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Abstract

Higher wages are generally thought to increase human capital production, par-
ticularly in the developing world. We introduce a simple model of human capital
production which predicts that wages can negatively impact human capital under rea-
sonable assumptions. Using data on test scores and schooling from rural India, we
show that human capital investment is procyclical in early life (in utero to age 3) but
then becomes countercyclical. We argue that, consistent with our model, this coun-
tercyclical effect is caused by families investing more time in schooling when outside
options are worse. In addition, we find long term impacts of these shocks: adults who
experienced more positive rainfall shocks during school years have lower overall total
years of schooling. These results suggest that the opportunity cost of schooling, even
for fairly young children, is an important factor in determining overall human capital
investment.
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1 Introduction

Human capital investment is an important determinant of economic growth (Mankiw et

al., 1992). However, there is still much debate over the determinants of human capital

investment. The majority of empirical evidence from poor countries suggests the relationship

is procyclical (see for example, Jacoby and Skoufias (1997); Jensen (2000); Thomas et al.

(2004); Maccini and Yang (2009)). However, there is some evidence from Latin America

suggesting countercyclical human capital investment (Duryea and Arends-Kuenning, 2003;

Schady, 2004; Kruger, 2007).1 Theoretically, the relationship is ambiguous; if time and

income are important inputs into human capital, then increased wages could either increase

or decrease human capital investment. As early as 1977, Rosenzweig and Evenson showed

that higher wages are associated with lower schooling rates, due to increased opportunity

costs of staying in school. If children react to higher wages by leaving school early to join the

workforce, it could raise overall inequality in poor countries or even stunt long term growth.

We argue that at least part of the differences in these studies may be due to differential

effects by age. In particular, if the opportunity cost of time for older children is affected

by wages, then we would expect that the substitution effect would be more powerful for

older children. In addition, if the human capital production function itself differs by age

(for instance, if income-intensive inputs such as calories are more important at earlier ages),

then we might also expect to see differential impacts of wage shocks by age. In this paper,

we introduce a simple model of human capital investment from which we derive predictions

about the effects of wages on human capital. Under certain conditions, our model predicts

that wages during school years will negatively affect both schooling investment and overall

human capital. In addition, the model predicts that in the presence of strong complemen-

tarity between early life consuption and later-life schooling investments, early life wages will

positively affect both schooling investment and overall human capital.

1All of these papers use school enrollment or years of schooling as their measure of human capital invest-
ment.
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We then take these predictions to the data, using rainfall fluctuations in rural India as

quasi-random shocks to wages. We measure human capital using test scores from the ASER

data from 2005-2009; we observe approximately 2 million rural children from almost every

state in India. The data includes four distinct measures of literacy and numeracy for each

child whether or not he is currently enrolled in school.2 In addition, our data allow us to

look at more standard educational measures such as school enrollment, drop out behavior,

and being on track in school (age for grade). Since the survey was conducted every year over

five years, we can control for age, year of survey, and district, identifying off within district

variation in rain shock exposure.

We find that, as our theory predicts, during years with positive rainfall shocks, school-age

children score lower on simple math tests. In addition, when rainfall is higher, children are

less likely to attend school and are more likely to be working. In addition, children who

experienced a positive rainfall shock in the previous year are more likely to have dropped

out of school and less likely to be in the correct grade for their age.

We also estimate the impacts of early life rainfall shocks on current test scores and

schooling outcomes. We find that, by contrast, more early life rainfall is associated with

higher test scores in both math and reading. In addition, children who experience positive

rainfall shocks before age 5 are more likely to be enrolled in school and less likely to be

off track in school. Lastly, we investigate whether there are long-term impacts of these

rainfall shocks on total years of schooling for adults aged 16-30 using the national labor and

employment survey. We find that more rainfall during school years (particularly ages 11-13)

lowers total years of schooling. This is also the age group where positive rainfall shocks

significantly increase the likelihood of dropping out as these are the transition years from

primary to secondary school so positive employment shocks are particulary detrimental to

human capital investment during this period.

