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ABSTRACT 

Early initiation of antiretroviral therapy (ART) may improve survival for people infected with HIV. To 

date, no experimental or quasi-experimental evidence exists on the survival impact of early vs. delayed 

ART in sub-Saharan Africa. Like many clinical therapies, ART is assigned based on a threshold rule, 

with eligibility determined by a patient’s CD4+ cell count being below a cut-off. We show that 

regression discontinuity designs are amenable to non-linear and survival models, which accommodate 

censoring. We estimate “fuzzy” RD treatment effects using flexible parametric survival models, which 

are robust to unobserved heterogeneity, treatment effect heterogeneity, and time-varying effects of the 

treatment. Using data on 4391 HIV patients from rural South Africa, we find that those presenting for 

care with a CD4+ count just below 200 cells/µL were 4.3% points (95% CI 0.6, 8.0) more likely to be 

alive at two years than patients presenting with a CD4+ count just above the cut-off, an advantage that 

persisted at five years. These effects imply a 14.9% point two-year survival advantage for patients who 

actually initiated ART because they had an eligible CD4+ count. Large, persistent gains in clinical 

retention and immune function were also observed among patients who were ART eligible. The 

additional medical care provided to ART-eligible patients implies a cost of $1967 per life year saved to 

treating patients with CD4+ counts close to 200-cells. JEL Codes: I12, O15, C41  
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I. INTRODUCTION 

Antiretroviral therapy (ART) slows disease progression and improves survival for people infected with 

HIV (Egger et al. 1997; Palella et al. 1998). However, there has been much debate about when in the 

progression of HIV disease patients should start ART, which once initiated must be taken for the rest of 

a patient’s life (Lane 2003). Timing of ART initiation may have implications for morbidity, mortality, 

treatment side effects, quality of life, health-related expenditures, and economic productivity. Earlier 

ART may also have population health implications with reductions in HIV transmission to HIV-

negative partners (Cohen et al. 2011; Tanser et al. 2013) and increased potential for development of 

drug-resistant strains of HIV. Information on the costs and benefits of earlier treatment initiation has 

implications for clinical practice and resource allocation decisions. 

 

This paper provides the first causal evidence on the survival benefits of early vs. delayed ART in sub-

Saharan Africa. To identify causal effects, we use a regression-discontinuity design, exploiting the 

threshold rule used to determine treatment eligibility during the period of study. Data come from a 

large demographic surveillance site in rural South Africa, which has been linked at the individual level 

with clinical records from the public sector ART program that serves the region. We find very large 

effects: patients eligible for ART were 4.3% points more likely to be alive at 2 years than patients who 

were ineligible at baseline – a 39% relative reduction in mortality risk. This difference in survival 

persisted five years later. These effects imply survival gains of nearly 15 percentage points for patients 

induced to initiate ART because they were eligible vis-à-vis patients who were barred from initiating 

because they were ineligible. Over a five-year horizon, immediate eligibility saved 0.18 years of life at 

a cost-effectiveness ratio of $1967 per year of life.  
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There has been much debate in the economic literature on the causal effect of medical care on health 

outcomes, outside the confines of clinical trials (Grossman 1972; Card & Dobkin 2009; Doyle 2005; 

Finkelstein et al. 2012; Baicker et al. 2013). Although therapeutic medicine played a small role in 

historical gains in life expectancy vis-à-vis nutrition (Fogel 2004) and sanitary interventions (Cutler & 

Miller 2005), its contribution increased with technological advances in antimicrobials, emergency 

medicine, and clinical management of chronic illness (Cutler, Deaton, & Lleras-Muney 2006).  

 

Diffusion of medical technology has figured prominently in longevity gains in low and middle-income 

countries over the last thirty years. Perhaps the starkest example is the mass provision of ART for HIV 

in developing countries. In the 1990s, HIV-related mortality lowered life expectancy by almost twenty 

years in some of the hardest hit countries in southern Africa (WHO 2012). An effective combination of 

antiviral drugs went to market in 1996, but was prohibitively expensive for most of the world’s HIV-

infected population. Since the early 2000s, however, falling drug prices, donor support, and bulk 

procurement have enabled widespread public sector provision of ART in many developing countries. 

ART scale-up has led to gains in labor supply and productivity (Thirumurthy et al. 2008; Habyarimana 

et al. 2010; McLaren 2010; Bor et al. 2012); improvements in measures of household wellbeing 

(d’Adda et al. 2009; Graff Ziven et al. 2009; Bor et al. 2012; Lucas & Wilson 2013); and some 

evidence of spillover effects on HIV infection (Friedman 2013; Tanser et al. 2013) and human capital 

investment (Baranov & Kohler 2013). Most importantly, scale-up of ART has led to large increases in 

longevity with gains in population adult life expectancy of more than a decade in some HIV-endemic 

settings (Bor et al. 2013). Existing evidence points to large benefits of ART vis-à-vis a counterfactual 

world without ART. However, causal evidence to inform the timing of ART initiation for HIV patients 

in sub-Saharan Africa is lacking. Information about the marginal benefits of earlier ART initiation is 

critical for further improvements in the effectiveness and efficiency of HIV treatment programs, which 

are financed primarily through public and donor funds.  



Draft: 15 October 2014    Bor – When to Start ART – NEUDC 

 4 

 

Clinical and health policy decisions require evidence on the effectiveness – and cost-effectiveness – of 

different therapeutic inputs (Drummond & McGuire 2001). However, causal evidence on the real-

world effectiveness of specific medical interventions is scarce (for an exception, see Almond et al. 

2010). Observational studies are vulnerable to the endogenous selection of patients into treatment 

options. Although randomization solves this problem, medical ethics place constraints on the types of 

information that clinical RCTs can provide. First, the standard of informed consent implies opt-in 

participation for most trials, which leads to non-representative experimental samples. Second, both 

treated and control patients are monitored carefully for adverse events, raising the potential for 

Hawthorne effects (Landsberger 1958) and implying that controls rarely receive true standard of care 

(e.g., Severe et al. 2011). Third, medical ethics dictate that a trial can only be started if clinical 

equipoise can be established, i.e. if there is “genuine uncertainty within the expert medical 

community… regarding the comparative therapeutic merits of each arm of the trial” (Freedman 1987); 

and similarly, clinical trials must be stopped if intermediate results indicate that the treatment is 

protective (or harmful) vis-à-vis the control condition. Starting and stopping rules for clinical trials thus 

are governed by statistical tests of the direction of an effect, with no attention to its magnitude. These 

ethical requirements generate a paradox: the larger a treatment effect (and hence the more likely it is 

that a policy maker might care about it), the less precisely the effect can be estimated in an RCT and 

the less one can know about its generalizability across populations and institutional contexts, leading to 

errors in decision-making that can lead to losses of dollars and lives. Ethical constraints thus drive a 

wedge between what can be identified in an RCT and what knowledge is required to optimize medical 

and health-policy decision-making. This “epistemological gap” suggests an important role for quasi-

experiments in determining the real world effectiveness of medical inputs.  

 

Our study builds most closely on Almond et al. (2010), which used a regression discontinuity design to 
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evaluate the costs and benefits of neonatal intensive care provided to infants born below the threshold 

for “very low birth weight”. Threshold decision rules are very common in clinical care, e.g. in the 

diagnosis of diabetes, hypertension, and high cholesterol. The imprecision of laboratory measures leads 

to a “strong” RD design with a “local randomization” interpretation at the threshold (Lee and Lemieux 

2010). Measurement error in lab results implies continuity in potential outcomes at the threshold, the 

requirement for identification in RD designs (Lee 2008). Opportunities for manipulation are slim: 

whereas height and weight are measured by clinicians in the context of providing patient care, 

diagnostics such as CD4 counts and blood lipid levels are analyzed by laboratory technician (often off-

site) and are less vulnerable to manipulation and/or heaping (Almond et al. 2010; Barreca et al. 2011; 

Shigeoka & Fushimi 2014). Finally, the exclusion restriction is often plausible: tests occur immediately 

prior to diagnosis, in contrast to other examples such as age (Card & Dobkin 2009) and distance from 

an administrative boundary (Chen et al. 2013), which may affect outcomes via pathways unrelated to 

treatment assignment. In spite of many applications, few RD studies have been published in the 

medical literature (see Moscoe et al. 2014 for a review, and Bor et al. 2014 for a recent example).  

 

Threshold rules are particularly important in low-income and developing country settings where 

medical care is delivered largely by health workers with limited training, large patient loads, and who 

rely on standardized guidelines for care (WHO 2013). Evidence on “checklists” suggests that 

guidelines may yield superior outcomes to clinical judgment in well-resourced settings as well (Haynes 

et al. 2009). In Almond et al. (2010), very low birth weight diagnoses affected treatment decisions 

primarily in lower quality hospitals, which lacked capacity for continued observation of newborns in 

neonatal intensive care units. Our study evaluates a nurse-led HIV treatment program implemented 

through public-sector clinics in a poor, largely rural area of South Africa. In clinical settings such as 

this one, where clinicians rely on standardized national guidelines, optimizing treatment thresholds will 

have large population health impacts.  
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In addition to its substantive contributions, our paper makes a methodological contribution to the 

literature on regression discontinuity designs. RD designs have typically used linear models, even for 

non-continuous outcomes; in a departure that links RD designs more closely to the clinical literature, 

we show that regression discontinuity designs are amenable to non-linear and survival models, which 

accommodate censoring. These models make more efficient use of the data, avoid biases that can result 

from ignoring censoring, and are more appropriate for modeling low-probability events than linear 

probability models. We generalize the RD design to model the time path of treatment effects using 

regression splines. And, we show how valid complier causal effects can be estimated in a fuzzy RD 

design using survival data. Specifically, we estimate the complier population survival curves using 

flexible parametric survival models, which are robust to unobserved heterogeneity in the underlying 

hazards, treatment effect heterogeneity, and time-varying effects of the treatment on any scale. 

