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Abstract

We study the effects of the impressive growth in electrification in Brazil between 1960

and 2000 on changes in the structure of rural agricultural production, including adoption of

irrigation, increases in agricultural productivity and investments, changes in land use, and

the allocation of effort between crop cultivation and cattle grazing. The instrumental vari-

ables based identification strategy simulates a time series of hypothetical electricity grids

that show how the grid would have evolved had hydro-power dams (which require in-

tercepting water at high velocity) been allocated solely on geography-based cost considera-

tions. Electrification allows farmers to irrigate, which leads to higher productivity, especially

in areas with volatile rainfall patterns. Farming expands into frontier lands, and cultivation

intensifies in existing land through investments in mechanization, fertilizer and pesticides.

Crop intensification and substitution away from land-intensive cattle grazing lead to greater

protection of forests and native vegetation within farms. Expansion of agriculture and this

substitution have opposing effects on forest protection, and overall we estimate a net de-

crease in deforestation associated with electrification.

Keywords: Electricity, Hydro-power, Agriculture, Productivity, Deforestation, Brazil, Amazon

1



1 Introduction

The rapid loss of major tropical forest ecosystems has been one of the major environmental dis-
asters of the last century. Nearly 20% of recent global greenhouse gas emissions are attributed
to tropical deforestation (Stern, 2008). The vast biodiversity along the Amazon river basin cou-
pled with rapid economic growth makes Brazil the single most important player in the conflict
between development and environmental sustainability. While there has been a deceleration in
the rate of deforestation in Brazil recently, 78,564 km2 of forest cover was lost in the last seven
years, and the scale of the problem therefore remains enormous (MMA, 2013).

Deforestation is intricately tied to decisions on land use, and specifically, land for agricultural
production in Brazil. While logging is often the proximate cause of land clearing, re-growth
occurs in most moist tropical forests. For areas to remain deforested, the propensity to convert
the land to agricultural use matters most. Agricultural productivity in frontier areas, and the
type of agriculture that gets practiced – crop cultivation versus cattle grazing - are therefore the
key determinants of long-run deforestation. Brazil produces over a hundred billions dollars
annually through large-scale crop cultivation, and ranks among the world’s three largest pro-
ducers of sugarcane, soybeans and maize. Crop output increased 365% between 1996 and 2006,
and Brazil has been dubbed the farm that “feeds the world” (The Economist, August 26, 2010).
Brazil is also the world’s largest exporter of beef, with a ten-fold increase in exports during that
decade.

Cattle grazing and crop cultivation pose very different risks for deforestation, and this margin
of land use decisions will be central to our analysis. Cattle grazing is extremely land inten-
sive with limited use of confinement in Brazil, and the average stocking ratio was less than 1
head per hectare in the 2006 agricultural census. In contrast, crop cultivation accounted for
only 10.6% of total farm area, but 60% of the value of output in 2006 (IBGE). Increasing agricul-
tural productivity can therefore have ambiguous effects on deforestation in theory. It has the
potential to curb deforestation by inducing land conversion away from grazing and into more
intensive agriculture, but it could also induce expansion of agriculture into frontier lands.

This paper examines the effects of the impressive growth in electrification in Brazil during the
period 1960-2000 on technology use, changes in production structure and yields in the rural
agricultural sector. To address the endogeneity issues inherent in infrastructure data where
investment is large part follows demand, we follow Lipscomb et al. (2013) and forecast hy-
dropower dam placement and grid expansion, which produces hypothetical maps that show
how the electrical grid would have evolved had infrastructure investments been based solely
on geologic cost considerations, ignoring demand-side concerns. The maps isolate the portion
of the panel variation in grid expansion in Brazil that is attributable to exogenous cost consider-
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ations and are used to construct an instrument for actual electrification. This empirical strategy
takes advantage of the fact that Brazil relies almost exclusively on hydropower to meet its elec-
tricity needs, and the cost of hydropower dam construction depends on topographic factors
such as water flow and river gradient, since hydropower generation requires intercepting large
amounts of water at high velocity.

We first show that electricity permits investments in irrigation, which increases agricultural
productivity more in areas that experienced more volatile rainfall over the last century. We
then examine how this spurs investments and intensification, expands farming, and alters the
patterns of land use within rural settlements away from cattle grazing and into crop cultivation.
We find that electrification has two opposing effects on the protection of forests and native veg-
etation, because (a) the increase in agricultural productivity leads to an expansion of farm size
and induces frontier land conversion, and (b) land use shifts away from cattle ranching, which
is the most environmentally destructive, and into crop cultivation, and this allow farmers to
retain more native vegetation within rural settlements. Overall, we estimate that electrification
causes a small net decrease in deforestation in Brazil.