Our contribution to this literature is threefold. First, as far as we know, this is the

2This is rare since tests are primarily conducted at school, and thus scores are usually only available for
currently enrolled kids who attended school on the day the test was given.
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first paper to document the possibility that positive productivity shocks can lead to lower

levels of human capital attainment directly using test scores. Test scores are a much better

measure of human capital as they measure output/production as opposed to the previous

literature which has focused on school enrollment. Second, unlike the previous literature

which focuses on shocks at certain critical ages in a child’s development, we focus on a

child’s entire lifecycle from in utero to age 16. This allows us to say something about the

relative importance of time vs. income at all ages of a child’s human capital development.

We show that human capital investment is procyclical from the in utero phase to age three,

but then becomes counter cyclical. Lastly, we provide new evidence on the long term effects

of cumulative shocks on human capital attainment of young adults. While previous research

has suggested that that these shocks represent simple intertemporal substitution of school

time and that children make up these differences in human capital (Jacoby and Skoufias

(1997); Funkhouser (1999)), we find quite the opposite. For example, children ages 11-13

complete approximately .2 more years for every drought experienced (and .2 fewer years for

every positive rainfall shock relative to normal years). This constitutes a substantial shock

to human capital attainment during a period when most children will already be on the

margin between dropping out and continuing.

The findings from this paper are important from a policy perspective since wage subsidy

programs such as NREGA in India have become a popular means of redistribution as they

provide aid to the poor along with corresponding work incentives.3 However, wage subsidies

affect not only overall income, but also the prevailing wage and time cost of family members.

For example, NREGA, a massive program which generated 2.57 billion person-days of em-

ployment (in 2010-2011) boosted the real daily agricultural wage rate 5.3 per cent (Berg et

al., 2012). It is possible such wage subsidy programs could lead to decreased human capital

production for certain individuals.

3Recent examples include programs in Malawi, Bangladesh, India, Philippines, Zambia, Ethiopia, Sri
Lanka, Chile, Uganda, and Tanzania. However, the practice of imposing work requirements for welfare
programs stretches back at least to the British Poor Law of 1834 (Imbert and Papp, 2012).
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2 A Simple Model of Human Capital Investment

We consider a simple model of human capital investment in which households get utility

from consumption and human capital. Households consist of one child and one parent, and

the parent maximizes the lifetime utility of the child.4 The child lives for three periods. In

the first period, the child is too young for school or work and only consumes. In the second

period, the child also consumes, but in addition, she has one unit of time that can be spent

either in school (st) or working (1− st). In the third period, the child gets a payoff from her

accumulated human capital, e3.

Thus, the parent maximizes

max
s2

{
u (c1) + βu (c2) + β2 (V (e3))

}
where ct is the consumption of the child in period t, et is the human capital of the child

in period t, V (·) is the value function of human capital, β is the discount rate, and u(c) is

the utility function, where du
dc
> 0 and d2u

dc2
< 0.

Household consumption is determined by the labor income of the parent and child. The

parent inelastically supplies one unit of labor,5 for which he is paid a wage wth where wt is

the base wage in period t, and h is the parent’s human capital. Likewise, the child earns

wtet for the time he spends at work, 1− st. We assume that the child consumes a constant

fraction of household income in each period, α. Thus, consumption of the child in each

period will be

c1 =αw1h

c2 =αw2(h+ (1− s2)e2)

4In the appendix we include a selfish parents extension, but in the main model we assume parents are
altruistic.

5Note that there is no leisure in this model.
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In the spirit of Cunha and Heckman (2007), we assume that human capital at date t is

a function of human capital at date t− 1 plus any investments made in period t− 1. In this

simple model, investments will take the form of either schooling or consumption. We will

not allow for directed payments for human capital (such as books or tutors) or for parents

to invest their own time to teach their children. This is sensible in the context of rural India

since primary school is free and compulsory,6 and the Indian government has built many

schools to keep the costs of attendance low.7 In addition, the parents of these children often

have very low human capital themselves, so it is unlikely that they are heavily involved in

teaching their children literacy and/or numeracy.