 

Section II provides background on the history of clinical guidelines for ART treatment and existing 

research on the topic of when to start ART. Section III describes the data sources. Section IV describes 

the empirical strategy and introduces our approach to analyze survival time data in an RD study. Main 

results are presented in Section V, with robustness checks in Section VI. Section VII presents results on 

cost-effectiveness. Section VIII concludes.  

 

II. BACKGROUND 

II.A. When To Start ART: Biological and Theoretical Considerations 

HIV attacks the immune system, making HIV-infected people vulnerable to a wide variety of 

opportunistic infections and cancers usually avoided by people with health immune systems. In clinical 

settings across the world, ART traditionally has been allocated according to a simple decision rule: if 

the concentration of CD4+ white blood cells in a patient’s blood – known as a “CD4 count” – falls 
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below a threshold, then that patient is deemed eligible to initiate therapy. (Patients may also be initiated 

at higher CD4 counts due to clinical symptoms such as the presence of AIDS-defining opportunistic 

infections.) The question about “when to start” ART has largely been a question about the appropriate 

CD4 count threshold. 

 

II.B. Clinical Guidelines and Existing Evidence on When to Start ART 

When ART first became available, early recommendations were to “hit HIV early and hard” (Ho, 

1995). However, due to the harmful side effects of the earliest drugs, the perception that ART would be 

effective for a given patient only for a certain number of years, and the need to triage the sickest 

patients for immediate ART, initiation of therapy was commonly delayed until patients were quite sick. 

The first World Health Organization (WHO) guidelines for ART recommended initiating therapy only 

when patients’ CD4 counts had fallen below 200 cells/µL or when the patient was diagnosed with 

advanced clinical symptoms (Stage IV AIDS defining illness), citing a “public health” approach (WHO 

2002). In 2010, WHO amended these guidelines, recommending initiation at CD4+ counts < 350 

cells/µL or moderate-to-advanced HIV disease (Stage III or IV). In guidelines revised June 2013, WHO 

recommended initiating antiretroviral therapy (ART) for all HIV-infected people with CD4+ 

lymphocyte counts < 500 cells/µL. In spite of these changes, evidence on the clinical benefits to 

patients from earlier treatment is limited (WHO 2013). WHO itself cited “strong” evidence that early 

ART reduces HIV transmission, but only “moderate-quality” evidence regarding the clinical benefits of 

initiation at CD4+ counts above 200 cells/µL (WHO 2010, 2013 p95), which such evidence deriving 

from observational clinical cohort studies. 

 

Existing experimental evidence comes from a single RCT in Haiti, which randomly assigned patients 

with CD4+ counts between 200 and 350 cells/µL to receive immediate ART or to wait until their CD4+ 

count fell below 200 cells/µL. Patients in the delayed treatment group had mortality rates four times 



Draft: 15 October 2014    Bor – When to Start ART – NEUDC 

 8 

higher than those receiving immediate therapy, and the study was terminated early (Severe et al. 2010). 

Two other RCTs found reductions in adverse clinical events, but were under-powered to detect 

differences in mortality (Emery, et al. 2008, Cohen et al. 2011, Grintzstejn et al. 2014). An ongoing 

multi-site RCT will assess outcomes for people initiating ART between 350 and 500 cells/µL, but 

includes very few participants from sub-Saharan Africa (NIAID 2009). No RCT has evaluated the 

effect of different CD4+ count thresholds on survival in sub-Saharan Africa, where the majority of 

ART patients reside, and where migration, clinical loss-to-follow-up, and specific burdens of 

opportunistic infections present challenges (De Cock & El-Sadr 2013).  

 

Clinical cohort studies have compared survival for patients initiating ART at different CD4 counts 

(Ford et al. 2010; Sterne et al. 2009; Kitahata et al. 2009). But these studies may be biased due to 

unobserved patient characteristics that are correlated with both survival and the timing of ART 

initiation. Further, these studies systematically exclude patients who presented for care but never 

initiated ART – perhaps because they were ineligible. Excluding non-initiators likely biases estimates 

of causal effects towards the null since the sample of late initiators excludes patients who did not 

initiate by the end of follow-up. Further, this approach precludes analysis of the group most negatively 

affected by ineligibility for treatment – namely those who never make it back to initiate at a later date 

(Rosen & Fox 2011; Fox, Larson, Rosen 2012). Due to the limits of existing evidence, there have been 

recent calls for a randomized trial on “when to start” in sub-Saharan Africa (De Cock & El Sadr 2013). 

However, given current WHO guidelines, it would be difficult to argue for equipoise, the ethical 

requirement for an RCT. 

 

II.C. Rational For Study Design 

In this study, we use a quasi-experimental regression discontinuity (RD) design to identify the causal 

effect of early vs. delayed ART initiation among HIV patients in rural South Africa. RD can be 
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implemented when treatment assignment is determined by a threshold rule: patients are eligible if they 

are below (or above) some cut-off value on a continuously measured pre-treatment covariate. Random 

error in measurements of this assignment variable implies that patients with a true, underlying value 

close to the cut-off are quasi-randomized to being above or below the cut-off. Although treatment 

assignment is discontinuous at the threshold, continuity is guaranteed in all measured and unmeasured 

covariates so long as patients (or providers) cannot precisely manipulate the value of the assignment 

variable. Causal effects can be estimated by comparing outcomes immediately above vs. below the cut-

off (Bor, et al. 2013, Lee & Lemieux 2010, Imbens & Lemieux 2008, Campbell & Thistlewaite 1960). 

 

We implemented an RD design using data on first CD4+ counts for patients presenting to a public 

sector HIV care and treatment program in rural South Africa between January 2007 and August 2011. 

Patients were eligible for ART if their CD4 count was below 200 cells/µL or if they had Stage IV 

AIDS illness, according to national guidelines during the study period. Previous studies have found 

very high within-subject variability in CD4+ counts (Hughes 1994), which we confirm for our sample. 

This random variability results from classical measurement error, from sampling variability in blood 

draws, and from random factors such as ambient temperature at the time of the blood draw. We find a 

large, discontinuous change in the probability that a patient initiated ART within six months. Since 

patients are nearly identical within any small range of CD4+ counts, the causal effect of treatment 

eligibility can be estimated by comparing mortality rates among those presenting for care on either side 

of the CD4+ count initiation threshold. Under plausible assumptions, the causal effect of the treatment 

on those induced to take up by the threshold can be estimated by dividing the intent-to-treat estimate by 

the difference in the probability of rapid initiation at the threshold. Preliminary analyses of these data 

were presented as a proof of concept in Bor et al. (2014). This paper substantially extends that analysis, 

presenting evidence on additional outcome measures and cost-effectiveness, and using novel methods 

to model survival times in the context of fuzzy RD. 
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III. DATA 

III.A. Data Sources 

Data were obtained from the Hlabsia HIV Treatment and Care Programme, the public sector ART 

program serving Hlabsia sub-district, in northern KwaZulu-Natal, South Africa (Houlihan et al. 2010). 

The Hlabisa program is decentralized, nurse-led, and is implemented through 17 clinics and one 

subdistrict hospital. The program follows South Africa’s National Treatment Guidelines: From 2004-

2010, patients with CD4+ counts under 200 cells/µL, or with Stage IV AIDS-defining illness were 

eligible for treatment. TB patients and pregnant women were eligible with CD4+ counts < 350 

cells/µL. On 12 August 2011, the Ministry of Health announced updated treatment guidelines: all 

patients with CD4+ counts below 350 cells/µL would be eligible for treatment in the government ART 

program (Bor et al. 2013).  

 

Since its inception, the Hlabisa program has received technical assistance from the Africa Centre for 

Health and Population Studies (Africa Centre), a health and demographic surveillance site (HDSS) 

affiliated with the University of KwaZulu-Natal and funded by the Wellcome Trust. The Africa Centre 

has collected longitudinal demographic data since 2000 on a large population cohort residing in the 

Hlabisa health catchment area. The population cohort includes all members (resident and non-resident) 

of households residing in a 438 km2 demographic surveillance area (DSA). The cohort is described 

extensively elsewhere (Tanser et al. 2008). In an agreement with the Department of Health, clinical 

records from patients in the Hlabisa HIV Care and Treatment Programme were matched to the Africa 

Centre’s population surveillance data, with patients matched on national ID number, or full name, sex, 

and date of birth (Bor et al. 2010). Population-based surveillance data enables longitudinal follow-up of 

patient survival regardless of whether they are still in clinical care.  
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III.B. Study Population 

The study population included all patients in the Hlabisa HIV Treatment and Care Programme who 

sought clinical care for HIV between 1 January 2007 and 11 August 2011, who were members of a 

household in the Africa Centre DSA at the time of their first CD4+ count in care, and whose first CD4+ 

count was less than 350 cells/µL. Pre-ART CD4+ counts were collected by the Africa Centre’s 

database only after 1 January 2007; thus, patients who initiated ART or were reported to have their first 

CD4+ count prior to 1 January 2007 were excluded. Upon entry into the study all patients had yet to 

initiate ART in the Hlabisa program, although treatment naiveté could not be verified as some patients 

may have initiated therapy elsewhere. Women who were pregnant at the time of their first CD4+ count 

were excluded from the analysis. No sampling was conducted; all members of the study population 

were included in the analysis.  

