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Abstract

To what extent are causal effects estimated in one region or time period informa-

tive about another region or time? This paper provides a formal answer by developing

methods to quantify the assumptions on heterogeneity in individual-specific causal ef-

fects that are required for causal effects estimated in one population to allow researchers

to reject hypotheses about causal effects in a population of interest. For example, the

method delivers the assumptions required to reject a zero causal effect or an average

cost per unit of improvement deemed excessive by policymakers. Hypotheses that can

be rejected under a wide range of assumptions constitute more robust inferences about

the causal effects in the population of interest. I empirically investigate what assump-

tions are required for experimental results on the return to cash transfers to male

microentrepreneurs in one Mexican city in 2006 to speak to the returns among male

microentrepreneurs in urban Mexico in 2012. The experimental results yield narrow

bounds on the average causal effect for male microentrepreneurs in urban Mexico in

2012 under a wide variety of assumptions on heterogeneity. Using data from a pair

of remedial education experiments carried out in urban India, I show that the meth-

ods suggested in this paper are able to recover average causal effects in one city using

results from the other where standard methods are unsuccessful.
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1 Introduction

The “credibility revolution in empirical economics” (Angrist and Pischke (2010)) has focused

on finding populations where the economic variable or “treatment” for which we would like

to estimate a causal effect can be randomly assigned or has been assigned in a manner as

good as random. While this focus on research design has led to an increase in the credibility

of estimated causal effects in studies of populations where treatment assignment is random

or quasi-random (“internal validity”), a number of recent papers have questioned whether

causal effects estimated in this way apply to populations of interest outside of the original

study, the question of “external validity” (e.g. Deaton (2010)). The question of external

validity is particularly pressing in the field of development economics. With lower costs,

development economists have been able to implement a large number of randomized field

experiments in recent years (Duflo et al. (2008)). However, development economists offer

policy advice across an arguably wider variety of contexts than any other field and, as a

result, there has been an active debate in the field over the role that randomized experiments

should play in influencing policy decisions in populations other than the ones where they

were originally carried out.

Consider the following example from Banerjee et al. (2007). A randomized evaluation of

a remedial education program is carried out in Mumbai, India. The program is found to raise

the average grade level competency of third-grade students by a significant margin. Should

education policy makers in another Indian city, Vadodara, implement this same policy? To

this point, economists and policy makers have lacked effective tools to assess whether the

population on which the experiment was conducted (Mumbai) is sufficiently similar to the

population of interest (Vadodara) for the experimental results to be useful (Banerjee and

Duflo (2009); Allcott (2014)). This had led some authors to protest against what they

see as the implicit extrapolation of unadjusted results from a small number of experiments

to a wide variety of disimilar contexts in policy recommendations (Pritchett and Sandefur

(2013)). This paper aims to fill the methodological gap by investigating the assumptions on

heterogeneity in individual-specific causal effects required for the results from an experiment

to reject hypotheses about the average causal effect in the population of interest.

The standard response to heterogeneity in causal effects would be to estimate average

causal effects conditional on covariates in the Mumbai sample and to weight these conditional

average casual effects according to the distribution of covariates in a sample from Vadodara

(see Allcott (2014)). The approach based on weighting conditional average causal effects has

been unsuccessful at recovering causal effects when using the results from one or more ran-

domized experiments to predict the results of other experiments examining the same policy
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Figure 1: controls - grade level competency on exiting 3rd grade conditional on grade level
competency on entering 3rd grade

(Allcott (2014)). The reweighting approach also ignores information from the distributions of

outcomes of individuals with the same treatment status (treated or control) and covariates,

which often differ between the experimental sample and the population of interest. To fix

ideas, I will assume in what follows that everyone in the population of interest is control, as

occurs when the experiment evaluates a pilot like the remedial education program1. Figure

1 provides an example of the information ignored by standard extrapolation methods: con-

ditional on grade level competency when entering third grade, the distribution of grade level

competency on exiting third grade (the outcome of interest) differs substantially between

controls (no remedial education) in Mumbai and Vadodara.

In this paper, I make use of the information in Figure 1, the distributions of control

outcomes for individuals with the same covariates in the population of interest (Vadodara)

1The analysis can easily be extended to the case when individuals choose their treatment status and an
experiment denies treatment to a random subset of individuals who would wish to be treated (see Bitler
et al. (2014) for an example of such an experiment).
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and the experimental sample (Mumbai), to derive sharp bounds on the average causal effect

in the population of interest. We can only bound the average causal effect in the population

of interest because we do not know how causal effects were distributed among individuals

with the same covariates in the experiment. If we assume that large causal effects accrue to

individuals with control outcomes that are more common in the population of interest than in

the experiment, then the treatment will look like it would have a big effect in the population

of interest. If, in contrast, small causal effects accrue to individuals with control outcomes

that are more common in the population of interest than in the experimental sample, then the

treatment will look like it would have a small effect in the population of interest2. The width

of the bounds will depend primarily on the extent of difference between the distributions of

control outcomes in the experimental sample and the population of interest3 and secondarily

on the amount of mass in the tails of the outcome distributions and the heterogeneity in the

quantile treatment effects.

Not every distribution of causal effects is equally plausible. In particular, distributions

characterized by causal effects of very large magnitude but different signs may be implausible.

I therefore index possible distributions of causal effects by a parameter measuring the extent

of heterogeneity in causal effects among individuals with the same covariates: the correlation

between an individual’s rank in her observed outcome distribution and her counterfactual

outcome distribution. I derive computationally tractable bounds on the average causal effect

in the population of interest subject to the restriction that the causal effect heterogeneity

for individuals with same covariates must be less than a specified value of the parameter.

These bounds allow us to investigate the robustness of hypotheses about the average causal

effect in the population of interest to the degree of causal effect heterogeneity allowed for

individuals with the same covariates. For example, we can ask how much heterogeneity we

can introduce and still reject an average causal effect of zero or a critical lower bound on

2It is worth mentioning that, while outside the scope of this paper, structural models do not provide
an immediate solution to the issues raised here. Direct extrapolation to alternative populations using a
structural model requires that the distributions of any parameters that affect policy response and cannot be
identified using data on only control individuals be the same across populations. For example, the marginal
utility of a schooling subsidy can be identified only using treatment group data in Attanasio et al. (2012).
If the marginal utility of the subsidy varies across populations, we would expect an extrapolation to predict
the effect of introducing the same school subsidy in another context using a structural model but keeping the
same marginal utility to fail (as such an extrapolation does in Attanasio et al. (2003)). The implausibility
of transporting all such parameters across contexts motivates attempting a sensitivity analysis similar to
the one in this paper, this time with respect to differences in the distributions of structural parameters
identified using the treatment group data. The width of bounds obtained in this way and their performance
in predicting average treatment effects across contexts are a matter for future research.

3In this sense, the approach can be thought of as determining the extent to which the experimental sample
is representative (as done informally in McKenzie and Woodruff (2008) and Heckman et al. (2010)) of the
population of interest and translating that representativeness into bounds on the average causal effect.
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cost-per-impact (for example average expenditure per grade level comptency increase) in

the population of interest. When heterogeneity is the minimum possible, the bounds on the

average causal effect reduce to a point and is an estimator from Athey and Imbens (2006)

(henceforth AI).