This finding on the beneficial environmental effect on electricity infrastructure stands in con-
trast to Pfaff (1999), Cropper et al. (1999) and Cropper et al. (2001), who show that road infras-
tructure aids deforestation in Brazil and Thailand, respectively. Our nuanced findings on the
opposing effects of infrastructure development on deforestation contribute to a long-standing
literature on the non-monotonic relationship between economic growth and environmental
outcomes, starting with Grossman and Krueger (1991, 1995) and the 1992 World Development
Report on environment and development (World Bank 1992).

The precise mechanism through which electricity benefits the environment in our setting is by
permitting the adoption of productive irrigation technology. Our paper is therefore related to
the literature on technology adoption (add cites). It is most closely related to papers on causes
and consequences of irrigation technology in the United States (Hornbeck and Keskin, 2014)
and in India (Sekhri, 2011). We also contribute to a rapidly growth literature on the effects of
electrification (Dinkelman, 2011; Rud, 2012; Lipscomb et al., 2013)) and other forms of infras-
tructure (Duflo and Pande, 2007; Donaldson, ming) on a broad range of development outcomes.

The relationship we estimate between agricultural productivity and deforestation is policy-
relevant, because major policy initiatives to protect the rainforest in Brazil, Indonesia and
Africa involve encouraging farmers to adopt practices that improve productivity. The con-
ceptual model underlying these interventions is that increased productivity will allow farmers
to use existing land more efficiently, thereby reduce the pressure to clear forests for new land.
Economic theory suggests that such approaches can backfire if farmers choose to expand more
profitable agricultural activities into frontier lands. Our analysis suggests that the net effect on
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deforestation will depend on the type of activity that gets displaced when agriculture becomes
more productive. In Brazil, the proliferation of land-intensive, low-productivity cattle grazing
makes improved cultivation productivity beneficial for the environment.

The rest of the paper is organized as follows...

2 Data

We combine three different datasets. First, we use data assembled by Lipscomb et al. (2013)
containing information on electricity infrastructure, as well as the instrumental variable we
use. The second dataset is formed by county-level data from the Brazilian Census of Agricul-
ture. Finally, we use rainfall data compiled by Matsuura and Willmott (2012). Table 1 presents
summary statistics.

2.1 Electricity Data

We consider the variable on county electricity infrastructure computed by Lipscomb et al.
(2013). The authors have combined data on generation plants and transmission lines, focusing
on hydropower plants. Data on the distribution networks are not available and are excluded
from the analysis. The measure of electricity infrastructure is built as following. Brazil is di-
vided into 33,342 evenly spaced grid points. All grid points within a 50 kilometer radius of
the centroid of a county containing a transmission substation are assumed to have access to
electricity – it is assumed that the distribution networks stretch one-hundred kilometers across.
The grid points are aggregated to the county level. The variable is defined as the proportion of
electrified grid points within a county.

The instrumental variable for the electricity infrastructure variable defined above is also pro-
posed by Lipscomb et al. (2013). This instrument is the prediction of electricity availability
based on geographical characteristics and the observed expansion pace of the electricity sys-
tem in Brazil. In other words, our instrument is the predicted electricity availability at each
grid point in each decade, based on a model that simulates the evolution of generation plants
and transmission lines in a way that minimizes construction cost based solely on geographical
characteristics.

As described by Lipscomb et al. (2013), the instrument is built in three steps. First, the number
of hydropower plants built in each decade in our sample is set as the budget available for the
national system in that decade. Second, data on the topographic characteristics of each grid
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point is used to rank-order all grid points in Brazil in terms of suitability for a low-cost hy-
dropower dam. The highest ranked grid points in terms of topographic suitability get dams
as we move from the first to the last decade in the sample, according to the respective budget.
Third, a cost-minimizing algorithm is used to construct two transmission lines to carry electric-
ity from each dam that has been built in the previous step - dams are assumed to have the same
capacity. The model assumes that cost increases with distance and is prohibitively high when
building substations in the Amazon due to high material transport costs.

2.2 Census of Agriculture

Data on rural establishments at the county level come from tabulations of the Brazilian Agri-
cultural Census for various years. The Census of Agriculture is a rich source of data on rural
establishments and include data on land use, farm infrastructure, input choice and agricultural
production. The information on Brazilian municipalities was aggregated into minimum com-
parable areas to allow comparisons across years – during the period considered in our analysis,
there are significant changes in the municipality borders. Thus, all variables from the Agri-
cultural Census are considered at this level of aggregation, that we are loosely referring as
counties.

