set of preintegrated IMU rotations
at time tk.

2) RGB images: Images are processed using the OpenPose
DNN model [2], which outputs 2-D image plane pixel
coordinates x̃ik, ỹik for each joint i ∈ V in our human model
and for each frame tk. Note that OpenPose uses a cascade
of regressors that results in holistic estimations of the joint
position, i.e., the coordinates of hidden joints are sometimes
inferred from the detections of the visible joints. We denote
as Pk the full set of coordinates for all the joints.

3) Depths: The RGB-D camera provides depth data frames
synchronously with the RGB images at each time tk. Using
a known camera calibration matrix K, we back-project
the 2-D coordinates from the OpenPose measurements Pk

measurements to the point cloud to recover the depth zik
for each joint. We denote as Dk the full set of depths for
all the joints at time tk. Note that an alternative approach
would be to combine image and depth measurements into a
single 3-D joint estimate. However, this would couple two
modalities that have very different noise models, making the
determination of appropriate covariance matrices difficult.

4) Contacts: We use IMU data to extract additional foot
contact measurements, which are used to introduce factors
that fix the position of feet that are on the ground. To avoid
the use of additional sensors for step detection (as in [16],
[27]), some of which would require more cumbersome setups
for the human subject, we produce estimates of the contact
state between the feet and the ground by using a trained
binary classifier on the angular velocity and acceleration
data from the IMUs in Sec. III-B.1; specifically, we use
input feature vectors in R120 obtained by concatenating
(non-preintegrated) gyroscope and accelerometer data over
30 successive measurements. For the outputs, we manually
labelled 2722 keyframes in 18 datasets independent from the
ones presented in Sec. V. We trained the classifier using 70%
of the data for training, and 30% for testing the performance
of the classfier. We tested both a Recurrent Neural Network
(RNN) and a Logistic Regression (LR) model, and while both
gave similar results, the latter was finally chosen due to its
simplicity. To reduce the influence of outliers, the output of
the LR classifier is further processed with a median filter. In
the end, our classifier showed a 95% classification accuracy.
We denote as Ck the set of contact estimations at time tk.

IV. FACTOR GRAPH

We define the state Rk of the human walker at time tk
by concatenating the root node position n0

k with all rotations
Rij

k to form state, and we also define a calibration state
L containing all the lengths lij . As previously mentioned,
we define the factor graph on a window of n states Sk ={
L, {Rk′}kk′=k−n+1

}
over the time interval (tk−n, tk]. The

corresponding set of measurements is defined as Zk ={
{Ik′ ,Pk′ ,Dk′ , Ck′}k−1

k′=k−n+1 ,Pk,Dk

}
. Note that we have

one less measurement vector for Ik′ and Ck′ , as they are
in-between keyframe measurements.



Fig. 3: A small window of the proposed factor graph. Connecting
the orientation states R and length state L, it shows the IMU (red),
image plane (blue), depth (green), and contact (yellow) factors.

Our goal is to compute the ML estimate of the states
Sk given the measurements Zk. By assuming statistically
independent measurements, (2) can be used to formulate our
problem with the factor graph shown in Fig 3, leading to the
following optimization problem:

S∗k = argmin
Sk

k−1∑
k′=k−n

‖rIk′‖2ΣI
k′

+

k∑
k′=k−n

‖rPk′‖2ΣP
k′

+

k∑
k′=k−n

‖rDk′‖2ΣD
k′

+

k−1∑
k′=k−n

‖rCk′‖2ΣC
k′

(4)

where rIk′ , rPk′ , rDk′ and rCk′ (ΣIk′ , ΣPk′ , ΣDk′ and ΣCk′ )
are the residuals (covariance matrices) of the IMU, image
plane, depth and contact factors, respectively.

In the remainder of this section, we give expressions for
the residuals and their Jacobian matrices, such that (4) can be
solved using GTSAM (see Sec. II-B). We use superscripts i
and ij to denote quantities that refer to a singular joint or link
(full expressions are obtained by stacking these quantities).