In our three period model, human capital in period 1 is normalized to zero,8 and human

capital in period 2 is only a function of the child’s consumption in period 1, since the child

is too young to attend school in this period. Human capital in period 3, however, will be a

function of consumption in both periods and schooling in period 2. Thus, we have

e1 =0

e2 =f2(c1) = f2(αw1h)

e3 =f3 (e2, c2, s2) = f3(f2(αw1h), αw2 (h+ (1− s2) e2) , s2)

We can rewrite the parent’s maximization problem as9

max
s2

{
u (αw1h) + βu (αw2 (h+ (1− s2) e2)) + β2 (f3 (αw1h, αw2(h+ (1− s2)e2), s2))

}
6While primary school is officially compulsory, in practice many children are in and out of school.
7For example, in 1971, 53 percent of villages had a public primary school, in 1991, 73 percent did (Banerjee

and Somanathan, 2007), and today almost 100 percent of Indian villages have a primary school (Government
of India, 2011).

8Note that there is no heterogeneity of ability across children in this model. This will not qualitatively
change the results.

9For ease of exposition,we will let fi(·) = V (fi(·)) for the remainder of the paper. Relaxing this assumption
does not qualitatively change results. We will assume that ∂f3

∂c2
≥ 0, ∂f3

∂s2
≥ 0, and ∂f2

∂c1
≥ 0. These are standard

assumptions asserting that more schooling and consumption result in weakly more human capital.
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Taking the first order condition with respect to the schooling decision yields

FOC : β
du

dc
αw2e2 − β2 df3

ds2
= 0

where

df3
ds2

=
∂f3
∂s2

+
∂f3
∂c2

∂c2
∂s2

=
∂f3
∂s2
− ∂f3
∂c2

(αw2e2)

When deciding how much schooling the child should get, the parent trades off more

consumption now and more human capital later. Assuming an interior optimum, the parent

equalizes marginal utility of consumption with the marginal benefit of human capital. We

are interested in the effect that wages have on the optimal level of schooling. That is, if wages

increase, do families invest more or less in schooling? And, as a result, do overall levels of

human capital increase or decrease? In this model, there are two relevant wages—those in

early life and those during the child’s school years. We will examine the effect of each of

these wages on schooling choices and total human capital.

2.1 Effect of School-Aged Wages on Human Capital

If school-aged wages increase, what happens to human capital? The comparative static

shown below ( df3
dw2

) could be either positive or negative, but it can still give us insight into a

few important factors.

df3
dw2

=

Direct Effect of c2︷ ︸︸ ︷
γ
∂f3
∂c2

+

Effect of Change in s︷ ︸︸ ︷
∂f3
∂s2

∂s2
∂w2

−

Indirect Effect of s on c2︷ ︸︸ ︷
αe2

∂f3
∂c2

∂s2
∂w2

≶ 0

where

∂s2
∂w2

= Ψ

[
αe2

∂u

∂c
− β

(
γ

w2

(
∂2f3
∂s2∂c2

− αe2
∂2f3
∂c22

w2

)
− αe2w2

∂f3
∂c2

)
+ αe2γ

d2u

dc2

]
≶ 0
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and Ψ is the negative inverse of the second order condition and positive by assumption,

and γ is a positive constant.

School-aged wages have three broad effects on human capital. First, increased wages in-

crease the return to working which implies that higher wages in period two decrease human

capital. Second, higher wages increase period 2 consumption which directly affects human

capital. Lastly, higher wages could affect the returns to schooling if there are complementari-

ties between schooling and consumption in the human capital production function. Without

putting more structure on the human capital production and utility functions, we cannot

say which of these effects will dominate.

We now discuss conditions under which we can derive explicit predictions about the effect

of school-aged wages on human capital. First, we assume that the effect of consumption

during the school years on human capital is small. That is, relative to schooling and early

life consumption, consumption during later childhood does little to directly impact human

capital. This is consistent with the “critical periods” literature that finds that early life

consumption and investments are particularly important for later life outcomes, particularly

human capital (Almond and Currie, 2011; Maccini and Yang, 2009). In addition, we assume

that the utility function is not too concave so that the marginal utility of consumption does

not decrease too much with additional wages. This is also a reasonable assumption given

our setting of rural India.