I empirically investigate the extent of causal effect heterogeneity required to undermine

the conclusion of a non-zero average causal effect in extrapolating the results from a small

experiment conducted in Leon, Mexico and documented in McKenzie and Woodruff (2008)

(henceforth MW). The experiment is part of a series (including experiments in Sri Lanka

described in de Mel et al. (2008) and Ghana described in Fafchamps et al. (2014)) examining

the returns to cash transfers to microentrepreneurs. The Leon experiment, like others in

the series, finds large returns to the transfers in terms of microenterprise profits, in this

case an increase in monthly profits of about 33% of the transfer. I investigate to what

extent this notable finding generalizes across space and time within Mexico. To represent

the population of interest, I use data from a subsample of the 2012 nationally-representative

Mexican microenterprise survey with the same covariates as the Leon experiment, facilitated

by the unique fact that the questionnaire in the Leon trial was intended to be compatible

with the contemporaneous microenterprise survey. Unsurprisingly, given the small size of the

Leon trial (just over 200 entrepreneurs), we cannot reject a zero average causal effect in the

full Mexican sample at any level of heterogeneity in causal effects. However, the conditional

distributions of profits in the 2006 Leon control group and the 2012 microenterprise survey

are sufficiently similar that the bounds on the average causal effect remain quite narrow,

even when allowing a substantial amount of heterogeneity in causal effects. Furthermore,

the results separate uncertainty about the average causal effect among male entrepreneurs in

urban Mexico in 2012 into uncertainty due to differences in the control outcome distributions

and due to the sample size of the experiment where existing methods account only for the

sample size of the experiment.

To check the results of the methods advocated here against measured causal effects,

I use data from randomized evaluations of a remedial education program implemented in

two Indian cities and described in Banerjee et al. (2007) (henceforth BCDL). Here, I can

compare the performance of standard methods based on reweighting with methods based on

the distributions of control outcomes for individuals with the same covariates. To do this,

I treat one city’s data as the experimental sample, e, and the other as the population of

interest or alternative population, a. I hold out city a’s treated group data and compare it

against predicted average causal effects for city a obtained using city e’s treated and control

groups and city a’s control group. As in previous work, I find that the predicted average

causal effects of methods based on reweighting are rejected. In contrast, predictions using
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information in the distributions of control outcomes in cities e and a are able to recover the

average causal effect in city a. The level of heterogeneity required for the predictive bounds

to contain the average causal effect in city a are within the range required to reject a zero

average causal effect.

The rest of the paper is organized as follows. The following subsection reviews the

foundational theoretical literature. Section 2 sets up the problem and notation. Section 3

provides a more detailed review of approaches based on reweighting of average causal effects

or treated outcomes conditional on covariates. In section 4, I then show that an estimator

from AI allows us to use the distributions of control outcomes for individuals with the same

covariates to point-identify the average causal effect in the population of interest at the cost

of assuming minimal heterogeneity in causal effects for individuals with the same covariates.

I argue that minimal heterogeneity is often too restrictive an assumption and derive bounds

on the average causal effect for the population of interest when we allow a specified level

of heterogeneity in causal effects for individuals with the same covariates. These bounds

allow us to investigate the maximal level of heterogeneity under which a hypothesis about

the average causal effect in the population of interest can be rejected. Section 5 presents

the empirical results for generalizing from the 2006 experiment providing cash transfers

to microenterpreneurs in Leon, Mexico to urban locations in Mexico in 2012. Section 6

investigates using the results from each of the two remedial education experiments to try

to predict the results in the other experiment. Section 7 concludes by offering advice to

researchers carrying out randomized experiments and concerned about their generalizability

to other contexts.

1.1 Foundational literature

In focusing on the distributions of control outcomes, I extend the main strand of theoreti-

cal literature on extrapolation of results from randomized experiments to new environments

which begins with Hotz et al. (2005) (henceforth HIM). HIM and the papers following (Cole

and Stuart (2010), Stuart et al. (2011), Flores and Mitnik (2013)) assume that the joint

distribution of the potential outcomes (treated and control) is independent of the popula-

tion conditional on covariates. This approach generates the testable implication that the

distribution of control outcomes should be independent of the population conditional on co-

variates. If a test for equality of the conditional control group outcome distributions rejects,

we conclude experiment provides no useful information about causal effects in the population

of interest. If the test fails to reject, we weight the conditional mean treated outcomes from

the experiment by the distribution of covariates in the population of interest and subtract
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the mean control outcome in the population of interest to obtain the average causal effect.

In practice, testing is often abandoned due to lack of power in small experiments (Flores

and Mitnik (2013)). If samples were large, in contrast, we might reject even when equal-

ity of distributions holds approximately and believe that we have learned nothing from the

experiment. My approach, instead, translates differences in the conditional distributions of

control outcomes into a set of assumptions required to reject hypotheses about the average

causal effect in the population of interest.

In moving from a testing framework to an approach based on evaluating the breakdown

point in terms of assumptions required to reject a hypothesis regarding the causal effect,

my paper is related Altonji et al. (2005) and Altonji et al. (2013) who move from testing

whether observed covariates related to an outcome are also related to a candidate instru-

ment to a framework which bounds the treatment effect on the basis of the magnitude of

the relationship between the covariates and the instrument. Oster (2014) takes a similar

approach in translating changes in coefficients of interest when covariates are included in

linear regressions to bounds on the true coefficient. While these papers operate within the

parametric context of a linear regression model, my approach is non-parametric and is sim-

ilar to Kline and Santos (2013) who explore the sensitivity of conclusions about conditional

distributions of outcomes to deviations from the assumption that missing outcomes are

missing at random. Kline and Santos (2013) measure deviations non-parametrically by the

Kolmogorov-Smirnov distance between the conditional outcome distributions for individuals

with missing and non-missing outcomes.

I also draw on the literature on distributions of individual-specific causal effects consis-

tent with control and treated group outcome distributions, which begins in economics with

Heckman et al. (1997) and continues with Djebbari and Smith (2008), Fan and Park (2010)

and Kim (2014). Like Kim (2014), I approach the distribution of individual-specific treat-

ment effects as an optimal transportation problem (c.f. Villani (2009)), but with a different

objective function and constraints.

2 Econometric setup

Suppose we are interested in the causal effect of a binary treatment T ∈ {0, 1} on an

observable outcome Y ∈ Y ⊆ R. Each individual is associated with two potential outcomes:

Y1 ∈ Y1 ⊆ Y is her outcome if she receives treatment (for example if her class receives a

remedial education teacher) and Y0 ∈ Y0 ⊆ Y is her outcome if she does not (no remedial

education teacher is assigned). Only one of these two outcomes is ever observed, the other

is hypothetical. If a student’s class receives a remedial education teacher, we observe Y1 and
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her outcome in the event that her class had not received a remedial education teacher (Y0)

is hypothetical. Mathematically, the observed outcome Y can be written as:

Y = TY1 + (1− T )Y0

Because both the observed and hypothetical outcome are defined for each individual we can

also define an individual’s own treatment effect ∆ ⊆ R, the effect for her of having a remedial

education teacher assigned to her class:

∆ = Y1 − Y0

We have data on two populations, indexed by D ∈ {e, a}. e is the population in which the

experimental evaluation of T was conducted and a is the alternative population of interest. d-

superscripts index population-specific distributions and their attributes. In population e, the

experimental evaluation assigns T at random independently of all other random variables

with perfect compliance, allowing us to identify the average individual-specific treatment

effect ∆ in population e4:

Ee[∆] = Ee[Y1 − Y0]

= Ee[Y1]− Ee[Y0]

= Ee[Y1|T = 1]− Ee[Y0|T = 0] = Ee[Y |T = 1]− Ee[Y |T = 0]