A. IMU factor

The IMU factor computes the rotation error of each link
between two consecutive keyframes based on the residual

rijIk = log
(

(∆R̃ij
k )>(Rij

k−1)>Rij
k

)
(5)

Note that we do not model IMU bias in our factor graph.
The factor above uses only gyroscope data, for which we
empirically determined that the bias is negligible. Moreover,
the accelerometer data is only used for contact detection, for
which bias does not produce a significant difference.

1) Jacobians: The Jacobians of rIijk
with respect to the

Lie representation of the rotations, rijk−1 and rijk , are:

JIijk
(rijk−1) = −J−1r (rIijk

) · (Rij
k )>Rij

k−1 (6)

JIijk
(rijk ) = J−1r (rIijk

) (7)

where J−1r (·) is the right Jacobian of the log map.
2) Covariance: The factor covariance for each link is

given by the corresponding preintegrated IMU covariance;
we refer to [17] for detailed expressions.

B. Image plane factor

The image plane factor computes a residual in 2-D metric
coordinates:

rjPk
=

[
1 0 0
0 1 0

] 1

zjk

xjkyjk
1

−K−1

x̃jkỹjk
1

 , (8)

where xjk, y
j
k, z

j
k are the 3-D coordinates of the joint nj in

S , and the camera calibration matrix K is used to transform
the pixel coordinates from OpenPose to metric coordinates.

1) Jacobians: To compute the Jacobians with respect to
parent rotations Rpq

k and link lengths lpq , we start from the
kinematic relation (3):

xjyj
zj

 =


x0 +

∑0,...,j
(p,q) l

pq[Rpq]02

y0 +
∑0,...,j

(p,q) l
pq[Rpq]12

z0 +
∑0,...,j

(p,q) l
pq[Rpq]22

 (9)

where, we omitted the subscript k for the sake of readability,
[R]ab denotes the a, b-th element of the matrix R, and the
summations run over the the links (p, q) in the kinematic
chain from the root to j. Then, for a given joint nj we can
compute its Jacobians with respect to a parent link (p, q).
The Jacobian for the link length lpq is

Jj
lpq =


∂(xj/zj)

∂lpq

∂(yj/zj)

∂lpq

 =
1

zj

[Rpq]02 −
xj

zj
[Rpq]22

[Rpq]12 −
yj

zj
[Rpq]22

 . (10)

Similarly, for the link orientation rpq we have:

Jj
rpq =


∂(xj/zj)

∂rpq

∂(yj/zj)

∂rpq

 =
lpq

zj

e>1 Jpq − xj

zj
e>3 J

pq

e>2 J
pq − yj

zj
e>3 J

pq

 , (11)

where Jpq = [−Rpqe2,R
pqe1,03×1] ∈ R3×3.

Finally, the Jacobian for joint nj with respect to the system
variable n0 corresponds to:

Jj
n0 =


1

zj
0

−xj

(zj)2

0
1

zj
−yj

(zj)2

 (12)

2) Covariance: Since it is difficult to obtain a principled
quantification of the covariance in the OpenPose estimates,
we treat ΣPk

as a design parameter. The fine-tuned parameter
to present the results in Sec. V is ΣPk

= 7 · 10−4 I2.

C. Depth factor

The residual for the depth factor is simply defined as

rjDk
= zjk − z̃

j
k (13)



1) Jacobians: The Jacobian with respect to a parent link
length lpq is trivial, and can be directly extracted from (9):

Jj
lpq = e>3 R

pqe3 (14)

By following a reasoning similar to the previous factor,
Jj
rpq and Jj

n0 are obtained with:

Jj
rpq = lpqe>3 J

pq (15)