Proposition 1.

If:

1. The effect of school-aged consumption is relatively small (∂f3
∂c2
≈ 0), and

2. Income effects are small (d2u
dc2
≈ 0)

Then:

∂s

∂w2

∝ −αe2
∂u

∂c
< 0
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df3
dw2

≈ ∂f3
∂s2

∂s2
∂w2

< 0

If conditions 1 and 2 hold, then the effect of school-aged wages on schooling will be

negative. Since we assume that the consumption effect is small, this implies that the overall

effect of wages on human capital is also negative.10

2.2 Effect of Early Life Wages on Human Capital

The effect of early life wages on human capital ( df3
dw1

) is also ambiguous in the general model.

The mechanisms here, however, are slightly different. Early life wages affect e3 entirely

through their effect on e2. Part of this effect is mechanical: we assume that e2 is an input

into the human capital production function. However, there are also two indirect effects.

First, increased human capital during the school years increases the returns to work. Second,

increased human capital in period 2 could increase the returns to schooling. That is, more

investment early on in human capital might make later life investment more profitable. This

is similar to the idea of “dynamic complementarities” discussed in Cunha and Heckman

(2007).

df3
dw1

=

Direct Increase in c1︷ ︸︸ ︷
αh

∂f3
∂c1

+

Direct Increase in c2︷ ︸︸ ︷(
(αw2(1− s))

∂f2
∂c1

αh

)
∂f3
∂c2

−


Indirect decrease in c2︷ ︸︸ ︷

αw2e2
∂f3
∂c2

−

Direct Effect of s︷︸︸︷
∂f3
∂s

 ∂s

∂w1

≷ 0

where

10Note that this model contains no liquidity constraints, which, in the presence of school fees or hard
consumption constraints (such as starvation) could push the effect of wages on human capital in the other
direction.
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∂s

∂w1

= Ψ[β

(
αh

(
∂f 2

3

∂s2∂c1
− αw2e2

∂f 2
3

∂c2∂c1

)
+ δ

(
∂f 2

3

∂s2∂c2
− αw2e2

∂f 2
3

∂c22

)
∂f2
∂c1

+
∂f3
∂c2

∂f2
∂c1

αh

)

−αw2

(
λ
d2u

dc2
+
du

dc

∂f2
∂c1

αh

)
] ≷ 0

and Ψ is the negative inverse of the second order condition and positive by assumption,

and

δ = αw2

(
(1− s2)αh

∂f2
∂c1

)
This model allows us to examine the possible forces that would affect human capital when

wages increase, but without some additional structure, we cannot make explicit predictions

about the effect of wages on human capital. When we apply the same two conditions used

above (that the effect of school-aged consumption and income effects are both relatively

small), we still cannot unambiguously sign the effect of wages on schooling. This is intu-

itive because even in the case in which the consumption effects in period 2 are relatively

small, there is still the tradeoff of an improved outside option (due to higher human capital)

versus an increased return to schooling. Since we know there will be an increased return

to the outside option when early life wages are higher, if we find an increase in schooling

investment ( ∂s2
∂w1

> 0), then it must be the case that early life consumption and schooling are

complements ( ∂2f3
∂s∂c1

> 0). This implies there are dynamic complementarities in the human

capital production function. In addition, under these conditions, we can assert that if early

life wages increase schooling investment, they will increase overall human capital.

Proposition 2.