We are, however, interested in the average treatment effect in the population of interest,

Ea[∆], of which we can identify only one component:

Ea[∆] = Ea[Y1 − Y0]

= Ea[Y1]− Ea[Y0]

= Ea[Y1]︸ ︷︷ ︸
unknown

−Ea[Y ]

4Putting perfect compliance with treatment assignment another way, the estimand of interest is the
intention-to-treat (ITT) effect, often thought to be the object of policy interest since compliance can rarely
be mandated in policy settings.
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If the treatment effect were constant for all individuals and equal to ∆, Ea[∆] would simply

be equal to Ee[∆]. We rarely, however, believe that this is the case (and can often reject

it empirically). To investigate heterogeneity in individual-specific treatment effects, I now

introduce some additional notation. Suppose observe a vector of observable covariates X ∈
X ⊆ RdX for each individual. Additionally, suppose there is a vector of unobserved covariates

U ∈ U ⊆ RdU that we believe affects the outcome. Concretely, we can think of the observed

covariates in the remedial education example: the student’s grade level competency when

entering third grade, class size and gender. The unobserved covariates might be her latent

ability and any parental inputs. Treatment status and covariates combine to produce the

outcome through a function common across populations, g : {0, 1} × X × U → R. We can

rewrite the potential outcomes as:

Y0 =g(0, X, U)

Y1 =g(1, X, U)

The individual-specific treatment effect is:

∆ = Y1 − Y0 = g(1, X, U)− g(0, X, U)

which will in general depend on both X and U . Our target, Ea[∆] can be written as:

ATEa =Ea[Y1 − Y0]

=

ˆ
X×U

g(1, x, u)− g(0, x, u)dF a
X,U(x, u)

noting that F a
X,U(x, u) in general differs from F e

X,U(x, u). Iterating expectations, ATEa can

be written in three equivalent ways:

ATEa =

ˆ
X

[ˆ
U
g(1, x, u)− g(0, x, u)dF a

U |X(u|x)

]
dF a

X(x) (1)

=

ˆ
X

[ˆ
R2

y1 − y0dF
a
Y0,Y1|X(y0, y1|x)

]
dF a

X(x) (2)

ˆ
X

[ˆ
R
δdF a

∆|X(δ|x)

]
dF a

X(x) (3)
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Equations 1 and 2 show that ATEa depends on the distribution of Y0, Y1|X,D = a, which

itself depends on the distribution of U |X,D = a. Equation 3 makes the connection to

the distribution of treatment effects for individuals with a particular value of the observed

covariates. Note that the equivalence of equations 1 and 2 show that the invariance of

the function generating outcomes is without loss of generality, since the dimension of U is

unrestricted and could include a separate indicator for each population, analogous to defining

the d-index of F d
Y1,Y0,X

(y1, y0|x) as an element of U . Different methods of extrapolation will

make different assumptions about the relationships of the conditional distributions F a
U |X(u|x)

and F e
U |X(u|x) and their equivalent counterparts.

2.1 Example: remedial education in India

To make the above discussion concrete, I describe a simple parametric model using the

example of remedial education India. Suppose Mumbai is the experimental population, e,

and Vadodara as the alternative population, a, where we would like to predict the average

treatment effect. We will leave the observable covariatesX as a vector, but break the vector U

into the two components discussed above, latent skill S and parental input I. Similar form

for g(·) is a linear production function with different parameters depending on treatment

status

g(0, X, S, I) = β0 + β′0XX + β0SS + β0II = Y0

g(1, X, S, I) = β1 + β′1XX + β1SS + β1II = Y1

Note that once we assume linearity, the commonality of g(·) across populations is no longer

without loss of generality. In this case, the individual-specific treatment effect, ∆, is

∆ =Y1 − Y0

=(β1 − β0)

+ (β′1X − β′0X)X

+ (β1S − β0S)S

+ (β1I − β0I)I
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Our objective is to identify:

ATEa =Ea[Y1 − Y0]

=(β1 − β0)

+ Ea [(β′1X − β′0X)X]

+ Ea [(β1S − β0S)S]

+ Ea [(β1I − β0I)I]

The four elements of ATEa are, respectively, a treatment effect common to all students, the

average deviation from the common treatment effect due to observables in population a, the

average deviation from the common effect due to latent skill in population a and the average

deviation from the common effect due to the parental input. When β′1X 6= β′0X , there is

treatment effect heterogeneity due to observable covariates and when β1S 6= β0S or β1I 6= β0I

there is treatment effect heterogeneity due to unobservables.

Note that ATEe will in general be biased as an estimator for ATEa, with the bias taking

the following form:

ATEe − ATEa =(β′1X − β′0X)(Ee[X]− Ea[X])

+ (β1S − β0S)(Ee[S]− Ea[S])

+ (β1I − β0I)(Ee[I]− Ea[I])

The bias depends on the differences between sites in the marginal distributions of charac-

teristics along which treatment effects are heterogeneous. We will return to this parametric

model to build intuition for key points throughout.

We now turn to a description of previous methods that have been used to identify ATEa.

3 Previous methods

We now review the most common methods used for extrapolation of causal effects identified

in an experimental population to a target population of interest.

3.1 Conditional independence of the gains

The standard approach to extrapolating the results of social experiments has been to reweight

the average treatment effects conditional on each value of the observed covariates by the
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distribution of observed covariates in the population of interest. That is:

ATEa =

ˆ
X
Ee[Y1 − Y0|x]dF a

X(x) (4)

This estimator is justified on the basis of the following assumptions (Allcott (2014)):

X a ⊆ X e (5)

∆ ⊥⊥ D|X (6)

where ⊥⊥denotes statistical independence5. 5 is a standard condition required for non-

parametric extrapolation. 6 is the key identification assumption. Note that under 6,

∆ = Y1−Y0 is independent of any difference between the conditional distributions of control

outcomes, F a
Y0

(y0|x) and F e
Y0

(y0|x) such as the difference between the distributions of grade

level competency at the end of third grade without remedial education teachers conditional

on grade level competency at the beginning of third grade between Mumbai and Vadodara

shown in figure 1. With a bounded outcome, the conditional distributions of control out-

comes may be such that 6 is impossible. For one extreme example, consider the case where

the outcome is binary and all individuals in the population of interest already have outcome

1. Predictions will also depend on the scaling of Y , for example, whether they are in levels

or logs.

Even more substantively, differences in the conditional distributions of control outcomes

are indicative of some unobservable differences between the experimental population and the

population of interest. To see this, note that:

F d
Y0|X(y0|x) = F d

g(0,x,U)(g(0, x, U)).

Then

F a
Y0|X(y0|x) 6 d= F e

Y0|X(y0|x) =⇒ F a
U |X(u|x) 6 d= F e

U |X(u|x)

where
d
= indicates equality in distribution. If the elements of U whose difference in condi-

5The estimator in equation 4 can be justified on the basis of a weaker mean-independence assumption,
but I will focus on the assumptions considered in the literature.
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tional distribution produces the difference in the conditional distribution of control outcomes

also influence the individual-specific treatment effect, 6 will not hold.