 

III.C. Treatment Assignment  

Data on patients’ CD4+ counts (number of cells/µL and date of CD4 test) were obtained upon 

enrollment into clinical care and at subsequent clinic visits. Patient CD4+ counts were assessed through 

a blood test, analyzed at an off-site laboratory, and reported directly by the lab to the Africa Centre’s 

database. If the patient and provider decided to initiate ART, the patient was required to attend a series 

of weekly treatment literacy and adherence counseling sessions prior to initiating ART, except in cases 

of medical emergency when initiation was fast-tracked. Dates of ART initiation were obtained from 

clinical records. We analyzed time from first CD4 count to date of initiation on a continuous time scale. 

We also created an indicator variable for rapid ART initiation, taking the value 1 if the patient initiated 

treatment within six months of her first CD4 count and zero if the patient still had not initiated 

treatment at six months. Based on standard of care, all patients that were assigned to initiate ART based 

on their initial CD4 count would have initiated within six months; and if six months had passed without 
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initiating therapy, another CD4 count would have been taken to determine eligibility. 

 

III.D. Outcome Measures 

Vital status of study participants was ascertained through semi-annual household interviews conducted 

by Africa Centre staff. Household response rates in the demographic surveillance are very high (>99%) 

(Tanser, et al. 2008). Dates of death were recorded for all fatalities. Cause of death was determined by 

verbal autopsy, and deaths were categorized as HIV/TB-related or other (Herbst et al. 2011). Patients 

were followed up from the date of their first CD4+ count to their date of death, or the date when their 

vital status was last observed in the population surveillance.  

 

The primary endpoint was time from first CD4+ count to death from any cause. As secondary 

endpoints, we assessed time to HIV/TB-related death and time to non-HIV/TB-related death. We also 

assessed trends in CD4+ counts, a measure of immunological functioning, as captured in routine 

clinical monitoring of patients retained in care. Costs were calculated by estimating the expected 

number of “years on ART”, “years in pre-ART care”, and “years not in care (deceased)” over a five-

year horizon, and assigning clinic-based costs of $621, $104, and $0 respectively for per-patient-per-

year costs of care in South Africa in 2011 (2011 US dollars) (Bor et al. 2013). As a conservative 

estimate of time in each state, patients were assumed to be in pre-ART care until their date of ART 

initiation and to be on ART until date of death or five years, whichever came first. 

 

IV. EMPIRICAL APPROACH 

IV.A. Empirical Approach 

Regression discontinuity studies traditionally have used linear models even when modeling discrete-

outcomes and rare events such as mortality (e.g., Almond et al. 2010; Card et al. 2009). However, 

linear models have some limitations. First, for binary, count, and survival data, linear regression 
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models are less efficient than likelihood methods that correctly model the data-generating process. 

Second, when the underlying probability of the event is low (or high), effects of covariates may be 

approximately linear in Logits or Probits but non-linear in the expectation. In many RD applications, 

the treatment is assigned based on a continuous measure of risk, which is correlated with outcomes. 

The conditional expectation function thus may be nonlinear about the threshold, increasing the 

possibility that an RD study would falsely identify a treatment effect in finite samples. Third, when 

survival times are censored prior to the end of follow-up, models that accommodate censoring are 

required in order for these observations to be included – an important consideration when long run 

outcomes are of interest. The absence of RD applications with non-linear and survival outcomes may 

be a barrier to uptake in the clinical literature (Moscoe et al. 2014).   

 

For all analyses, we compared predicted outcomes for patients presenting with CD4 counts just above 

vs. just below the 200-cell threshold. We modeled outcomes as follows: first, we assessed the effect of 

treatment eligibility on take-up, i.e., the probability of rapid ART initiation (within six months). Rapid 

ART initiation was estimated on the risk difference scale, using linear probability (OLS) models to 

estimate Equation 1, which models the conditional expectation function (CEF) as a continuous function 

earliest CD4 count, except for an intercept shift at the threshold. We allowed for different slopes on 

either side of the threshold, which would arise in the case of effect heterogeneity. The intercept shift, 

β2, is the effect of being CD4-count eligible on the probability of rapid ART initiation, for observations 

presenting with CD4 counts close to 200 cells.  

 
Equation 1 

E Yi |CD4i[ ] = !1(CD4i ! 200)+!21 CD4i < 200[ ]+!3(CD4i ! 200)*1 CD4i < 200[ ]  

 

For our health outcome variables, we extended this basic RDD model in two novel directions. First, for 
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our analysis of mortality (a rare event), we embedded the RDD model in a generalized linear models 

framework, in which a continuous “link” function of the CEF is modeled linearly (Bor et al. 2014). 

Second, for both mortality and follow-up CD4 counts, we interacted the right hand side of the equation 

with parametric spline functions in follow-up time, to allow the effect of baseline treatment eligibility 

on outcomes to evolve flexibly over time. We estimated time-varying, generalized RDD models of the 

form: 

 

Equation 2 

g E Yi | t,CD4i[ ]( ) = f t |b0,k0( )
+ f t |b1,k1( )*(CD4i ! 200)
+ f t |b2,k2( )*1 CD4i < 200[ ]
+ f t |b3,k3( )*(CD4i ! 200)*1 CD4i < 200[ ]

 

 

where f t |bj,kj( )  is a restricted cubic spline function of time (or log-time), with kj knots with data-

driven locations, and parameter vector bj of length kj. In all analyses, the number of knots for each of 

the interaction terms was identical, k1 = k2 = k3, and less than or equal to the number of knots for the 

spline describing the “baseline” trend in outcomes, k0. The spline is interacted with each of the terms 

from the regression discontinuity model on the right-hand side of Equation 1. The models were 

estimated for different ranges (bandwidths) of CD4 counts on either side of the threshold, which is 

identical to a non-parametric, local linear regression with a rectangular kernel, estimated only in the 

area around the threshold. The causal effect of treatment eligibility on the difference scale is equal to:  

 

Equation 3 

E Yi | t,CD4i !200[ ]"E Yi | t,CD4i #200[ ] = g"1 f t |b0,k0( )+ f t |b2,k2( )( )" g"1 f t |b0,k0( )( )  

 



Draft: 15 October 2014    Bor – When to Start ART – NEUDC 

 15 

This effect may vary over time, and if g(.) is a linear (identity) link function, is simply equal to 

f t |b2,k2( ) . The ratio of means E Yi | t,CD4i !200[ ] / E Yi | t,CD4i "200[ ]  
is also identified due to 

Slutsky’s Theorem so long as the denominator is nonzero.  

 

IV.B. Flexible Parametric Survival Models 

For survival times – time to death, time to HIV-related death, and time to HIV-unrelated death – let Yi|t 

be an indicator for whether the event has still not occurred by time t, i.e., Yi =1[Ti > t] , where 

E Yi | t[ ] = S(t) , the survivorship function. We modeled survival probabilities using a complementary 

log-log link function, which implies a linear model for the log-integrated hazard, 

log -log S(t | CD4i )[ ]( ) = log H (t | CD4i( ) . This model is the flexible parametric survival model (FPSM) 

developed by Royston and colleagues (Royston & Parmar 2002; Lambert & Royston 2009). The 

conditional survivorship function for a given CD4 count is obtained by inverting the link function; and 

the time varying population hazard is obtained by taking derivatives of the survival function (Lambert 

& Royston 2009).  

 

An alternative approach to modeling survival times would be to define binary indicators for survival to 

one year, survival to two years, etc., and estimate linear probability models (Almond et al. 2010). 

However, if some units are not followed up for the full interval, e.g. due to random censoring times, 

then this approach discards these censored observations. Worse then the loss of efficiency, if the event 

of interest is an absorbing state (e.g., death), then units that experience the event during follow-up are 

less likely to be censored and will be overrepresented in the data. (This is not an issue if follow-up is 

complete and censoring is an administrative end-of-study date, as in Almond et al. 2010; however, 

there are many applications in which censoring times are random, e.g. non-selective clinical attrition.) 

Like other survival methods based on the hazard, FPSM is designed to accommodate censoring, so 
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long as it is non-informative (i.e., not correlated with failure times). 

 

FPSM has the benefits of a fully parametric model: computation is quick and prediction is simple. 

However, with flexible functions for the baseline log-integrated hazard and time-varying effects of the 

treatment, FPSM has a distinctly non-parametric flavor. Similar to the Cox proportional hazards model, 

FPSM allows the analyst to be agnostic about how the population baseline hazard function varies over 

time. Importantly, however, the FPSM also allows for arbitrary non-proportionality over time in the 

treated vs. control population hazards, which may arise due to frailty effects, heterogeneity in hazard 

ratios, or time-varying effects of the treatment. In conventional hazard models, choices of frailty 

distributions (e.g., gamma, inverse Gaussian) and functional assumptions for time-varying treatment 

effects (e.g. linear, piecewise constant) are often arbitrary and may lead to different results. This results 

from the fundamental non-identifiability of the underlying (structural) hazard model in the absence of 

arbitrary assumptions.†  

 

Fortunately, the population survival curve is identified, and can be estimated consistently using the 

non-parametric Kaplan-Meier estimator for different covariate combinations (Kaplan & Meier, 1958). 