We match Census data to electricity data in such a way that there is a small lag between the
two. As explained in Section 2.1, the electricity data is county-decade panel, not a county-year
panel. For that reason, we match the 1970 Census data to the electricity data for the 1960s; the
1975 Census data to the 1970s electricity data; the 1985 Census data to the 1980s electricity data;
the 1995 Census data to the 1990s electricity data; and 2006 Census data to the 2000s electricity
data.

2.3 Climate Data

Finally, we use the rainfall data compiled by Matsuura and Willmott (2012) to construct various
indicators of drought, dryness and rainfall volatility for each county. This dataset provides
monthly precipitation estimates at each node of a 0.5 × 0.5 degree grid. These estimates are
obtained by interpolating data from local weather stations.

To construct indicators of drought, dryness and rainfall volatility, we start by identifying all
grid nodes inside each county. If there are less than four nodes with precipitation data inside
the county, we then find the four closest nodes to the county’s borders. For each county, we
then take an weighted average of this set nodes, using the inverse of the distance to county’s
centroid as weights.
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We define rainfall volatility of county c as the standard deviation of the residuals of the follow-
ing regression:

rcmy = β0 + θm + δy + εcmy,

where rcmy is rainfall in county c, in month m and year y, θm is a month fixed effect and δy is
a year fixed-effect. In words, we calculate rainfall volatility over and above seasonality and
common shocks. We then define high (low) volatility counties as those whose volatility index
is above (below) the median.1

3 Estimation Strategy

Our goal is to estimate the effect of electrification on productivity of rural establishments over
the period 1960 to 2000 using county-level data. We are interested in running regressions of the
form

Yct = αc + γt + βEc,t + εct, (1)

where Yct is the outcome of interest i county c at time t, αc is a county fixed-effect, γt is a time
fixed-effect, and Ec,t is the proportion of grid points in county c that are electrified in period t –
that is, Ec,t is our measure of actual electricity infrastructure.

The main concern with (1) is that, even controlling for time and year fixed-effects the evolution
of electricity infrastructure is likely to be endogenous to a various factors also affecting the
evolution of farm productivity. This causes estimates obtained by OLS to be biased.

We therefore apply an instrumental variable (IV) estimator, making use of the instrument de-
scribed in Section 2.1. Specifically, we use a 2SLS model where the first stage is

Ect = α1
c + γ2

t + θZc,t + ηct, (2)

where Zct is the fraction of grid points in county c predicted to be electrified by the forecasting
model at time t – that is, Zct is our instrumental variable, described in Section 2.1. The second
stage is

Yct = α2
c + γ2

t + βÊc,t + ε2
ct, (3)

1We calculate other volatility measures, as well as indexes of droughts and dryness. We are still working on
results using those other measures, and future versions of this paper should include such results either on its body
or in the appendix.
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where Êc,t is obtained from the first stage regression (2). Note that both Zc,t and Ec,t are con-
structed by aggregating grid points within the county. Since the number of grid points vary in
each county, we weight regressions using county area as weights. In all specification, we cluster
standard errors at the county level due to possible serial correlation.

Our IV strategy corrects the for the bias introduced by the endogenous placement of electric-
ity infrastructure by isolating the supply determinants of the electricity grid evolution. These
supply-side determinants are river gradient, water flow and Amazon location. The use of
Amazon location in the instrument is subject to criticism, because it may introduce spurious
variation in the instrument. We include as controls interactions of Amazon location and year
dummies in all our specifications.2

The key identification assumption in our strategy is that the demand for electricity infrastruc-
ture does not independently move over time from the lowest cost locations (robust water flow
with a steep river gradient) in the early decades to slightly more expensive (flatter and less
water-rich) locations in later years.

4 Effects of Electrification on Agriculture

This section estimates the effects of electricity on different aspects of agriculture and land use.
All results include county fixed-effects, year fixed effects, and interaction of jungle and year
dummies.3

Table 2 relates actual electrification of rural establishments to both electricity infrastructure and
the modeled instrument.

One important mechanism underlying the impacts of electrification on agricultural produc-
tivity is irrigation. Irrigation typically requires either electrical or mechanical force to pump
groundwater. Table 3 reports results of the effects of electrification on irrigation. In both OLS
and IV specifications, the electrification has a positive and significant impact on irrigation. The
IV estimate suggests that a 10 percent increase in electrification leads to 0.66 percentage points
increase on the proportion of farms with irrigation, or 11 percent at the mean. Columns (3) and
(4) further explore weather this effect is different in counties with low and high rainfall volatil-
ity. Although magnitudes are the same, effects are statistically significant only in high-volatility
counties.