3.2 Conditional independence of the potential outcomes

Due to some combination of these criticisms, the primary assumption used in the theoretical

literature on extrapolation of experimental results combines 5 with the assumption that the

joint distribution of potential outcomes is independent of the population conditional on the

observed covariates:

(Y0, Y1) ⊥⊥ D|X (7)

or equivalently, that all unobserved covariates determining the outcome are independent of

the population indicator:

U ⊥⊥ D|X

It is straightforward to show that 7 implies Ea[Y1|x] = Ee[Y1|x] so that we can identify

the average treatment effect in the population of interest by reweighting the expectation

of the treated outcome from the experimental population conditional on covariates by the

distribution of covariates in the population of interest and subtracting the expected control

outcome from the population of interest:

ATEa =

ˆ
X
Ee[Y1|x]dF a

X(x)− Ea[Y0]

.

For 7 to hold, the conditional distributions of control outcomes must be the same in the

two populations. Therefore HIM and papers following them have suggested testing equality

of the distributions or their moments. As mentioned briefly in section 1.1, two issues come up

when testing F e
Y0|X(y0|x) = F a

Y0|X(y0|x) and using the result to conclude whether or not we

can generalize results from the experiment to the population of interest. First, considering

the small sample sizes of many social experiments, we may often be underpowered to reject

equality of the conditional outcome distributions, an issue also raised in Flores and Mitnik

(2013). Second, if we do reject the null hypothesis, we must conclude that the experiment
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Table 1: Controls - P( competency on exiting grade 3 | competency on entering grade 3)
Mumbai

Post-competency
0 1 2 3 N

Pre-competency

0 0.73 0.17 0.07 0.03 1246
1 0.39 0.28 0.19 0.13 468
2 0.28 0.20 0.28 0.23 254
3 0.12 0.22 0.14 0.53 51

Vadodara
Post-competency

0 1 2 3 N P(M = V)

Pre-competency

0 0.52 0.38 0.08 0.02 2094 <2.2e-16
1 0.28 0.50 0.15 0.07 647 3.834e-12
2 0.18 0.39 0.22 0.22 51 0.03195
3 - - - - 0 -

tells us nothing about ATEa. Again, this may be an issue of sample size: with large

samples from both the experimental population and the population of interest we will in all

likelihood reject the null. Furthermore, there is an issue of degree. Suppose we have two

alternative populations of interest a and a′ and our samples are large enough to reject both

F e
Y0|X(y0|x) = F a

Y0|X(y0|x) and F e
Y0|X(y0|x) = F a′

Y0|X(y0|x) but F a
Y0|X(y0|x) is quite similar to

F e
Y0|X(y0|x) while F a′

Y0|X(y0|x) is quite different, it seems inappropriate to conclude that the

results from e are equally (and completely) uninformative in predicting the average causal

effect in both a and a′.

3.2.1 Example: remedial education in India

Table 1 replicates the information in figure 1 in tabular form: the distributions of grade level

competency in math on leaving third grade among the control groups in both of the cities in

the BCDL experiments conditional on their grade level competency in math on entering third

grade. The last column of the panel labeled Vadodara shows the p-value associated with a

χ2 test of equality of the distributions F e
Y0|X(y0|x) and F a

Y0|X(y0|x) for each x representing

a grade level competency on entering third grade. The test rejects at the 5% level for all

values of x.

In the following section, I depart from the testing framework and derive bounds on the

average causal effect in the population of interest as a function of the differences in the

conditional distributions of control outcomes between the population of interest and the

experimental population.
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4 Bounds on ATEa using differences in the control out-

come distributions

4.1 Identification

In investigating the role of the conditional control outcome distributions in determining the

average causal effect in the population of interest, recall first that since we can already

identify Ea[Y0] (simply the expected outcome in the population of interest), what we need

to identify Ea[Y1] − Ea[Y0] is the counterfactual Ea[Y1]. The expected value of the treated

outcome in the population of interest can be written as follows:

Ea[Y1] =

ˆ
X



ˆ
R



ˆ
R
y1 dF

a
Y1|Y0,X(y1|y0, x)

︸ ︷︷ ︸
unidentified


 dF a

Y0|X(y0|x)
︸ ︷︷ ︸

identified


 dF a

X(x)︸ ︷︷ ︸
identified

(8)

We are missing information on the distribution of treated outcomes that individuals with

a particular control outcome would experience in the population of interest. Since no one

is treated in the population of interest, for information on this object, we must turn to the

experimental population.

For the experiment to tell us anything about F a
Y1|Y0,X(y1|y0, x), we must first impose two

support conditions:

Assumption 1. The support of X in the population of interest is a subset of the support in

the experimental population: X a ⊆ X e.

Assumption 2. The support of Y0|X = x in the population of interest is a subset of the sup-

port in the experimental population for all values of X in the support of X in the population

of interest: Suppa(Y0|X = x) ⊆ Suppe(Y0|X = x) ∀x ∈ X a.

Assumption 1 is the same as employed in the previous literature (see equation 5). As-

sumption 2 will be needed to nonparametrically tie differences in the conditional distributions

of control outcomes to differences in the conditional distributions of treated outcomes. I will

explore alternative assumptions when these are violated in an extension.

Turning now to the question of identification of F a
Y1|Y0,X(y1|y0, x) using information from

the experiment, we first observe that there are many possible covariate-and-control-outcome-

conditional distributions FY1|Y0,X(y1|y0, x) associated with the covariate-conditioned marginal

control outcome F e
Y0|X(y0|x) and treated outcome distributions F e

Y1|X(y1|x). Specifically,
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FY1|Y0,X(y1|y0, x) is a valid conditional distribution for the marginal distributions F e
Y0,X

(y0|x)

and F e
Y1|X(y1|x) if

FY1|Y0,X(y1|y0, x) = C1(F e
Y0,X

(y0|x), F e
Y1|X(y1|x)|x)

where C : [0, 1]2 → [0, 1] is a copula function (see appendix A for the definition), and

C1(u, v|x) = ∂C(u,v|x)
∂u

. Informally, a copula function is a bivariate CDF where both ar-

guments are defined on the unit interval which fully determines a dependence structure

between the control and treated outcomes in the experimental population for individu-

als with the same covariates. A copula function combined with the marginal distribu-

tions of control (F e
Y0,X

(y0|x)) and treated outcomes (F e
Y1|X(y1|x)) defines a joint distribution

(FY0,Y1|X(y0, y1|x)) consistent with those marginal distributions. FY1|Y0,X(y1|y0, x) is the con-

ditional distribution associated with the joint distribution FY0,Y1|X(y0, y1|x). Let C denote

the set of valid copula functions. We will impose the following assumption.

Assumption 3. Consistency of the control-outcome conditional distribution of the treated

outcome in the population of interest with the experimental results:

F a
Y1|Y0,X(y1|y0, x) = C1(F e

Y0|X(y0|x), F e
Y1|X(y1|x)|x)

for some copula function C ∈ C.

Assumption 3 states that we must be able to express the control-outcome conditional

distribution of the treated outcome as one of the conditional distributions consistent with

the distributions of control and treated outcomes in the experiment, all for individuals with

the same covariate values.

To make assumption 3 more concrete, we illustrate two examples of copula functions

and show how they define a joint distribution of potential outcomes FY0,Y1|X(y0, y1|x). Let

Qe
Y0|X(α|x) denote the α-quantile of Y0|X in the experimental population and Qe

Y1|X(α|x) the

α-quantile of Y1|X in the experimental population. Figure 2 and 3 show two possible copulas

and the joint distributions they define. The arrows in the figures represent dependence

relationships between F e
Y0|X(y0|x) and F e

Y1|X(y1|x) defined by the copulas. The horizontal

arrows in figure 2 represent the joint distribution Y0, Y1|X in the experimental population

when the treatment preserves individuals’ ranks in the outcome distributions perfectly. In the

example of remedial education in India, the highest-scoring student without the treatment

would still be the highest-scoring student with the treatment. The crossing arrows in figure
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Figure 2: Perfect positive dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1

3 represent the case when the treatment reverses ranks: the highest scoring student without

the treatment would be the lowest-scoring student without the treatment.