(Its scaled derivative, the population hazard curve is also identified, although the ratio and difference in 

population hazards are not causal parameters at t>0, since survivorship bias is built in to population 

hazard estimates (Lancaster 1979; Abbring & Van den Berg 2005).) Abbring & Van den Berg (2005) 

                                                
† Consider the individual-specific hazard model , where Vi 
reflects heterogeneity in the baseline hazard, h0(t) reflects the average baseline hazard, which varies 
over time, Wi reflects heterogeneity in the proportional effect of the treatment Di, and (t) describes 
how the treatment effect (average log hazard ratio) changes over time. In population data, time-varying 
hazards cannot be disentangled from frailty effects without untestable assumptions (Elbers & Ridder 
1982; Heckman & Singer 1984); similarly, time-varying (proportional) treatment effects cannot be 
disentangled from (proportional) treatment effect heterogeneity without untestable assumptions. Non-
identifiability suggests that a focus on the underlying structure of individual-specific hazard functions 
may be misplaced. 

hi | t,Di,Vi,Wi,!(t) = h0 (t)Vi exp(!(t)WiDi )

!
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show that Kaplan-Meier estimates of the population survival curves for treatment eligible and non-

eligible subjects can be plugged into the Wald estimator to obtain a time-varying LATE(t) parameter, 

the “complier difference-in-survival at time t”.  

 

A limitation for RDD is that Kaplan-Meier cannot accommodate continuous covariates, and estimation 

relies on local linear regression predictions at the threshold. FPSM offers a flexible parametric 

alternative, using restricted cubic regression splines to describe the evolution of the regression 

discontinuity CEF over time. Spline functions are approximations to the underlying true functional 

form; however, they can be arbitrarily good approximations with increased numbers of knots as the 

sample size grows. With finite knots, restricted cubic spline can fit all continuous functions subject to: 

i) linearity outside the outermost knots; ii) continuous first and second derivatives at the knots; and iii) 

number and placement of knots (Hastie & Tibshirani 1990). In practice, 3-5 knots placed at quantiles of 

the data are generally enough to describe most functions (Harrell 2001), and in particular, functions 

that are monotonically increasing (e.g., log cumulative hazard as a function of time) or decreasing (e.g., 

survival as a function of time) as shown in simulations (Lambert & Royston 2009). Further, regression 

splines can be expressed as simple transformations of the continuous predictor, such that they can be 

included in any regression model and inherit the consistency properties of that model. 

 

In applying FPSM to RD, the non-parametric flavor of FPSM is further enhanced by the use of non-

parametric local linear regression to model the relationship between CD4 count and log integrated 

hazards, i.e., by limiting the analysis to different bandwidths of CD4 counts around the 200-cell 

threshold. Thus, our analysis describes the “mortality risk surface” across CD4 counts and over time 

using flexible semi-parametric methods; the effect of interest is the time-varying gap in survival at the 

threshold. In our analysis, time since first CD4 count was modeled as a restricted cubic spline with four 

data-driven knots (at 0, 211, 653, and 1490 days). Findings were robust to different numbers of knots 
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and knot location (not shown). The Stata command stpm2 was used for all flexible parametric 

survival analysis (Lambert & Royston 2009). 

 

We report population mortality hazards and cumulative survival probabilities at annual intervals, up to 

five years follow-up. We summarize the effect of treatment eligibility over a five-year horizon by 

calculating and comparing the expected years of life lost for observations just above vs. just below the 

threshold. As a point of comparison, we also present hazard ratios from more conventional exponential 

and Weibull regression models, which assume constant or monotonically-increasing (decreasing) 

hazards over time and a proportional treatment effect. We also present models adjusting for Gamma (or 

inverse-Gaussian) distributed, individual-level, random frailty effects, in which case hazard ratios are 

interpreted as individual-level (rather than population-level) measures, i.e., conditional on the frailties. 

These results are presented for completeness, but since the proportional hazards assumption is violated 

in our data and because causal effects are difficult to interpret in terms of hazards, we emphasize the 

comparison of population survival curves as our main result.  

 

IV.C. Modeling the Distribution of CD4 Counts 

To model the effect of treatment eligibility on follow-up CD4 counts, we used OLS regression (where 

g(.) in Equation 2 is the identity link function) with the continuous variable “time since first CD4 

count” modeled as a restricted cubic spline with four data-driven knots (at 0, 211, 653, and 1490 days). 

Unlike the mortality data, which were collected through population surveillance, follow-up CD4 counts 

were observed only if the patient was retained in care; thus, there is potential for bias from clinical 

attrition. To determine the possible extent of any bias, we assessed the effect of treatment eligibility on 

clinical attrition in linear probability models. We then estimated a linear mixed effects model by 

maximum likelihood, which accounts for attrition under the assumption that missingness is random 

conditional on CD4 count history (Laird & Ware 1982; Verbeke and Molenberghs 2000; Molenberghs 
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and Kenward 2007; Allison 2012). Specifically, we used the Stata command xtmixed, allowing for 

individual-specific random intercepts and random slopes for all terms in the spline (a so-called “growth 

curve” model). We compared the predicted mean CD4 count growth path for patients presenting just 

above vs. just below the threshold. In addition to mean CD4 counts, we also assessed the effect of 

treatment eligibility on the distribution of CD4 counts. We estimated RD models using quantile 

regression (Fransden et al. 2012), with the identical specification as the OLS model, and obtained 

predictions for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentile CD4 counts at annual intervals.  

 

IV.D. Treatment Effects Among Compliers 

Thus far, we have focused on the intent-to-treat ITTRDD  effect of treatment eligibility (as determined by 

CD4 count) on outcomes. This effect is of interest to policy makers because it is the causal effect of 

treatment eligibility on the complete population, including those induced to take-up by the threshold 

and those who would have (or would not have) initiated ART regardless. Clinicians and patients may 

be interested in another causal effect: the effect of early vs. deferred ART initiation on patients that 

initiated ART rapidly because their CD4 count was below 200, i.e. compliers (Imbens & Angrist 1994). 

Under the plausible assumptions that (a) rapid ART initiation is indeed the only pathway through 

which earlier ART eligibility would affect health (exclusion restriction), and (b) no patient who would 

have been treated if ineligible would have rejected treatment if eligible and vice-versa (monotonicity), 

we can divide the intent-to-treat RD estimates by the “first stage” RD estimates (the Wald IV 

estimator) to obtain a complier average causal effect (CACE) or local average treatment effect (LATE). 

To avoid confusion, we use the terminology  in lieu of “LATE” to specify that in an RD 

design, the complier treatment effect is in fact “local” across two dimensions: local to the population at 

the threshold and local to compliers. CACERDD  is denoted by the following equation: 

 

CACERDD
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Equation 4 

CACERDD = E[Yi (1)!Yi (0) | complier,CD4i = 200]

=
Intent-to-treat effect

Pr(complier)
, by IV assumptions,

=
E[Yi |CD4i "200]!E[Yi |CD4i #200]
E[Ti |CD4i "200]!E[Ti |CD4i #200]

, by RDD assumptions.

 

 

We obtained CACERDD estimates for the effect of early vs. deferred ART initiation on the probabilities 

of all-cause and HIV/TB mortality at annual intervals (on a risk difference scale), years of life lost over 

a five-year horizon, and average CD4 count among survivors retained in care.  

 

 

V. RESULTS 

V.A. Study Sample 

The study sample included 4391 patients in the Hlabisa HIV Treatment and Care Programme, observed 

for a total of 13,139 person-years of follow-up. Of these patients, 3150 initiated ART and 820 died 

during follow-up. The majority of patients (69.2%) were women. The median age at first CD4+ count 

was 32.5 years, IQR = 26.3, 41.0. 

 

V.B. Evidence for Validity of the Study Design  

Causal inference using a regression discontinuity design is valid if the potential outcomes are 

continuous at the cut off. Support for this identifying assumption comes from three sources. First, there 

is a high degree of random noise in CD4+ counts in the study setting. We assessed the correlation 

between consecutive CD4+ counts among the 146 patients in our sample with repeat CD4+ counts on 

the same or consecutive days; regressing sqrt(FirstCD4) on sqrt(SecondCD4), the coefficient was close 

to one, but there was substantial unexplained variability. Our analysis implies that a patient with a 
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“true, underlying” CD4+ count of 200 cells/µL would test within the 95% CI: 120 cells, 300 cells. 

Random noise in measured CD4+ counts implies that any factors correlated with “true” CD4+ counts 

will be continuous at the cut-off. It also implies that there is substantial overlap in “true” CD4+ counts 

among eligible and ineligible patients close to the threshold, such that the analysis does not depend on 

extrapolation across populations with different underlying immune health. 

 

Second, the validity of the study design would be threatened if health workers or patients were able to 

manipulate patients' CD4+ count measurements, e.g., in an effort to access treatment earlier. Lab tests 

were conducted off-site and test results were reported from the lab directly to the Africa Centre 

database, leaving little opportunity for manipulation. Furthermore, we found no evidence of systematic 

manipulation in the data. Due to random noise in CD4+ count measurements, the distribution of CD4+ 

values should be continuous at the threshold; a discontinuity in the density function, with bunching just 

below the threshold, would suggest the presence of manipulation. Figure 1 displays the density of 

CD4+ counts upon enrollment in clinical care; there was no evidence of a discontinuity at the threshold 

(p=0.79)‡.  