In Table 4 we present the effects of electrification on measures of agricultural productivity, al-
lowing for heterogeneous effects by counties’ rainfall volatility. In columns (1) and (2), the

2Lipscomb et al. (2013) discuss the introduction of these interactions, and present a series of robustness checks.
3For more details, see the discussion in Lipscomb et al. (2013).
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dependent variable is the log of production per hectare. The IV estimate suggests that a 10 per-
cent increase in electrification increases production per hectares by 9.8 percent in counties with
low (i.e., below the median) rainfall volatility, and this effect is significant at the 1 percent level.
In both the OLS and IV specifications, counties with high rainfall volatility benefit relatively
more of electrification, and this differential effect is also significant at the 1 percent level. We
find similar results both in magnitude and statistical significance for production per worker.
The increase in labor productivity however only partially translates into an increase in wages
per worker: although the effects of electrification on wages are of similar magnitude, only the
differential effect in high-volatility counties is statistically significant.

Next, Table 6 presents the effects of electrification usage of inputs. In the IV specification, a 10
percent increase in electrification leads to a 53 percent in crease in fertilizer spending (Column
(2)), and a 28.7 percent increase in pesticides (Column (4)), and both effects are significant at the
1 percent level. Electrification also leads to more tractors being used, as shown in columns (5)
and (6).

Given these changes, Table 7 presents the effects of electrification on farm size, farm area and
land value. Column (2) show that there is a sizable and significant effect on farm size: a 10
percent increase in electrification leads to an increase in farmsize of 24 hectares, or 26 percent
at the mean. The effects on farm area of a 10 percent increase in electrification is 1.5 percentage
points – small in magnitude, and significant only at the 5 percent level.

These results suggest that there is consolidation of rural establishments, increase in the scale
of production, and intensification. To further explore the effects on intensification, Table 8
estimates the effects of electrification on land allocation within rural establishments. The IV
estimates reveal that a 10 percent increase in electrification decrease pastureland by 4.3 per-
centage points, or a 9 percent at the mean. For cropland, this effect is 2.2 percentage points, or
10 percent at the mean. Finally, a 10 percent increase in electrification increase native vegetation
within rural establishments by 4.27 percentage points, or 24.6 percent at the mean.

To summarize, an increase in electrification leads to higher productivity, farm size, inputs us-
age, and intensification.
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Table 1: Sample Descriptive Statistics

count mean sd min max

Electricity Infrastructure 10,905 0.75 0.40 0.00 1.00
% of Farms with Electricity 10,894 0.34 0.33 0.00 1.00
Modeled electricity instrument 10,905 0.60 0.47 0.00 1.00
Production Per Hectare (log) 10,892 9.78 3.34 1.84 16.68
Value of Land Per Hectare (log) 8,720 0.27 1.52 -5.61 5.50
Wage Per Worker (log) 10,887 5.92 1.44 -3.47 12.18
Spending in Fertilizers Per Hectare (log) 10,576 1.45 2.98 -11.44 10.02
Spending in Pesticides Per Hectare (log) 10,768 0.77 2.26 -9.18 11.14
# of Tractors (log) 10,905 3.94 1.90 0.00 11.16
Average Farm Size 10,894 94.32 167.01 0.77 4,644.90
% of Farmland in Pastures 10,894 0.48 0.23 0.00 0.96
% of Farmland in Native Vegetation 10,894 0.17 0.15 0.00 0.99
% of Farmland in Cropland 10,894 0.22 0.18 0.00 1.00
% of Farms with Irrigation 10,894 0.06 0.11 0.00 0.93

Notes: Monetary variables measured in thousands of reais in 2002.
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Table 2: Effects of Electricity Infrastructure on Farms with Electricity

Dependent Variable Electricity Infrastructure % of Farms with Electricity

(1) (2) (3)
OLS OLS OLS

Modeled electricity availability 0.198∗∗∗ 0.112∗∗∗

[0.0443] [0.0364]

Electricity Infrastructure 0.107∗∗∗

[0.0234]

Year FE? Yes Yes Yes

Jungle x year dummies Yes Yes Yes

Observations 10,903 10,892 10,892
R2 0.880 0.821 0.823
Mean dep. var. 0.7506 0.3414 0.3414

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and
use county area weights.
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Table 3: The Effects of Electricity on Irrigation Dependent Variable: % of Farms with Irrigation

All Sample High Volatility County? Drought in Previous 5 years?