Jj
n0 = e>3 (16)

where Jpq is computed in a similar manner as for (11).
2) Covariance: We experimentally observed that the noise

variance in the depth measurements increases with the
distance to camera. We therefore define a depth-dependent
covariance matrix as follows. We captured a sequence of
images in which a subject stood still in front of the camera
at different distances, and captured the depth of all the joints
as described in Sec. III-B.3. Assuming that joints at the same
depth are identically distributed, we fit a logistic model σ(z̃)
mapping the sample joint depth mean to the sample standard
deviation. The covariance of the depth factor is then obtained
from an empirically re-scaled version of σ with a tuning
factor used to balance the scaling with other factors:

ΣDk
(ẑk) = 0.02 σ(z̃)2 = 0.02

(
1

1 + exp(−(z̃ − 4)

)2

(17)

D. Contact factor

Contact measurements Ck ∈ {0, 1} indicate whether the
right foot (0) or the left foot (1) is in contact with the ground.
This information is very useful to prevent unrealistic jittering
of the estimated model along the z axis (especially at larger
distances, where the depth data is more noisy), and to reduce
the influence of misdetection errors from OpenPose.

The residual for the factor is derived from a simple constant-
position model on the coordinates of the selected foot, nfoot:

rCk = nfootk+1 − n
foot
k . (18)

1) Jacobians: Similarly to Sec. IV-C, we can compute the
required Jacobians by recovering Jpq from (11):

Jfoot
lpq = Rpq

k+1e
>
3 −Rpq

k e
>
3 (19)

Jfoot
rpqk+1

= lpqJpq
k+1 (20)

Jfoot
rpqk

= −lpqJpq
k (21)

Jfoot
n0
k+1

= −Jfoot
n0
k

= I3 (22)

2) Covariance: Although the synthetic contact measure-
ments are obtained from IMU data, modeling their statistical
correlation with the preintegrated rotation measurements is
complex; hence, we opt to make the approximation that Ck
is statistically independent from Ik. Moreover, as in the case
of image plane measurements, we treat the choice of the
covariance as a tuning parameter for the model. For the
experiments, we selected ΣCk = 10−3 I3.

(a) Recording session setup (b) Sensor placement

Fig. 4: Experimental Setup. The left figure depicts a participant
performing the 10MWT by walking on a lane in front of the camera
according to the instructions of a clinician. The right figure provides
a graphical illustration of the marker and IMU placement.

V. EXPERIMENTAL STUDY

A. Experimental Setup

We evaluate the proposed system on healthy human subjects
using recordings of the 10-meter walk test (10MWT), a
common clinical test consisting of an acceleration phase, a
constant speed phase, and a deceleration phase. Fig. 4a shows
the physical recording set up. The participant is outfitted with
the four IMU sensors of our system (thighs and shanks),
in addition to motion capture markers (ankles, knees, and
hips) for recording ground-truth trajectories (see Fig. 4b for
a diagram of the sensor placement). The RGB-D camera is
placed longitudinally in the direction of the walking lane
(Fig. 4a gives a sample RGB image).

The motion capture data are recorded by an 18-camera
Qualysis Oqus-7 camera system at 200hz. The RGB-D camera
used is a Realsense d435 camera (Intel) capturing data at
30 fps. The four Xsens MTW-Awinda IMU sensors captured
data at 120 hz. The data from our system is managed via
the Robotic Operating System (ROS) [28] middleware. The
extrinsic calibration (i.e., rigid pose transformation) between
the Qualysis and the RGB-D camera is performed before
every recording session by collecting data on a calibration
target with a fiducial (AprilTag [29]) aligned with motion
capture markers, followed by a standard 3-D to 3-D alignment
procedure; the temporal calibration is performed through
communication between the proprietary Qualisys recording
software and ROS.