A joint distribution F e
Y0,Y1|X(y0, y1|x) consistent with the experimental marginal distribu-

tions of control and treated outcomes also determines the extent of heterogeneity in treatment

effects for individuals with covariates x. When the treatment perfectly preserves individuals’

ranks in the outcome distributions, treatment effect heterogeneity due to unobservables is

minimized. That is, conditional on x, the individual-specific treatment effects ∆ have the

the smallest magnitude possible. In contrast, when the treatment inverts individuals’ ranks

in the outcome distributions, the ∆ have the largest possible magnitude.

A necessary condition for assumption 3 is that if the control outcomes conditional on a

value of the covariates have the same distribution in the experimental popuilation and the

population of interest, the conditional treated outcomes have the same distribution as well.

Formally:

F a
Y0|X(y0|x)

d
= F e

Y0|X(y0|x) =⇒ F a
Y1|X(y1|x)

d
= F e

Y1|X(y1|x).

A sufficient condition is that the distribution of the treated outcomes be the same across

populations once we have conditioned on a value of the control outcome and the observed

covariates, an assumption also used in Athey and Imbens (2006). Formally:
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Figure 3: Perfect negative dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1

Y1 ⊥⊥ D|Y0, X (9)

This is the relevant condition to answer the hypothetical, what would the conditional dis-

tribution of treated outcomes have been in the experiment had the distribution of control

outcomes been the same as in the population of interest (see Fortin et al. (2011))? In terms

of the underlying unobservables, a sufficient condition for 9, in turn, is:

U ⊥⊥ D|g(0, x, U) = y0, X = x

We will look at relaxing assumption 3 in an extension.

Combining assumptions 1, and 2, 3, we state the following result.

Proposition 1. Under assumptions 1, and 2, 3:

Ea[Y1 − Y0|x] ∈
[{

min
C∈C

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x],

{
max
C∈C

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x]

]
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Bounds on the unconditional average treatment effect in the population of interest can

then be recovered by weighting the minimal and maximal conditional average treatment

effects by the distribution of covariates in the population of interest.

ATEa ∈
[ˆ
X

min Ea[Y1 − Y0|x]dF a
X(x) , (10)

ˆ
X

max Ea[Y1 − Y0|x]dF a
X(x)

]

All of the objects in proposition 1 are identified, with the exception of the copula C. We

minimize and maximize over the set of possible copulas C to obtain the bounds. The bounds

defined in 1 are sharp by construction, since each element of C defines a valid possible

conditional distribution F a
Y1|Y0,X(y1|y0, x).

By considering the full set of possible copulas, we consider copulas that may not be

credible, however. In particular, the dependence structure shown in figure 3 is not realistic

in most applications. In the remedial education example, it is clearly unrealistic to believe

that the highest-performing students when no remedial education teacher is assigned to their

school become the lowest-performing when a remedial education teacher is assigned. Unless

remedial education is so effective that a poor-performing student without treatment becomes

the best-performing student, the best-performing student without treatment’s rank in the

outcomes distribution is likely unaffected: she is not assigned to work with the remedial

education teacher and remains the highest-performing. We typically anticipate some positive

dependence between outcomes with and without treatment for any one individual, with the

degree of dependence (and thus of unobserved treatment effect heterogeneity) depending on

the application.

We therefore index copulas by their degree of dependence in the joint distributions of

control and treated outcomes they generate. We use Normalized Spearman’s ρ, defined

below, to measure dependence.

Definition. Normalized Spearman’s ρ:

ρ(Y0, Y1|x) =
CorC(R(Y0|x), R(Y1|x))

CorM(R(Y0|x), R(Y1|x))

whereR(Yt|x) = FYt|X(Yt|x) when Yt is continuously distributed andR(Yt|x) =
FYt|X(Yt|x)+FYt|X(Yt−|x)

2

when Yt takes a finite number of values. The notation FZ(z−) denotes P (Z < z). The cor-

relation is evaluated under the joint distribution generated by copula C in the numerator
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and the joint distribution generated under comonotonicity (M) in the denominator.

Under comonotonicity

FY0,Y1|X(y0, y1|x) = min
{
F e
Y0|X(y0|x), F e

Y1|X(y0|x)
}
.

The corresponding unique copula acheiving CorM(R(Y0|x), R(Y1|x)) is

C(u, v) = min{u, v}.

The definition of Normalized Spearman’s ρ is chosen to coincide with the standard cal-

culation of Spearman’s ρ in the numerator. In the denominator, when Y0 and Y1 are con-

tinuously distributed, the correlation between R(Y0) and R(Y1) under M is 1 so that the

calculation is completely standard. The only difference is the normalization in the discrete

case.

We can produce bounds on Ea[Y1−Y0|x] subject to the restriction that we only consider

copula functions generating dependence greater than a specified level. This is represented in

the following assumption and proposition.

Assumption 4. C is an element of C(ρL), the set of copula functions such that ρ(Y0, Y1|x) ≥
ρL where ρL ∈ [0, 1] .

Proposition 2. Under assumptions 1, 2, 3, 4:

Ea[Y1 − Y0|x] ∈
[{

min
C∈C(ρL)

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x],

{
max

C∈C(ρL)

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x]

]

Bounds on the unconditional ATEa can be computed in the same way as under propo-

sition 1 (equation 10). C(1) is a singleton and the bounds shrink to a point.

We now investigate the structure underlying the potential outcomes as a means inter-

preting the results and assumptions.
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4.1.1 1-dimensional unobservables generate comonotonicity

Suppose an individual’s control and treated potential outcomes,Y0 and Y1, are both generated

by a single latent characteristic of the individual so that U is one-dimensional and the

structural functions g(0, x, u) and g(1, x, u) are each weakly increasing in u. It is a standard

result that this implies comonotonicity of the potential outcomes (see, for example, the proof

of proposition 5.16 in McNeil et al. (2005)).

AI use this characterization of Yt (however, in their difference-in-differences setting T

indexes time, rather than treatment), along with assumptions 1, 2 and 3 and the condition

U ⊥⊥ T to yield an estimator they refer to as the changes-in-changes model with conditional

independence (see section 4.2 of AI). U ⊥⊥ T by design in the experiment (T is randomly

assigned independently of any other random variable), so the changes-in-changes model

with conditional independence is a valid estimator for the point defined under proposition

2 when ρL = 1. When outcomes are continuous, AI point out that assumption 3 is implied

by monotonicity in u of the function generating outcomes and thus does not need to be

separately imposed.

Example. To gain some intuition for the identifying power of assuming g(0, x, u) and

g(1, x, u) are strictly increasing in 1-dimensional u, we pick up the parametric example

introduced in section 2.1. Assume the parental input I is excluded from the production

function so unobservables are one-dimensional6 and the potential outcomes can be written

as

Y0 = β0 + β0XX + β0SS

Y1 = β1 + β1XX + β1SS

In this section I illustrate that with a one-dimensional unobservable, the way in which the

distributions of observables F e
X,Y (x, y) in the experimental population change with treatment

6This is not the only way to generate 1-dimensional unobservables in the linear production function
described in section 2.1. We could make use of a single index specification for the unobservables where

Y0 = β0 + β0XX + β0SS + β0II

Y1 = β1 + β1XX + κ(β0SS + β0II)

Alternatively, if S and I have a Pearson product-moment correlation of 1, we can write I as a linear
function of S (I = bS) so that:

Y0 = β0 + β0XX + (β0S + β0Ib)S

Y1 = β1 + β1XX + (β1S + β1Ib)S
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status can be mapped into differences in the treatment and control structural functions.