 

Third, support for the validity of the study design can be found by assessing continuity in baseline 

observables. Figure 2 displays mortality hazards predicted as a function of sex, age, age-squared, sex-

by-age interactions, and date of first CD4+ count. This figure is similar to a balancing table in an RCT. 

Random noise in measured CD4+ counts implies that there should be no discontinuity in pre-treatment 

characteristics, and indeed we found no evidence of systematic differences across the threshold.  

 

                                                
‡ We conducted a statistical test of continuity in the density function of earliest CD4 counts at 200 (McCrary 2008). 
Specifically, we fit a kernel density function on either side of the threshold (bandwidth=25, rectangular kernel) with a 
renormalization boundary correction, rescaled so that each density function integrated to the probability of being below 
(above) the threshold, and calculated the difference in predicted densities at the threshold, which was bootstrapped (1000 
replications) to obtain standard errors. 
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V.C. Rapid Initiation of Antiretroviral Therapy 

Figure 3 shows the cumulative probability of initiating ART within six months following a patient’s 

first CD4+ count. Cumulative probabilities of initiation were estimated within 10-cell CD4+ count bins 

using the Kaplan-Meier estimator. (Supplementary Figure S1 shows cumulative probabilities of 

initiation for 1, 3, 6, 12, 24, and 36 months.) Patients who presented with CD4+ counts below 200 were 

much more likely than those with CD4+ counts above 200 to initiate ART within the first six months. 

In linear probability models (Table 1), having a first CD4+ count less than 200 increased the 

probability of initiation within six months nearly twofold – by 32 percentage points (95% CI 0.26, 

0.38). This gap persisted two years later, though it decreased in magnitude as patients who originally 

presented above 200 went on to initiate therapy (Figure S1).  

 

V.D. Treatment Eligibility and Survival: Reduced Form 

We examined the effect of having a CD4+ count < 200 on mortality. We begin completely non-

parametrically. Figure 4 shows Kaplan-Meier estimates of the cumulative probability of death at three 

years for 25-cell CD4 count ranges. In general, the higher a patient’s CD4 count at baseline, the lower 

the probability of death. However, there is a discontinuity at 200 cells. Patients presenting with CD4 

counts of 200-224 were more likely to die than patients presenting with CD4 counts of 175-199, in 

spite of having marginally better health at baseline.  

 

To obtain predictions at the threshold, we need to put some parametric structure on the relationship 

between earliest CD4 count and mortality, which we do using FPSM. Figure 5 presents predicted 

probabilities of death at 1, 2, … and 5 years – the FPSM RD surface – estimated with linear terms on 

either side of the threshold and including patients presenting with CD4 counts between 50 and 350. 

Predictions at the threshold are presented in Table 2 and displayed in Figure 6. At 6 months, there was 
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no significant difference in the probability of death (Table 2, panel 1: risk difference = 0.3% points, 

95% CI -2.0, 2.5). However, by 2 years, a statistically significant 4.3% point gap (95% CI 0.6, 8.0) had 

emerged in the cumulative probability of death between patients who were treatment eligible (6.6%) 

and patients who were not treatment eligible (10.9%). A gap in survival between 4.0 and 4.8% points 

persisted between two and five years.  

 

The divergence in survival experiences in the first two years was driven by a sharp reduction in the 

hazard of death at 1 year among patients who were treatment eligible relative to those who were not 

eligible (Table 2, panel 2: HR at 1 year = 0.24, 95% CI 0.10, 0.60). Trends in the time-varying 

population mortality hazard among patients presenting on either side of the threshold are also presented 

in Figure 7. There is strong evidence for non-proportionality in the population hazards. The hazard of 

death was high in the six months after clinical presentation among both eligible and non-eligible 

patients. After this initial spike in mortality, the hazard of death among ART-eligible patients was 

approximately constant at about 2 deaths per 100 person-years. Among patients who were not eligible, 

however, there was substantial excess mortality between about six months and three years. By three 

years, the mortality hazard among patients who were not eligible had converged to the mortality hazard 

among patients who were eligible at baseline; some of this convergence in the population hazards may 

be due to frailty effects. The evolution of population hazard ratios and differences in survival over time 

are shown in Figures S4 and S5 with 95% CI.  

 

The hazards reported here are descriptive and do not have a causal interpretation since they are 

estimated based on the population surviving at time t. However, contrasts of the survival curve do have 

a causal interpretation and are of interest. As a summary measure, we assessed the difference in the 

expectation of life (mean life years) over the five years of follow-up. Integrating between the survival 

curves, ART eligibility saved 0.18 years of life over a five-year horizon (95% CI 0.12, 0.26). This 
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implies that a year of life was saved for every 5.6 patients who were eligible for treatment at baseline.   

 

Using verbal autopsy data on cause of death, we were able to assess trends in HIV/TB-related vs. non-

HIV/TB-related mortality. Table 3 presents results of separate flexible parametric survival models for 

HIV/TB-related mortality and non-HIV/TB-related mortality, censoring follow-up at alternate causes 

of death. Patients who were not eligible for ART at baseline were 4.8% more likely have died by 2 

years (95% CI 1.2, 8.4) than patients who were eligible for ART; these effects persisted at 5 years 

(Table 3, panel A). There were no differences in mortality due to other causes (Table 3, panel B). 

 

V.E. Treatment Eligibility and Immune Health: Reduced Form 

Treatment eligibility had a significant, positive effect on follow-up CD4 counts. Figure 8 displays 

measured CD4 counts at one year follow-up against baseline CD4 count. There is evidence of a 

discontinuity at the 200-cell eligibility threshold. The time-varying effect of treatment eligibility on 

follow-up CD4 counts was assessed in linear regression discontinuity models with a restricted cubic 

spline in time interacted with the usual RDD covariates. For CD4 counts, linear functions across the 

range 100-300 cells were used. Mean CD4 counts increased over time for both eligible and non-eligible 

patients. However, CD4 counts increased much faster for ART-eligible patients, leading to an 

advantage in mean CD4 counts of 52 cells (95% CI 17, 87) at one year and 70 cells (95% CI 25, 115) at 

three years (Table 5, panel B). Large effects persisted at five years. Results were similar in linear mixed 

effects models, which are robust to missingness that is correlated with patient-specific CD4 count 

histories (Table 5, panel B). Trends in mean CD4 count among patients presenting at the threshold who 

were eligible vs. ineligible at baseline are presented in Figure 9 (linear regression) and Figure S8 

(mixed effects). In addition to the effect of treatment eligibility on mean CD4 counts, we also estimated 

quantile treatment effects. Figure 10 displays the predicted cumulative densities of follow-up CD4 

counts for eligible and ineligible patients presenting at the threshold. Baseline predictions placed the 
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full density for both groups at 200 cells, by definition. Figure 10 shows the emergence of a gap in CD4 

counts, evident across the full distribution. Over time, the distributions flatten as other sources of 

variability determine patient trajectories; however, the effect of baseline treatment eligibility persists 

across the full five years of follow-up. Further, the distribution of follow-up CD4 counts among 

eligible patients stochastically dominates the distribution among ineligibles. 

 

V.F. Clinical Benefits of Rapid Treatment Initiation: Complier Causal Effects 

Under plausible assumptions described above, we can assess the causal effect of rapid ART initiation 

(within six months) on survival and immune health among patients who initiated based on their CD4+ 

count. To estimate complier average treatment effects, we scaled the intent-to-treat difference in 

survival curves at the threshold by the difference in the probability of ART initiation, conditional on 

survival to six months (Wald estimator). Survival at six months was similar among patients eligible for 

treatment and among those who were ineligible (Table 2, Figure 6), providing support for our 

assumption that eligibility only affected survival through treatment itself. Table 5 presents RDD results 

for the first stage (linear probability model) and intent-to-treat effects (flexible parametric survival 

model). CACERDD estimates were formed by dividing the intent-to-treat by the first stage.  

 

The effect of treatment eligibility on rapid treatment initiation was 32.2% points at the threshold. The 

ITT effect on the cumulative risk of death at three years was -4.8% points. Dividing the two yields a 

CACERDD of 14.9% points. This implies that persons who were induced to initiate ART because of an 

eligible CD4 count were about 15 percentage points more likely to be alive three years later than 

persons who delayed ART initiation because of an ineligible CD4 count. We calculated CACERDD for 

the probability of death and mean CD4 count at annual intervals, as well as total years of life lost over 

the five years of follow-up. The CACERDD for survival was in the range of 10-15% points from years 

one through five. Over this time, patients who initiated ART because they had an eligible CD4 count 
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enjoyed an additional 0.59 years of life, relative to patients who were prevented from initiating because  

they were ineligible. Among patients who survived to six months, baseline treatment eligibility had a 

large, significant, level effect on follow-up CD4 counts: eligible patients had 72 additional CD4 

cells/µL at 1 year, and this gap persisted to five years. Dividing by the first stage, patients who initiated 

ART because they had an eligible CD4 count had about 225 extra CD4 cells/µL.  