B. Analysis of Results

In total, we collected data from five healthy participants
under the IRB protocol Mass General Brigham 2020P003474,
with each participant completing six trials of the 10MWT.
In three 10MWT trials, the participant walked toward the
RGB-D camera; during the other three trials, the participant
walked away from the camera. Fig. 4a provides a graphical
illustration of the experimental setup by showing a trial with a
participant performing the 10MWT by walking away from the
camera. During each trial, we record six Cartesian trajectories
from the marker data that represent the motion of the right and
left hip, knee, and ankle joints. The system then computes an
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Fig. 5: GTSAM vs standalone OpenPose comparison on a signle
dataset. At the top, GTSAM smooths out noisy depth values. At the
bottom, the box plot presents the Euclidean errors of the trajectories
of all joints with respect to the Qualisys ground truth.

initial estimation of these trajectories by projecting the pose
information of OpenPose to the cloud data. Furthermore, the
initial Cartesian trajectories are fused with the measurements
of the IMU sensor by utilizing GTSAM to provide final
estimations of the six captured trajectories.

Fig. 5a shows a sample trial with selected keyframes from
the trajectories of the hips, knees and feet estimated by
OpenPose and GTSAM with a 150-SWF. Note that, as the
participant walks away from the camera, the estimations of
OpenPose become more inaccurate due to the increased noise
from the depth sensor. Additionally, our estimation produces
more plausible gait trajectories. To compare quantitatively
the performance of GTSAM and OpenPose, we calculated
how close to the ground truth the estimations of GTSAM
and standalone OpenPose are. For every joint of the skeleton
in every keyframe, we compute the Euclidean distances of
GTSAM and OpenPose with respect to the ground truth data.
Fig. 5b presents a box plot that illustrates the four quartiles for
the mentioned Euclidean joint errors in the trial represented
in Fig. 5a. We can see that GTSAM with a 150-SWF reduces
the outliers of OpenPose by more than 30 cm, and the values
of the 75th percentile and median by a few centimeters.

Fig. 6 presents the Euclidean errors of OpenPose and
GTSAM with two SWFs, of sizes 150 and 50, compared

OpenPose GTSAM (n=150) GTSAM (n=50)
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Fig. 6: Euclidean distance errors of OpenPose vs GTSAM for
window sizes n = 150 and n = 50. The errors are computed for
all the joint trajectories that were recorded in all the experiments.

to Qualysis data for all the joint trajectories in all the
trials. Again, for a SWF of size 150 we notice a similar
pattern than in Fig. 5, with GTSAM reducing the maximum
outliers with respect to OpenPose by about 0.6 m, and the
median by a few centimeters. Fig. 6 also provides a third
boxplot for a SWF of size 50. This time, although GTSAM
removes the outliers of OpenPose, its overall performance
decreased. This phenomenon can be attributed to the fact
that an increased number of states allows retaining more
past information than a filter with reduced size. A large
filter size, however, comes with the added cost of increased
computational complexity, which is an important factor when
considering real-life applications. On average, the factor graph
optimization for windows of size 50 took 0.22 s, while the
optimization for windows of size 150 took 0.53 s.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a system that uses a human
model and factor graph inference to fuse skeleton information
from OpenPose with IMU data to estimate lower body human
motion. The novelty of our work lies in the application of
GTSAM (which is traditionally employed for localization and
mapping in robots) to the domain of motion estimation for
human walking, allowing the use of a human model based on
manifolds, and the fusion of different sensor modalities with
the output of different machine learning algorithms. In our
experiments, we show that a sufficiently large Sliding Window
Filter based on factor graphs qualitatively and quantitatively
improves the 3D pose estimations with respect to a vision-only
approach. In the future, we plan to investigate the use of our
system in a home setting (where the use of the motion capture
gold standard is not feasible), as well as the integration of the
factor graph in the learning of the machine learning models,
and the use of our system for automatic activity-based clinical
assessment.



REFERENCES

[1] X. Song, A. Mitnitski, and K. Rockwood, “Prevalence and 10-year
outcomes of frailty in older adults in relation to deficit accumulation,”
Journal of the American Geriatrics Society, vol. 58, no. 4, pp. 681–687,
2010.

[2] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields,”
arXiv preprint arXiv:1812.08008, 2018.

[3] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[4] L. Bai, M. G. Pepper, Y. Yan, S. K. Spurgeon, M. Sakel, and M. Phillips,
“Quantitative assessment of upper limb motion in neurorehabilitation
utilizing inertial sensors,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 23, no. 2, pp. 232–243, 2014.