This knowledge of the changes in the structural function can be applied to differences in

the distributions of observables in the control state, F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0), across

populations to recover Ea[Y1].

Let α = F e
Y0|X(y0|x) for a given value of y0. Consider the α quantiles of Y1|X and Y0|X

in e:

Qe
Y1|X(α|x) = β1 + β′1Xx+ β1SQ

e
S|X(α|x)

Qe
Y0|X(α|x) = β0 + β′0Xx+ β0SQ

e
S|X(α|x)

Making use of the linear functional form, we can subtract the x-subgroup, t-specific mean

from each quantile to remove the common and x-specific structural effects:

Qe
Y1|X(α|x)− Ee[Y1|x] = β1S

(
Qe
S|X(α|x)− Ee[S|x]

)

Qe
Y0|X(α|x)− Ee[Y0|x] = β0S

(
Qe
S|X(α|x)− Ee[S|x]

)

By dividing the e treatment group α-quantile-specific deviation from the x-subgroup specific

mean from the corresponding α-quantile-specific deviation in the e control group, we obtain

the ratio of the effects of the latent skill S in the treated and control states.

Qe
Y1|X(α|x)− Ee[Y1|x]

Qe
Y0|X(α|x)− Ee[Y0|x]

=
β1S

(
Qe
S|X(α|x)− Ee[S|x]

)

β0S

(
Qe
S|X(α|x)− Ee[S|x]

)

=
β1S

β0S

(11)

Knowing the ratio of the effects of latent math skill across treatment and control states

allows us to map differences in the distributions of latent skill and pre-test score F e
X,S(x, s)

and F a
X,S(x, s) identified by differences in the joint distributions of the control outcomes

F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0) into differences in the observed treatment group distribution in

e, F e
X,Y1

(x, y1), and the unknown treated group distribution in a, F a
X,Y1

(x, y1). Specifically,

consider:

Ea[Y0|x]− Ee[Y0|x] = β0S (Ea[S|x]− Ee[S|x]) .

Then we can use the change in the effect of unobservables from equation 11 to identify the
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unknown expected value of the treated outcome conditional on covariates x.

Ea[Y1|x]− Ee[Y1|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x])

Ea[Y1|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]

Finally, the conditional average treatment effect is obtained by subtracting the conditional

expectation of the test score in the population of interest.

Ea[Y1 − Y0|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]− Ea[Y |x]

4.1.2 Multidimensional heterogeneity

However, when we introduce multidimensional heterogeneity, we can no longer cleanly apply

the knowledge we gain from the experiment about how the structural function g(t, x, u)

changes with treatment to the differences in F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0).

Example. This is easy to see in the parametric illustration when we reintroduce independent

variation in I. Consider the treatment-to-control ratio of α-quantile deviations from the x-

specific subgroup means in the experimental population:

Qe
Y1|X(α|x)− Ee[Y1|x]

Qe
Y0|X(α|x)− Ee[Y0|x]

=
Qe
β1SS+β1II

(α|x)− Ee[β1SS + β1II|x]

Qe
β0SS+β0II

(α|x)− Ee[β0SS + β0II|x]

Whereas previously this ratio simplified to the treatment-to-control ratio of effects of latent

skill on the test score at the end of third grade, it no longer identifies any specific change

in the structural function. Put more generally, the α-quantile of Yt|x in the experimental

population now provides no structural information.

We will see in the next section that for very small deviations from 1-dimensional unob-

served heterogeneity, the bounds on the average treatment effect in the population of interest

expand substantially, depending on the extent of difference in the conditional distributions

of the control outcomes between the population of interest and the experimental popula-

tion. Only when unobserved heterogeneity is exactly, and not approximately, 1-dimensional

do differences in the conditional distributions of the control outcomes not lead to a loss in

identification. This motivates considering the bounds from proposition 2 and investigating

how they change with ρL.
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4.2 Estimation

C(ρL) is a set of potentially infinite-dimensional objects making the search over them for the

minimizing and maximizing copulas a computational task beyond the scope of this paper.

We therefore confine attention to the case where outcomes and covariates are discrete or

discretized, illustrating both in the empirical work.

Assumption 5. Finite support of the potential outcomes and covariates: Y0 = {y0,1, . . . , y0,j, . . . , y0J},
Y1 = {y1,1, . . . , y1,k, . . . , y1K} and X is finite-dimensional.

In the discrete outcome and covariate case, the challenging search over C(ρL) for the

copula functions that yield the minimal and maximal values for the average treatment effect

in the population of interest becomes the solution to a linear programming problem which

can be solved quickly using software provided by the author. The solution to the problem also

illustrates the way in which differences in the conditional distributions of control outcomes

F e
Y0|X(y0|x) and F a

Y0|X(y0|x) affect the bounds on ATEa, which I take up at the end of the

section.

We leave conditioning on x implicit to economize on notation. Given ρL, bounds on

ATEa can be computed by solving a discrete optimal transportation problem with a non-

standard cost function and additional linear constraint. The upper bound is obtained by

solving the following linear programming problem (the lower bound is obtained by replacing

the max operator with min).
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max
{P e(y0j ,y1k)}

J∑

j=1

K∑

k=1

y1k
P a(y0j)

P e(y0j)
× P e(y0j, y1k)

−
J∑

j=1

y0jP
a(y0j) (12)

subject to

K∑

k=1

P e(y0j, y1k) = P e(y0j) ∀j ∈ {1, ..., J} (13)

J∑

j=1

P e(y0j, y1k) = P e(y1k) ∀k ∈ {1, ..., K} (14)

J∑

j=1

K∑

k=1

(
R(y0j)−

1

2

)(
R(y1k)−

1

2

)
P e(y0j, y1k)

≥ ρL

[
max

{P e(y0j ,y1k}

J∑

j=1

K∑

k=1

(
R(y0j)−

1

2

)(
R(y1k)−

1

2

)
P e(y0j, y1k)

]
(15)

P e(y0j, y1k) ≥ 0 ∀j ∈ {1, ..., J}, k ∈ {1, ..., K}

Maximization is with respect to the elements of the matrix defining the joint distribution of

Y0 and Y1 in population e,{P e(y0j, y1k)}. Line 12 is simply a normalization so that the value

of the objective function of the problem can be interpreted as ATEa. Constraints 13 and 14

require that the minimizing/maximizing joint distribution be consistent with the marginal

outcome distributions in e.

Table 2 shows an example of the choice variables and constraints 13 and 14 in the context

of the remedial education in India example where Mumbai is treated as e and we condition

on a competency level of zero on entering third grade, x = 0. The choice variables are

highlighted in blue, while the row and column labeled “All” represents the constraints on

the marginal distributions P e(y0|x) and P e(y1|x). Without further constraints, the values

of the choice variables are restricted only by the requirement that the sums across rows (for

the control outcomes) equal the probability in the column labelled “All” and that the sums

down the columns (for the treated outcomes) equal the probability in the row labeled “All.”