 

VI. SENSITIVITY ANALYSES 

To assess the robustness of our survival results, we estimated FPSMs varying the bandwidth and 

functional form of earliest CD4 count. The bandwidth was adjusted by reducing the window of data 

used in the analysis down to +/- 50 cells/µL. This approach coincides with local linear regression with a 

rectangular kernel. The functional form of earliest CD4 count was varied by including higher order 

polynomial terms in the model, up to fourth-order (cuartic) terms; these were each interacted with the 

spline functions in log-time. Results are presented in Tables S1 and S2. Results were consistent with 

the main results reported in Table 2, though at smaller bandwidths and with higher order polynomials 

there is some loss of precision.  

 

We also estimated conventional hazard regression models, presented in Table S3. (Given our previous 

statements about time-varying hazards and time-varying treatment effects, these models make overly 

restrictive assumptions; however, they provide a point of comparison for other studies that make 

similar assumptions.) Column (a) presents results for exponential hazard models; column (b) presents 

Weibull hazard models; similar results are observed for Cox proportional hazard models (not shown). 

In models estimated for patients with CD4 counts of 50 – 350, and including linear terms on either side, 

ART eligibility reduced the hazard of death by about one third (exponential HR: 0.65, 95% CI 0.45, 

0.94; Weibull HR: 0.67, 95% CI 0.46, 0.96; Table S3, row 2), a result reported in Bor et al. (2014). 

Results were robust to smaller bandwidths. If there is unobserved heterogeneity in individual-specific 
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hazards, then the population hazard ratio will under-estimate the individual-specific hazard ratio. 

Adjusting for random frailty effects – the so-called mixed proportional hazards model – ART eligibility 

reduced the hazard of death by over 50 percent (exponential with gamma frailties, HR: 0.45, 95%CI 

0.24, 0.84; Weibull with gamma frailties, HR: 0.41, 95% CI 0.19, 0.85; Table S3, row 8). The effect of 

ART eligibility on all-cause mortality was driven entirely by its effect on the hazard of HIV/TB-related 

mortality (Table S3, rows 10-14). 

 

VII. COST-EFFECTIVENESS 

Studies that obtain causal estimates for both costs and health benefits over a lengthy (5-year) horizon 

are rare. To estimate costs, we estimated the excess person-years on ART (and/or in pre-ART care) 

experienced by patients presenting just below the 200-cells/µL threshold. We estimated FPSM models 

similar to our survival models, but with time to treatment initiation as the outcome, and modeled 

mortality as a competing risk. We then predicted the time-varying probability of being on ART at each 

point over a five-year horizon for patients on either side of the threshold. We made the conservative 

assumption that once a patient initiated ART, they would continue to be on ART for the duration of 

follow-up. Over five years, patients presenting just below the threshold spent a total of 0.57 more years 

on ART than patients who presented just above the threshold. We used published estimates for the cost 

of ART per patient per year in South Africa, which was $621 in 2011 (Bor et al. 2013). Combining our 

cost estimate with our survival estimates, we calculate that immediate vis-à-vis deferred ART 

eligibility saved 0.18 years of life over a five year horizon at a cost of $1967 per life year saved. Given 

the additional reductions in immune function that we identify, and the likely implications for HIV-

related morbidity, these are lower-bound estimates on the clinical cost-effectiveness of raising the ART 

eligibility threshold from 200 cells/µL. 
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VIII. CONCLUSION 

This study assessed the health benefits of early vs. delayed ART treatment eligibility for patients 

presenting with CD4 counts close to 200-cell/µL threshold, using data from a public sector ART 

program in rural South Africa. ART eligibility at baseline had a large and statistically significant 

impact on both survival and immune health. Patients who were initially prevented from starting ART 

because their CD4 count was above the 200-cell threshold were 15% points less likely to be alive three 

years later, and lost (on average) 0.59 years of life over the five-year follow-up period. These benefits 

are local to “compliers”, i.e. patients whose initiation decision was made based on CD4 count 

eligibility. We note that although this population is of policy interest – it is the group that would be 

affected by a threshold change – it is likely that the effect of early vs. delayed ART would have been 

even larger for patients who presented clinically with Stage IV AIDS-defining illness and who would 

have been initiated regardless of CD4 count. In other words, these estimates are likely lower bounds on 

the effect of the treatment (rapid ART initiation) on the treated.  

 

These gains in survival were attained at a modest cost of $1967 per life year saved, less than a third of 

South Africa’s 2011 per capita GNI, $6960 (World Bank, 2012). By conventional benchmarks, 

interventions that save a year of life for less than 1x per capita GNI are deemed “very cost effective” 

(Goldie et al. 2006).  In addition to the reductions in mortality, among those who survived, patients 

prevented from starting ART because they were ineligible went on to have follow-up CD4 counts that 

were about 225 cells/µL lower than their baseline-eligible counterparts. These differences in immune 

health have clinically meaningful implications for the incidence of opportunistic infections and for the 

costs of medical care (Meyer Rath, et al. 2013). The divergence in both survival and immune health for 

eligible and ineligible patients occurred between about six months and two years. These effects appear 

to be permanent, with large gaps in both survival and immune health persisting five years after 

patients’ first CD4 count.  
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These are the first quasi-experimental estimates of the survival benefits of early vs. delayed ART 

eligibility in sub-Saharan Africa. To date no experimental evidence exists and new trials are unlikely to 

be forthcoming given that current recommendations would make equipoise difficult to defend (WHO 

2013). Guidelines for “when to start” ART have swung back and forth over the short history of highly 

active antiretroviral therapy (De Cock, El Sadr 2013). Current WHO guidelines have outpaced the 

evidence base on the clinical impacts of early initiation (WHO 2013). This study provides causal 

evidence to clinicians interested in “when to start” patients on therapy, and for policy makers debating 

where to direct scarce resources for health.  
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Table 1, Treatment eligibility and rapid ART initiation 
 
 Earliest CD4+ count Probability of initiating ART within six months Sample 
 Specification; Range ![!|! ↓ !] ![!|! ↑ !] Difference 95% CI N 
       
(1) Linear; 0-350 0.36 0.67 0.31 (0.25, 0.37) 4113 
(2) Linear; 50-350 0.36 0.69 0.32 (0.26, 0.38) 3548 
(3) Linear; 100-300 0.42 0.66 0.24 (0.16, 0.31) 2471 
(4) Linear; 150-250 0.45 0.66 0.21 (0.10, 0.32) 1256 
(5) Linear; 175-225 0.44 0.65 0.21 (0.06, 0.37) 610 
       
(6) Quadratic; 0-350 0.47 0.67 0.20 (0.12, 0.29) 4113 
(7) Quadratic; 50-350 0.47 0.66 0.19 (0.10, 0.28) 3548 
(8) Quadratic; 100-300 0.47 0.68 0.21 (0.10, 0.33) 2471 
(9) Quadratic; 150-250 0.46 0.66 0.20 (0.04, 0.36) 1256 
(10) Quadratic; 175-225 0.60 0.77 0.17 (-0.05, 0.38) 610 
       
Notes: Linear probability models. Each row is its own regression. 
 
 
 
 
  



Draft: 15 October 2014    Bor – When to Start ART – NEUDC 

 35 

 
Table 2. Treatment eligibility and all-cause mortality: flexible parametric models. 
 
Range: 50 – 350 cells 
Time since first 
CD4+ count (t) 

Cumulative probability of death (1 – S(t)) 
![!|!"4 ↓ 200] ![!|!"4 ↑ 200] Difference in S(t) 95% CI 

     
6 months 3.7% 3.4% 0.3% 2.5%, -2.0% 
1 year 6.5% 4.6% 1.8% 4.7%, -1.1% 
2 years 10.9% 6.6% 4.3% 8.0%, 0.6% 
3 years 13.6% 8.8% 4.8% 9.0%, 0.6% 
4 years 15.3% 10.7% 4.5% 9.2%, -0.1% 
5 years 16.6% 12.6% 4.0% 9.5%, -1.5% 
   
Years of life saved (over 5 year horizon) 0.18 0.12, 0.26 
     
Time since first 
CD4+ count (t) 

Instantaneous hazard of death 
ℎ[!|!"4 ↓ 200] ℎ[!|!"4 ↑ 200] Hazard ratio 95% CI 

     
6 months 0.06 0.07 1.07 0.50. 2.30 
1 year 0.06 0.01 0.24 0.10, 0.60 
2 years 0.04 0.02 0.62 0.30, 1.26 
3 years 0.02 0.02 0.96 0.47, 1.98 
4 years 0.02 0.02 1.24 0.40, 3.90 
5 years 0.01 0.02 1.41 0.36, 5.44 
     
Note: Models estimated for patients presenting with CD4 counts between 50 and 350 cells, with linear 
functions estimated on either side of the threshold; n=3710. 
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Table 3. Treatment eligibility and HIV/TB mortality: flexible parametric models. 
 