(1) (2) (3) (4) (5) (6)
Yes No Yes No

OLS IV IV IV IV IV

Electricity Infrastructure 0.0140∗∗∗ 0.0666∗∗∗ 0.0688∗∗∗ 0.0688 0.267∗∗ 0.00627
[0.00453] [0.0194] [0.0237] [0.0491] [0.109] [0.0315]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,892 10,892 5,448 5,444 3,375 6,633
R2 0.804 0.137 0.149 0.129 -1.172 0.212
Mean dep. var. 0.0614 0.0614 0.0501 0.0726 0.0617 0.0611

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and use county area weights.
The dependent variables Fertilizer Per Hectare and Pesiticides Per Hectare are in logs and are measured in reais.
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Table 4: The Effects of Eletrification on Land and Labor Productivity: Heterogeneity by Rainfall Volatility

Production Per Hectare Production Per Worker Wages Per Worker

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Electricity Infrastructure 0.0469 0.988∗∗ -0.0615 1.411∗∗∗ -0.0476 0.843∗

[0.0844] [0.402] [0.0704] [0.382] [0.0808] [0.474]

elecinf_x_highvol 0.238∗∗ 1.111∗∗∗ 0.374∗∗∗ 1.460∗∗∗ 0.288∗∗∗ 1.377∗∗∗

[0.106] [0.277] [0.0985] [0.264] [0.109] [0.326]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,890 10,890 10,890 10,890 10,885 10,885
R2 0.974 0.966 0.980 0.969 0.863 0.342
Mean dep. var. 9.7840 9.7840 12.3705 12.3705 5.9219 5.9219

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and use county area
weights. All dependent variables are in logs and are measured in reais. We have no information on Land Values in the 1970 census.
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Table 5: The Effects of Irrigation on Productivity

Production Per Hectare (log) Production Per Worker (log) Wages Per Worker (log)

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

% Farms with irrigation 0.762∗∗ 15.68∗∗ 0.372 22.11∗∗ 0.689 14.48∗

[0.301] [7.636] [0.269] [9.227] [0.453] [8.365]

fFarmIrr_x_highvol 1.008 16.15∗∗∗ 1.746∗ 21.59∗∗∗ 1.380∗ 18.87∗∗∗

[0.877] [4.586] [0.930] [5.542] [0.831] [5.030]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,890 10,890 10,890 10,890 10,885 10,885
R2 0.974 0.928 0.980 0.891 0.864 -0.215
Mean dep. var. 9.7840 9.7840 12.3705 12.3705 5.9219 5.9219

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and use county area weights. All depen-
dent variables are in logs and are measured in reais. We have no information on Land Values in the 1970 census.
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Table 6: The Effects of Electricity on Input Usage

Fertilizers Per Hectare Pesticides Per Hectare Number of Tractors (log)

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Electricity Infrastructure 0.234 5.323∗∗∗ 0.0406 2.874∗∗∗ 0.382∗∗ 3.893∗∗∗

[0.308] [1.034] [0.203] [0.814] [0.149] [0.830]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,575 10,567 10,766 10,764 10,903 10,903
R2 0.817 0.439 0.805 0.460 0.846 0.342
Mean dep. var. 1.4452 1.4452 0.7655 0.7655 3.9437 3.9437

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and use county area
weights. The dependent variables Fertilizer Per Hectare and Pesiticides Per Hectare are in logs and are measured in reais.
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Table 7: The Effects of Electricity on Farmland and Farm Size

Farm Size (hectares) % of County Area in Farmland Land Value Per Hectare (log)

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Electricity Infrastructure 2.842 247.5∗∗∗ 0.0137 0.154∗∗ -0.0302 1.353∗∗∗

[19.07] [76.29] [0.0146] [0.0680] [0.121] [0.444]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,892 10,892 10,903 10,903 8,718 8,718
R2 0.934 -0.041 0.914 0.139 0.867 0.701
Mean dep. var. 94.3402 94.3402 0.7234 0.7234 0.2682 0.2682

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and use county area weights. All depen-
dent variables are in logs and are measured in reais. We have no information on Land Values in the 1970 census.
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Table 8: The Effects of Electricity on the Allocation of Land within Rural Establishments

Activity Pastures Crops Native Vegetation

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Electricity Infrastructure 0.0335∗ -0.434∗∗∗ -0.0316∗∗ -0.226∗∗∗ 0.0167 0.427∗∗∗

[0.0202] [0.0780] [0.0133] [0.0592] [0.0216] [0.0905]

Year FE? Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes

Observations 10,892 10,892 10,892 10,892 10,892 10,892
R2 0.850 -0.279 0.712 0.118 0.753 -0.104
Mean dep. var. 0.4784 0.4784 0.2209 0.2209 0.1731 0.1731

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects and year fixed effects, and
use county area weights. Each dependent variable is divded by the country’s total farmland.
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