The coefficients on the elements of {P e(y0j, y1k)} are
{
y1

Pa(y0j)

P e(y0j)

}
. Together with con-

straint 14, this shows the role of the distributions of control outcomes {P a(y0j)} and {P e(y0j)}
in determining the bounds. If P a(y0) ≈ P e(y0), Pa(y0)

P e(y0)
≈ 1 and constraint 14 implies that the
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Table 2: Choice variables - P e(y0j, y1k|pre-competency = 0), e =Mumbai
y1: post-competency

(treatment)
0 1 2 3 All

0 P e(0, 0) P e(0, 1) P e(0, 2) P e(0, 3) 0.73
y0: 1 P e(1, 0) P e(1, 1) P e(1, 2) P e(1, 3) 0.17
post-competency 2 P e(2, 0) P e(2, 1) P e(2, 2) P e(2, 3) 0.07
(control) 3 P e(3, 0) P e(3, 1) P e(3, 2) P e(3, 3) 0.03

All 0.66 0.20 0.10 0.04 1

counterfactual Ea[Y1] = Ee[Y1] 7. All else equal, in order to maximize the objective function,

we would like to assign higher probability to high values on the support of Y1 (high k) when
Pa(y0j)

P e(y0j)
is large and to low values on the support of Y1 (low k) when

Pa(y0j)

P e(y0j)
is small. For

example, table 3 shows the coefficient on each choice variable P e(y0j, y1k) when Mumbai is

treated as e and we condition on students’ grade-level competency being zero on entering

third grade. We can see that the differences in the distributions of control outcomes mean

that we would maximize the objective function by ascribing the highest treatment effects to

individuals with Y0 = 1 and the lowest treatment effects to individuals with Y0 = 3.

Constraint 15 on the dependence between Y0 and Y1 in e limits our ability to do so

arbitrarily. Recall that ρL governs the allowed deviations from 1-dimensional heterogeneity.

To gain some intuition for the joint distributions implied by different values of ρL, table 4

shows the joint distributions implied by ρL = 1 when Mumbai is treated as e and we condition

on students’ grade-level competency being zero on entering third grade. When ρL = 1, the

1-dimensional heterogeneity case, the majority of the mass in the joint distribution lies on

the principal diagonal. Most individuals (88%) have a treatment effect of zero, with a few

individuals experiencing a positive treatment effect of at most 1 competency level.

The linear programming problem can be estimated using a sample analog.

7Proof:

J∑

j=1

K∑

k=1

y1kP
e(y0j , y1k)

=

J∑

j=1

y1k

K∑

k=1

P e(y0j , y1k)

=

J∑

j=1

y1kP
e(y1k)

= Ee[Y1]

where the third line follows from substituting in constraint 14.
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Table 3: Contribution of choice variables to the objective -P e(y0j, y1k|pre-competency = 0),
e =Mumbai

y1: post-competency
(treatment)

0 1 2 3
0 0 0.71 2×0.71 3×0.71

y0: 1 0 2.26 2×2.26 3×2.26
post-competency 2 0 1.16 2×1.16 3×1.16
(control) 3 0 0.60 2×0.60 3×0.60

Table 4: P e(y0j, y1k|pre-competency = 0), ρL = 1 e =Mumbai
y1: post-competency

(treatment)
0 1 2 3 All

0 0.66 0.07 0 0 0.73
y0: 1 0 0.13 0.04 0 0.17
post-competency 2 0 0 0.06 0.01 0.07
(control) 3 0 0 0 0.03 0.03

All 0.66 0.20 0.10 0.04 1

4.3 Inference

Confidence intervals with a fixed asymptotic coverage probability of containing the true value

of ATEa conditional on ρL can be computed using the method of Imbens and Manski (2004)

(henceforth IM). IM provide a method for computing the upper and lower bounds of the

confidence interval given standard errors for the upper and lower bounds on ATEa under

the high-level assumption that the asymptotic distribution of the bounds is Gaussian. The

asymptotic distribution of the bounds is not available in closed form, so I compute standard

errors for the bounds using the bootstrap under the high-level assumption that they are

normally distributed (more detail to be added).
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4.4 Extensions

4.4.1 2-dimensional sensitivity analysis: relaxing assumption 3

4.4.2 Multiple experimental populations

4.4.3 Failure of support assumptions 1 and 2

5 Transfers to Mexican microenterprises: results

The experiment carried out in 2006 (baseline Oct. 2005) in Leon, Mexico. The treatment was

a 1,500 (≈ $140) peso transfer (50% “in-kind”). Y is monthly profits. ATEe ≈ 600 pesos.

Uniquely, the questionnaire used in the experiment was based on the national microenterprise

survey: Encuesta Nacional de Micronegocios (ENAMIN). The sample in the experiment was

the following:

• 22-55 year old male entrepreneurs

• Working in retail

• Capital stock ≤ 10,000 pesos

• No paid employees

• Working 35+ hours per week in microenterprise

I select a sample using the same (inflation-adjusted) criteria from the 2012 ENAMIN with the

additional restriction that the entrepreneurs be working in urban areas. I trim profit reports

of more than 15000 pesos. Since sample selection chooses a restricted set of individuals, I will

not condition on any X. In addition, while the ENAMIN sample has 903 microentrepreneurs

fitting the criteria, the experiment had only 207 unique microentrepreneurs. Unsurprisingly,

confidence sets are very wide. However, we will see that the bounds are fairly narrow over a

wide range of assumptions on heterogeneity.

4 shows the outcome distributions in ENAMIN as well as the treated and control groups

in the experiment. Since heaping is an issue in reported profits, I have smoothed them using

a kernel density estimator before discretizing to 500 peso bins. The reason for the narrow

bounds is clear from figure 4, which shows that the experimental control group and the

ENAMIN sample have very similar outcome distributions.

The combination of small sample size and similar control outcome distributions yields

figure 5, which shows bounds (in dark blue) on the average treatment effect of providing

cash transfers to male microentrepreneurs in urban Mexico in 2012 as a function of the level

28



Figure 4: Outcome distributions
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of treatment effect heterogeneity allowed, ρL. Imbens and Manski (2004) 95% confidence

regions (translucent blue) are computed using 100 bootstrap replications for each ρL, clus-

tering at the firm level for the experiment. The plot shows two aspects of the procedure:

1) the similar control outcome distributions yield narrow bounds on the average treatment

effect for male microentrepreneurs in urban Mexico in 2012 for a wide range of possible

levels of treatment effect heterogeneity and 2) the experimental sample size is sufficiently

small that we cannot reject an average treatment effect of zero at any level of heterogene-

ity. 2) is actually a feature of the procedure. Under previous methodologies, we would test

the equality of the control distributions in figure 4. Having been unable to reject due to the

small size of the experimental sample, we would predict the average treatment effect for male

microentrepreneurs in urban Mexico in 2012 to be equal to the average treatment effect in

the experiment, with an identical confidence interval. Since MW were able to reject a zero

average treatment effect in the original experiment, we would do the same in extrapolating

to male microentrepreneurs in urban Mexico in 2012, despite the existence of differences in

the distributions of control outcomes. I am able to separately quantify the uncertainty due

to the difference in the control outcome distributions and the uncertainty due to the small

sample in the Leon experiment.

6 Remedial education in India: results

The remedial education program was implemented by the same NGO, Pratham, in both

cities. Under the program, Pratham provides government schools with a teacher to work

with 15-20 students in the third and fourth grade who have been identified as falling behind.

The teacher works with these students for about half the school day.