[5] M. A. Brubaker, D. J. Fleet, and A. Hertzmann, “Physics-based
person tracking using simplified lower-body dynamics,” in 2007 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2007,
pp. 1–8.

[6] ——, “Physics-based person tracking using the anthropomorphic
walker,” International journal of computer vision, vol. 87, no. 1-2, p.
140, 2010.

[7] Y. Tian, X. Meng, D. Tao, D. Liu, and C. Feng, “Upper limb motion
tracking with the integration of imu and kinect,” Neurocomputing, vol.
159, pp. 207–218, 2015.

[8] P. Wang, W. Li, P. Ogunbona, J. Wan, and S. Escalera, “RGB-D-based
human motion recognition with deep learning: A survey,” Computer
Vision and Image Understanding, vol. 171, pp. 118–139, 2018.

[9] M. Vondrak, L. Sigal, and O. C. Jenkins, “Physical simulation for
probabilistic motion tracking,” in 2008 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[10] B. Allain, J.-S. Franco, and E. Boyer, “An efficient volumetric
framework for shape tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 268–276.

[11] O. Oreifej and Z. Liu, “Hon4d: Histogram of oriented 4d normals
for activity recognition from depth sequences,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2013,
pp. 716–723.

[12] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimization,”
The International Journal of Robotics Research, vol. 34, no. 3, pp.
314–334, 2015.

[13] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,” arXiv preprint arXiv:2007.11898,
2020.

[14] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[15] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-
inertial odometry,” The International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[16] R. Hartley, M. G. Jadidi, L. Gan, J.-K. Huang, J. W. Grizzle, and
R. M. Eustice, “Hybrid contact preintegration for visual-inertial-contact
state estimation using factor graphs,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3783–3790.

[17] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU
preintegration on manifold for efficient visual-inertial maximum-a-
posteriori estimation.” Georgia Institute of Technology, 2015.

[18] L. E. Clement, V. Peretroukhin, J. Lambert, and J. Kelly, “The battle
for filter supremacy: A comparative study of the multi-state constraint
kalman filter and the sliding window filter,” in 2015 12th Conference
on Computer and Robot Vision. IEEE, 2015, pp. 23–30.

[19] E. Eade, “Lie groups for 2D and 3D transformations,” URL
http://ethaneade. com/lie. pdf, revised Dec, vol. 117, p. 118, 2013.

[20] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Springer Science & Business Media, 2011, vol. 2.

[21] N. Boumal, “An introduction to optimization on smooth manifolds,”
Available online, May, 2020.

[22] J. Sola, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.

[23] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on information theory,
vol. 47, no. 2, pp. 498–519, 2001.

[25] F. Dellaert, M. Kaess et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[26] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 28–41, 2004.

[27] M. Susi, V. Renaudin, and G. Lachapelle, “Motion mode recognition
and step detection algorithms for mobile phone users,” Sensors, vol. 13,
no. 2, pp. 1539–1562, 2013.

[28] Stanford Artificial Intelligence Laboratory et al., “Robotic Operating
System.” [Online]. Available: https://www.ros.org

[29] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 4193–4198.

View publication statsView publication stats

https://www.ros.org
https://www.researchgate.net/publication/353632482

	INTRODUCTION
	PRELIMINARIES
	The rotation group SO(3)
	Optimization on manifolds
	Factor graphs

	PROBLEM FORMULATION
	Human walker model
	Measurements
	Inertial Measurement Units
	RGB images
	Depths
	Contacts


	FACTOR GRAPH
	IMU factor
	Jacobians
	Covariance

	Image plane factor
	Jacobians
	Covariance

	Depth factor
	Jacobians
	Covariance

	Contact factor
	Jacobians
	Covariance


	EXPERIMENTAL STUDY
	Experimental Setup
	Analysis of Results

	CONCLUSION AND FUTURE WORK
	References