If:

1. The effect of school-aged consumption is relatively small (∂f3
∂c2
≈ 0), and
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2. Income effects are small (d2u
dc2
≈ 0)

Then:

∂s2
∂w1

∝ β
∂2f3
∂s∂c1

− αw2
∂u

∂c

and thus

∂s2
∂w1

> 0 =⇒ ∂2f3
∂s∂c1

> 0

Corollary 1. If:

1. Conditions (1) and (2) hold, and

2. ∂s2
∂w1

> 0

Then:

df3
dw1

≈ αh
∂f3
∂c1

+
∂f3
∂s

∂s

∂w1

> 0

These comparative statics results suggest that increases in early life wages increase school-

ing and human capital. Note that the conditions in Propositions 1 and 2 are sufficient but

not necessary. Thus, if we find that school-aged wage negatively impact schooling and overall

human capital, this does not necessarily imply that school-aged consumption has no effect

on later life human capital. It simply means that this effect is not large enough to overwhelm

the effect of lower schooling. Likewise for early life wages, a positive effect of early life wages

on human capital is consistent with dynamic complementarities, but it is not a direct test.

Table 8 lays out the five comparative statics from our model that we estimate: ∂c1
∂w1

, ∂f3
∂w1

,

∂s2
∂w1

, ∂f3
∂w2

, and ∂s2
∂w2

. As column 1 indicates, in the general form of the model, the signs of

these derivatives (except for ∂c1
∂w1

) are ambiguous. However, under conditions 1 and 2, and

in the presence of strong dynamic complementarities, we hypothesize that ∂e3
∂w1

, and ∂s
∂w1

will

be positive and that ∂e3
∂w2

and ∂s
∂w2

will be negative (see column 2 of Table 8). We test these

predictions with the data in Section 4.
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3 Background and Data

3.1 Cognitive Testing and Schooling Data

Every year since 2005, the NGO Pratham has implemented the Annual Status of Education

Report (ASER), a survey on educational achievement of primary school children in India

which reaches every rural district in the country.11 We have data on children for 2005-

2009, giving us a sample size of approximately 2 million rural children. The sample is a

representative repeated cross section at the district level. The ASER data is unique in that

its sample is extremely large and includes both in and out of school children. Since cognitive

tests are usually administered in schools, data on test scores is necessarily limited to the

sample of children who are enrolled in school (and present when the test is given). However,

ASER includes children ages 5-16, who are currently enrolled, dropped out, or have never

enrolled in school. In Table 1 we describe the characteristics of the children in our sample

as well as their test scores.

The ASER surveyors ask each child four questions each in math and reading (in their

native language). The four math questions are whether the child can recognize numbers

1-9, recognize numbers 10-99, subtract, and divide. The scores are coded as 1 if the child

correctly answers the question, and 0 otherwise. In 2006 and 2007, children were also asked

two subtraction word problems, which we use as a separate math score (Math Score 2). The

four literacy questions are whether the child can recognize letters, recognize words, read

a paragraph, and read a story. We calculate a “math score” variable, which is the sum

of the scores of the four numeracy questions. For example, if a child correctly recognizes

numbers between 1-9 and 10-99, and correctly answers the subtraction question, but cannot

correctly answer the division question, then that child’s math score would be coded as 3. The

“reading score” variable is calculated in exactly the same way. Approximately 65 percent

11This includes over 570 districts, 15,000 villages, 300,000 households and 700,000 children in a given
year. For more information on ASER, see http://www.asercentre.org/ngo-education-india.php?p=

ASER+survey
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of the children tested can recognize numbers between 1 and 9, and about 38 percent can

correctly do a division problem. The reading scores are slightly higher: nearly 90 percent of

children tested can recognize letters and 45 percent can read a story. In addition, the survey

asks about current enrollment status and grade in school, and in 2008, attendance in the

past week.12

3.2 Rainfall Data

To determine rainfall shock years and districts, we use monthly rainfall data which is collected

by the University of Delaware.13 The data covers all of India in the period between 1900-

2008. The data is gridded by longitude and latitude lines, so to match these to districts, we

simply use the closest point on the grid to the center of the district, and assign that level of

rainfall to the district for each year.