6.1 Data

BCDL carried out the experimental evaluations in Mumbai and Vadodara over the course

of three years, from 2001 to 2003. The last year was primarily used to investigate the per-

sistence of average treatment effects, so I focus on the first two. In Mumbai, the experiment

was carried out only among third graders in the first year of the evaluation, while in the

second year there were compliance issues, with only two-thirds of Mumbai schools agreeing

to participate. In Vadodara, both grade levels were represented in each of the first two years

but during the first year communal riots disturbed part of the school year. To focus on

the issue of individual heterogeneity in treatment response, rather than idiosyncratic issues

affecting all members of each population, I consider the Mumbai population as made up of
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Figure 5: Bounds on ATEa
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third graders surveyed during the first year of the experiment and the Vadodara population

as third graders surveyed in the second year of the experiment. Idiosyncratic issues affecting

all members of a population are an important barrier to the generalization of experimental

results (see, for example, Bold et al. (2013)), but lie outside the scope of this paper.

A challenge in applying the methods discussed above in this data set is that the re-

searchers administered different math tests in the two samples. Along with different ques-

tions, the two tests featured different numbers of questions as well, with 30 questions on

the Mumbai test and 50 on the Vadodara test. We foreshadowed the solution in previous

sections. The tests also recorded the students’ grade level competency: that is, whether

the student successfully answered questions showing mastery of the subjects taught in each

grade. This measure of achievement should be relatively comparable across populations.

With the exception of the pre-test score, relatively little data on students are available

consistently across the two samples. Tables 5 and 6 show summary statistics for the pre-test

scores in the two samples as well as students’ class size and gender. The populations are rel-

atively balanced on gender, while Mumbai classes are notably larger than those in Vadodara.

There is no evidence of treatment effect heterogeneity on either of these characteristics, so

we ignore them and focus on the pre-test score, as we did in the theoretical exposition.

Table 5: Vadodara
Variable Mean Std. Dev.

Pre-test: expected maximum competency 0.276 0.361
Male 0.497 0.5
Number of students in class 62.109 26.516

N 5819

Table 6: Mumbai
Variable Mean Std. Dev.

Pre-test: expected maximum competency 0.543 0.641
Male 0.473 0.499
Number of students in class 89.506 40.233

N 4429

Table 7 shows the difference in the unconditional average treatment effects. The first line

shows the average treatment effect in Vadodara. In Vadodara, the treatment raised students’

maximum grade level competency in math by .16 grade levels. The third line shows the

unconditional bias in using the average treatment effect in Mumbai as an estimator for the

average treatment effect in Vadodara. The average treatment effect in Mumbai is estimated

at .059 grade levels, .103 less than the Vadodara ATE.
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Table 7: Unconditional ATEs

Post-test: maximum competency

Mumbai 0.020
(0.026)

Treatment 0.162∗∗∗

(0.024)

Treatment*Mumbai −0.103∗∗∗

(0.036)

Constant 0.709∗∗∗

(0.017)

Observations 10,248
R2 0.005

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

6.2 Using Mumbai to predict Vadodara

We now move to investigating the level of treatment effect heterogeneity needed for the

results from Mumbai and the Vadodara control group to predict the average outcome level

in the Vadodara treatment group. We can think of this as the policy-making exercise of using

the results from Mumbai year 1 to try to infer the average treatment effect on math test

scores of implementing the remedial education program among Vadodara third graders in

the following year. As in previous work, I find that the average treatment effect in Vadodara

predicted using by reweighting Mumbai average treatment effects conditional on grade level

competency on entering third grade is biased, with the bias equal to half the Vadodara

average treatment effect (bias of 0.081 grade level competencies with a standard error of

0.033).

Turning to the method developed in this paper, figure 6 plots bounds on the predicted

values of the average treatment effect in Vadodara as a function of the degree of treatment

effect heterogeneity allowed for individuals with the same grade level competency on entering

third grade. The bounds are plotted in dark blue, while the translucent light blue region

represents a 95% Imbens and Manski (2004) confidence interval, based on 100 bootstrap

replications8. The bounds become a point when we impose minimum treatment effect het-

erogeneity for individuals with the same competency level on entering third grade. A notable

feature of the bounds is that they widen quickly with only small deviations from the maxi-

mum possible rank correlation. This is due to the fact that the conditional distributions of

control outcomes differ substantially between Mumbai and Vadodara, as we saw in table 1.

A zero average treatment effect in Vadodara can only be rejected using the Mumbai results

8Additional replications, to be added, would smooth out the irregularities in the confidence intervals.
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if ρL > .925.

The red line plots the estimated ofATE in the Vadodara sample, while the translucent red

region shows the 95% confidence interval. In terms of the unconditional prediction of ATEa,

we see that though the point estimate with maximum rank correlation (minimum unobserved

treatment effect heterogeneity) under-predicts the sample mean of the maximum competency

on leaving 3rd grade in Vadodara, the two estimates are fairly close and the difference

between the two is not statistically different from zero. Simply allowing for 1-dimensional

heterogeneity goes a long way toward accurately predicting the Vadodara results.

6.3 Using Vadodara to predict Mumbai

Figure 7 shows the results of using Vadodara to predict Mumbai. The results show the

difficulty that arises when assumption 1 support fails. As shown in table 1, Vadodara does

not include any students who enter grade three with a third grade level competency while

Mumbai includes a small fraction of such students. The results in figure 7 assign these

students the lower bound of the support of the maximum grade level competency (0) when

computing the lower bound on the average causal effect in Mumbai and the upper bound of

the support of the competency (3) when computing the upper bound. As a result, we can

only reject zero average treatment effect in Mumbai using the Vadodara results under an

even smaller range of possible magnitudes of treatment effect heterogeneity (¡ .975). Setting

the mean treated outcome at zero competency for students with a competency of three on

entering third grade is almost surely too severe even when computing the lower bound on the

average treatment effect in Mumbai. Using theory that will be developed in section 4.4.3, I

will explore alternatives such as assuming that the distribution of treated outcomes for this

group first-order stochastically dominates the distribution for students entering third grade

with a grade-level competency of two.

7 Conclusions

I conclude with a few suggestions for applied researchers concerned about external validity.

First, it is important to specify the population of interest other than the one where the

study was conducted. The robustness of inferences on average causal effects in the alter-

native population of interest will depend in large part on the extent of difference in the

control outcome distributions between the study population and the alternative population

of interest. In the empirical results, we saw that the distributions of student acheivement

without remedial education were sufficiently different between Mumbai and Vadodara that a
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Figure 6: Using Mumbai to predict the Vadodara ATE (blue) and Vadodara estimated ATE
(red)
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Figure 7: Using Mumbai to predict the Vadodara ATE (blue) and Vadodara estimated ATE
(red)
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zero causal effect for Vadodara using the Mumbai experiment could be rejected only under a

small set of assumptions and vice versa. Second, researchers should report the assumptions

under which hypotheses involving the average causal effect in the alternative population can

be rejected to let readers determine the credibility of the inferences.
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A Definition of copula

A copula function C : [0, 1]2 → [0, 1] satisfies:

1. Boundary conditions:

(a) C(0, v) = C(u, 0) = 0 ∀ u, v ∈ [0, 1]

(b) C(u, 1) = u and C(1, v) = v ∀ u, v ∈ [0, 1]

2. Monotonicity condition:

(a) C(u, v) + C(u′, v′)− C(u, v′)− C(u′, v) ∀ u, v, u′, v′ s.t. u ≤ u′, v ≤ v′
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