HIV/TB-related mortality 
Time since first 
CD4+ count (t) 

Cumulative probability of death (1 – S(t)) 
![!|!"4 ↓ 200] ![!|!"4 ↑ 200] Difference in S(t) 95% CI 

     
6 months 3.3% 2.9% 0.4% -1.7%, 2.6% 
1 year 6.1% 4.0% 2.1% -0.8%, 4.9% 
2 years 10.3% 5.5% 4.8% 1.2%, 8.4% 
3 years 12.6% 7.1% 5.5% 1.4%, 9.6% 
4 years 14.0% 8.7% 5.3% 0.8%, 9.8% 
5 years 15.0% 10.1% 4.8% -0.4%, 10.1% 
     
Years of life lost to HIV, averted (over 5 year horizon) 0.20 0.14, 0.30 
     
 
Non-HIV/TB-related mortality 
Time since first 
CD4+ count (t) 

Cumulative probability of death (1 – S(t)) 
![!|!"4 ↓ 200] ![!|!"4 ↑ 200] Difference in S(t) 95% CI 

     
6 months 0.5% 0.5% 0.0% -0.7%, 0.8% 
1 year 0.6% 0.7% -0.1% -0.9%, 0.8% 
2 years 1.4% 1.1% 0.2% -1.0%, 1.5% 
3 years 2.8% 2.0% 0.8% -1.1%, 2.8% 
4 years 4.4% 2.8% 1.6% -1.1%, 4.4% 
5 years 6.3% 3.7% 2.5% -1.6%, 6.7% 
     
Years of life lost to HIV, averted (over 5 year horizon) 0.04 0.00, 0.10 
     
Notes: Predictions from flexible parametric survival models, for patients presenting with CD4 counts of 
50-350 cells; n=3710. Person-time was censored at the time of the competing event. Models for HIV-
related mortality were estimated using four knots for the baseline log-cumulative-hazard, and four knots 
for the time-varying treatment effect. Due to small numbers of non-HIV-related deaths, those models 
were estimated using a spline with three knots for the baseline log-cumulative-hazard and two knots for 
the time-varying effects of covariates. 
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Table 4. Effect of ART eligibility on follow-up CD4 counts. 
 
Linear Regression (Least Squares) 
Time since first 
CD4+ count (t) 

Mean CD4 count at follow-up 
![!|!,!"4 ↑ 200] ![!|!,!"4 ↓ 200] Difference 95% CI 

     
1 year 366 314 52 17, 87 
2 years 416 355 61 19, 103 
3 years 446 376 70 25, 115 
4 years 472 390 82 18, 146 
5 years 497 403 94 -8, 196 
     
 
Linear Mixed Effects Model (Maximum Likelihood) 
Time since first 
CD4+ count (t) 

Mean CD4 count at follow-up 
![!|!,!"4 ↑ 200] ![!|!,!"4 ↓ 200] Difference 95% CI 

     
1 year 351 303 48 21, 76 
2 years 416 345 71 32, 110 
3 years 452 377 75 33, 117 
4 years 474 406 69 13, 124 
5 years 494 434 60 -26, 146 
     
Notes: Predictions in the top panel are from linear regression discontinuity model with time-varying 
effects modeled as a restricted cubic spline, interacted with covariates. Predictions in the bottom panel 
are for a mixed effects model, in which individual specific intercepts and growth curves are modeled as 
random effects. This latter model is robust to missingness correlated with patients’ own CD4 count 
history. In both panels, models were estimated for patients presenting with CD4 counts in the range 100-
300; n=2557. 
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Table 5. “Fuzzy RDD”: the effect of “rapid ART initiation” on probability of death, years of life 
lost, and mean CD4 count among patient compliers 
 
Effect estimate at threshold: ! ! !"! ↑ !"" − ![!|!"# ↓ !""] 
 
Outcome First Stage ITTRDD CACERDD 

    
Rapid ART initiation 32.2% (26.6, 37.8)   
    
Probability surviving at:    
   1 year  3.4% (0.7, 6.0) 10.6% 
   2 years  4.8% (1.3, 8.2) 14.9% 
   3 years  5.0% (0.8, 9.2) 15.5% 
   4 years  4.2% (-0.6. 9.0) 13.0% 
   5 years  3.1% (-2.9, 9.1) 9.6% 
    
Years of life saved, 
   over 5 year horizon 

 0.19 (0.14, 0.27) 0.59 

    
Follow-up CD4 count:    
   1 year  72 (43, 101) 224 
   2 years  77 (41, 114) 239 
   3 years  75 (35, 116) 233 
   4 years  73 (18, 128) 227 
   5 years  71 (-15, 157) 220 
    
Notes: All models exclude patients who died in the first six months or who had less than six months of 
follow-up; thus results should be interpreted as conditional on survival to six months. As shown in Table 
2, there was no significant difference in survival at six months between patients presenting just above vs. 
just below the eligibility threshold, so selection is not a concern. Rapid ART initiation is an indicator for 
whether a patient initiated ART within six months of her first CD4 count. Differences in the probability 
of death in 1,2,…,5 years and differences in life years lost were estimated based on a flexible parametric 
survival model similar to Table 2. Differences in CD4 counts were estimated based on linear mixed 
effects models similar to Table 4. All models are estimated with linear terms on either side of the 
threshold, for patients presenting with CD4 counts of 50-350; n=3449. 
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Figure 1. Distribution of CD4+ counts at clinical enrollment 

 
 
Figure 2. Mortality hazards predicted using baseline covariates 

 
Notes: Figure plots mortality hazards predicted using sex and age at first CD4+ count. Log-
hazards were predicted in an exponential regression model, controlling for sex, age, age2, and 
their interactions. Geometric mean hazards are shown for 10-cell CD4+ count bins. Fitted lines 
were estimated by regressing the predicted log hazards on CD4 count, an indicator for CD4>200, 
and the interaction of these two variables, and then exponentiating the predictions. 
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Figure 3. Baseline CD4+ count and probability of ART initiation 

 
Notes: Kaplan-Meier estimates of probability that a patient initiated ART within X months of first 
CD4+ count in care. Follow-up time was censored at date of death or last survey visit.  
 
Figure 4. Baseline CD4+ count and probability of death in three years  

 
Notes: Kaplan-Meier estimates of probability that a patient initiated ART within X months of first 
CD4+ count in care. Follow-up time was censored at date of death or last survey visit.  
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Figure 5. Baseline CD4+ count and cumulative probability of death, as predicted in flexible 
parametric survival model 

 
Notes: Predicted probabilities of death within 1, 2,…,5 years based on flexible parametric survival 
model, estimated for range 50-350 CD4 cells.  
 
Figure 6. Predicted survival curves for patients presenting at the 200-cell threshold 

 
Survival curves predicted for patients presenting on either side of 200 CD4 count threshold. 
Predicted based on flexible-parametric hazard model. Significance of difference between survival 
curves at annual intervals: ** p<.05; * p<.1 
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Figure 7. Baseline CD4+ count and mortality hazard for patients presenting at 
the 200-cell threshold 

 
 Instantaneous mortality hazards predicted for patients presenting on either side of 200 CD4 count 
threshold, based on flexible-parametric hazard model.  
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Figure 8. Mean CD4+ count at 12 months follow-up among patients surviving and still in care 

 
Figure displays mean CD4 counts for 1753 (of 4391) patients with follow-up CD4 counts between 9 and 15 
months follow-up. For patients with multiple CD4 counts in this interval, the test date closest to 12 months was 
retained. Dotted line is the 45o line. 
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Figure 9. Predicted CD4 counts for patients presenting at the 200-cell threshold 

 
Figure displays predicted mean CD4 counts over time for patients presenting with an initial CD4 count 
just below (eligible) vs. just above (not eligible) the 200-cell threshold. Linear regression-discontinuity 
models were estimated with the effect of time modeled as a cubic spline, and interacted with the 
regression discontinuity coefficient and linear terms on either side of the discontinuity. Patients 
presenting with CD4 counts between 100 and 300 cells were included. The model was estimated based 
on data from survivors retained in care; follow-up was censored at the date of a patient’s last CD4 count. 
95% confidence bands are shown.  
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Figure 10. Distributions of CD4+ counts for patients presenting at the 200-cell threshold  

 
Figure displays cumulative density functions of CD4 counts at baseline and 1, 2, …, and 5 years follow-up, for 
patients presenting with an initial CD4 count just below (eligible) vs. just above (not eligible) the 200-cell 
threshold. CDFs are constructed as 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentile predictions from quantile 
regression-discontinuity models, estimated with the effect of time modeled as a cubic spline, and interacted with 
the regression discontinuity coefficient and linear terms on either side of the discontinuity. Patients presenting 
with CD4 counts between 100 and 300 cells were included. The model was estimated based on data from 
survivors retained in care; follow-up was censored at the date of a patient’s last CD4 count. 95% confidence 
bands are shown.  
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Table S1. Treatment eligibility and all-cause mortality: flexible parametric models, varying 
bandwidth. 
 
Range: 0 – 350 cells (n=4391) 
Time since first 
CD4+ count (t) 

Cumulative probability of death (1 – S(t)) 
![!|!"4 ↓ 200] ![!|!"4 ↑ 200] Difference in S(t) 95% CI 

     
6 months 3.9% 3.0% 0.8% 3.0%, -1.4% 
1 year 6.4% 4.2% 2.1% 4.8%, -0.6% 
2 years 11.0% 6.5% 4.4% 8.0%, 0.9% 
3 years 13.6% 8.5% 5.1% 9.1%, 1.2% 
4 years 15.3% 10.2% 5.1% 9.5%, 0.7% 
5 years 16.6% 11.8% 4.8% 9.9%, -0.3% 
     
Years of life saved (over 5 year horizon) 0.19 0.12, 0.30 
     
 
Range: 50 – 350 cells (n=3710) 
     
6 months 3.7% 3.4% 0.3% 2.5%, -2.0% 
1 year 6.5% 4.6% 1.8% 4.7%, -1.1% 
2 years 10.9% 6.6% 4.3% 8.0%, 0.6% 
3 years 13.6% 8.8% 4.8% 9.0%, 0.6% 
4 years 15.3% 10.7% 4.5% 9.2%, -0.1% 
5 years 16.6% 12.6% 4.0% 9.5%, -1.5% 
     
Years of life saved (over 5 year horizon) 0.18 0.12, 0.26 
     
 
Range: 100 – 300 cells (n=2557) 
     
6 months 3.3% 2.6% 0.7% 3.2%, -1.8% 
1 year 6.4% 4.3% 2.1% 5.5%, -1.3% 
2 years 11.6% 6.5% 5.0% 9.5%, 0.5% 
3 years 13.7% 8.7% 5.0% 10.2%, -0.1% 
4 years 15.1% 10.9% 4.1% 9.8%, -1.5% 
5 years 16.1% 13.1% 3.0% 9.6%, -3.7% 
     
Years of life saved (over 5 year horizon) 0.18 0.13, 0.26 
     
 
Range: 150 – 250 cells (n=1293) 
     
6 months 2.1% 2.1% 0.0% 2.6%, -2.6% 
1 year 5.2% 3.7% 1.5% 5.7%, -2.7% 
2 years 10.9% 6.7% 4.2% 10.4%, -1.9% 
3 years 12.9% 9.8% 3.1% 10.4%, -4.2% 
4 years 14.6% 11.4% 3.2% 11.2%, -4.9% 
5 years 16.1% 12.5% 3.6% 12.9%, -5.7% 
     
Years of life saved (over 5 year horizon) 0.14 0.10, 0.20 
     
Note: Each panel is estimated in a separate flexible parametric survival model with four knots in the 
spline of log-time. All models control for separate linear functions of earliest CD4 count on either side 
of the threshold.  
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Table S2. Treatment eligibility and all-cause mortality: flexible parametric models, controlling 
for higher order polynomials in earliest CD4 count. 
 
Linear 
Time since first 
CD4+ count (t) 

Cumulative probability of death (1 – S(t)) 
![!|!"4 ↓ 200] ![!|!"4 ↑ 200] Difference in S(t) 95% CI 

     
6 months 3.6% 3.1% 0.5% 2.7%, -1.7% 
1 year 6.7% 4.6% 2.1% 4.9%, -0.7% 
2 years 10.8% 6.7% 4.1% 7.8%, 0.5% 
3 years 13.4% 8.7% 4.6% 8.7%, 0.6% 
4 years 15.2% 10.7% 4.5% 9.2%, -0.1% 
5 years 16.8% 12.5% 4.3% 9.7%, -1.2% 
     
Years of life saved (over 5 year horizon) 0.18 0.12, 0.26 
     
 
Quadratic 
     
6 months 3.6% 3.1% 0.5% 3.1%, -2.1% 
1 year 6.7% 4.6% 2.1% 5.7%, -1.5% 
2 years 10.8% 6.7% 4.1% 9.2%, -0.9% 
3 years 13.4% 8.7% 4.6% 10.6%, -1.3% 
4 years 15.3% 10.7% 4.6% 11.5%, -2.3% 
5 years 16.8% 12.5% 4.3% 12.2%, -3.6% 
     
Years of life saved (over 5 year horizon) 0.18 0.12, 0.27 
     
 
Cubic 
     
6 months 3.5% 3.1% 0.4% 3.4%, -2.6% 
1 year 6.4% 4.6% 1.8% 6.2%, -2.6% 
2 years 10.3% 6.6% 3.7% 10.1%, -2.8% 
3 years 12.7% 8.7% 4.1% 11.8%, -3.7% 
4 years 14.5% 10.6% 3.9% 12.9%, -5.1% 
5 years 16.0% 12.4% 3.6% 13.8%, -6.6% 
     
Years of life saved (over 5 year horizon) 0.15 0.09, 0.25 
     
 
Quartic 
     
6 months 3.7% 2.8% 0.9% 4.2%, -2.3% 
1 year 6.7% 4.2% 2.5% 7.6%, -2.6% 
2 years 10.6% 6.3% 4.3% 11.8%, -3.2% 
3 years 13.1% 8.2% 4.9% 14.1%, -4.2% 
4 years 15.1% 9.9% 5.2% 15.8%, -5.3% 
5 years 16.7% 11.4% 5.4% 17.2%, -6.5% 
     
Years of life saved (over 5 year horizon) 0.20 0.10, 0.38 
     
Note: Each panel is estimated in a separate flexible parametric survival model with four knots in the 
spline of log-time and four knots in the time-varying effect of covariates. The linear effect of earliest 
CD4 count was allowed to vary over time; higher order polynomial terms were modeled as time-
invariant, proportional effects. Separate polynomial functions of earliest CD4 count were included on 
either side of the threshold. Models were estimated for patients presenting with CD4 counts of 50-350 
cells; n=3710. 
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Table S3, Treatment eligibility and survival: hazard regression results.   
 
 Earliest CD4+ count (a) Exponential (b) Weibull  Sample 
 Range, frailty distribution HRRD 95% CI HRRD 95% CI N Deaths 
        
All-cause mortality     
(1) 0-350 0.59 (0.42, 0.83) 0.62 (0.44, 0.87) 4391 820 
(2) 50-350 0.65 (0.45, 0.94) 0.67 (0.46, 0.96) 3710 539 
(3) 100-300 0.66 (0.42, 1.04) 0.67 (0.43, 1.06) 2557 331 
(4) 150-250 0.68 (0.35, 1.32) 0.71 (0.37, 1.36) 1293 153 
(5) 175-225 0.54 (0.21, 1.41) 0.54 (0.21, 1.42) 623 73 
(6) 0-350, Gamma 0.44 (0.25, 0.75)  0.43 (0.24, 0.77) 4391 820 
(7) 0-350, Inv. Gaussian 0.44 (0.25, 0.78) 0.49 (0.30, 0.80) 4391 820 
(8) 50-350, Gamma  0.45 (0.24, 0.84) 0.41 (0.19, 0.85) 3710 539 
(9) 50-350, Inv. Gaussian Did not converge 0.52 (0.29, 0.92) 3710 539 
        
Non-HIV-related mortality     
(10) 0-350 0.94 (0.39, 2.26) 0.96 (0.40, 2.33) 4391 115 
(11) 0-350, Inv. Gaussian 0.92 (0.22, 3.95) 0.93 (0.25, 3.45) 4391 115 
        
HIV-related mortality     
(12) 0-350 0.58 (0.39, 0.86) 0.61 (0.41, 0.90) 4391 640 
(13) 0-350, Inv. Gaussian 0.43 (0.23, 0.82) 0.48 (0.27, 0.84) 4391 640 
        
Each hazard ratio is estimated in its own regression. Models control for separate linear terms in earliest CD4+ 
count on either side of the threshold. Models in rows 6-9 present hazard ratios conditional on individual-level 
frailties (random effects). Models in rows 10-13 display hazard models for HIV-related and non-HIV related 
mortality. Data on cause of death were available through 2011. 
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Figure S1. Baseline CD4+ count and probability of ART initiation within X 
months, among survivors 

 
Note: Kaplan-Meier estimates of the probability of initiation among survivors. Follow-up time was 
censored at date of death or last survey visit. 
 
Figure S2. Baseline CD4+ count and probability of death within X months 

 
Note: Kaplan-Meier estimates of the probability of death. Follow-up time was censored at date of 
death or last survey visit. 
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Figure S3. Baseline CD4+ count and hazard of death   

 
Predictions from exponential hazard model. 
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Figure S4. Baseline CD4+ count and mortality hazard ratio, with 95% CI 

 
Predictions from flexible parametric survival model. 
 
Figure S5. Baseline CD4+ count and survivorship gap, with 95% CI 

 
Predictions from flexible parametric survival model. 
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Figure S6. Excess mortality among non-eligible patients, HIV-related causes 

 
Calculated as one minus the difference in survival, as predicted in flexible parametric survival 
models of time to HIV-related death. 
 
Figure S7. Excess mortality among non-eligible patients, HIV-related causes 

 
Calculated as one minus the difference in survival, as predicted in flexible parametric survival 
models of time to HIV-related death. Due to small number of deaths, model would not converge 
with 5 knots; instead used 4 knots for baseline log-cum-hazard and 3 knots for time-varying effect. 
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Figure S8. Predicted CD4 counts for patients presenting at the 200-cell threshold: mixed effects 
model, to adjust for missing data 

 
Figure displays predicted mean CD4 counts over time for patients presenting with an initial CD4 count just below 
(eligible) vs. just above (not eligible) the 200-cell threshold. Linear mixed-effects regression-discontinuity models 
were estimated with the effect of time modeled as a cubic spline, and interacted with the regression discontinuity 
coefficient and linear terms on either side of the discontinuity. Patients presenting with CD4 counts between 100 
and 300 cells were included. The model was estimated based on data from survivors retained in care; follow-up 
was censored at the date of a patient’s last CD4 count. 95% confidence bands are shown. This model differs from 
Figure 9 in that by modeling random intercepts and random time-varying effects, the model adjusts for any 
missingness that is correlated with a patient’s CD4 count history. 
 
 

20
0

30
0

40
0

50
0

C
D

4 
co

un
t a

t f
ol

lo
w

-u
p

0 1 2 3 4 5
Years since earliest CD4 count

ART eligible at earliest CD4 count
Not eligible at earliest CD4 count