We define a positive shock as yearly rainfall above the 80th percentile and negative shock

(drought) as rainfall below 20th percentile within the district. The “positive” and “negative”

shocks should not be taken in an absolute sense—we are not comparing districts that are

prone to higher rainfall to those that are prone to lower rainfall. These are simply high or

low rainfall years for each district within the given time frame (1975-2008). For the analysis,

we define “rain shock” as equal to 1 if rainfall is above the 80th percentile, -1 if rainfall is

below the 20th percentile, and 0 otherwise. These are similar to the definitions employed

in Kaur (2011) and Jayachandran (2006).14 Figure 1 shows the prevalence of drought by

district over time (for the years we have cohort variation in in utero drought exposure) and

indicates there is both a lot of variation over time and across districts in terms of drought

exposure. Between 6 and 48 percent of districts experience a drought in any given year, and

80 percent of the districts experience at least one drought in the 16 year period that we have

12More information on the ASER survey questions, sampling, and procedures can be found in the ASER
data appendix.

13The data is available at: http://climate.geog.udel.edu/~climate/html_pages/download.html#

P2009
14In previous versions of the paper we showed results separately for positive and negative rainfall shocks

and using rainfall quintiles and the results are qualitatively similar.
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child cohort variation. Table A2 shows the percent of districts each year that experience

a drought or positive rainfall shock; the variation in rainfall across time and space is quite

extensive.

In a data appendix, we explicitly test for serial correlation of rainfall because if droughts

this year are correlated with droughts next year, it is difficult to tell the extent to which

we are picking up the effects of a single shock or multiple years of rainfall shocks. However,

we find no significant evidence of serial correlation across years. In addition, we check for

spatial correlation. If there is significant within-district variation in rainfall, our district-level

measure of rainfall variation might be missing the true effects for many of the children in

our sample. However, we find that this type of very local variation is unlikely to be biasing

our results (results available upon request).

3.3 Rainfall Shocks in India

In rural India, 66.2 percent of males and 81.6 percent of females report agriculture (as

cultivators or laborers) as their principal economic activity (Mahajan and Gupta, 2011).

Almost 70 percent of the total net area sown in India is rainfed; thus, in this context we

would expect rainfall to be an important driver of productivity and wages. While there is

plenty of evidence showing droughts adversely affect agricultural output and productivity

in India (see for example Rao et al. (1988), Pathania (2007)), we also explore this question

empirically using the World Bank India Agriculture and Climate Data set. In Table A1 we

show results from regressions of rice, wheat, and jowar yields on rainfall shocks. In drought

years, crop yields are significantly lower regardless of the type of crop (and the opposite is

true in positive rain shock years). In Table 2 we will test explicitly for rainfall’s effect on

wages for both adults and children in rural India.
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3.4 NSS Data

To examine the impact of drought on work and wages, we use the NSS (National Sample

Survey) Round 60, 61, 62, and 64 of the NSS data which was collected between 2004 and

2008 by the Government of India’s Ministry of Statistics. This is a national labor and

employment survey collected at the household level all over India. This dataset gives us

measures of employment status as well as wages at the individual level. Given the potential

measurement error in the valuation of in-kind wages, we define wages paid in money terms.

We use data from all rural households in this survey and merge with our district level rainfall

data to explore the relationship between weather shocks, labor force participation, school

attendance, and wages.

4 Empirical Strategy and Results

If the conditions laid out in Propositions 1 and 2 hold, then our theory makes several

predictions:

1. ∂c1
∂w1

> 0. Early life wages unambiguously increase child consumption in early life.

2. ∂e3
∂w2

> 0 and ∂s2
∂w2

> 0. School-aged wages decrease child schooling and human capital

3. ∂s2
∂w1

> 0 =⇒ ∂2f3
∂s∂c1

> 0. If early life wages increase school attendance, then early

life consumption increases not only overall human capital, but the returns to schooling

(dynamic complementarities).

4. ∂s2
∂w1

> 0 =⇒ ∂e3
∂w2

. If early life wages increase school attendance, then they also

increase overall human capital.

We want to test these predictions empirically. To estimate the impact of school-aged

wages on schooling and human capital, we can simply estimate the impact of current year

rainfall shocks on current levels of schooling and human capital. To determine the effects

of early life wages, however, we need to use lagged rainfall on current test scores, since we

14



do not have measures of human capital for very young children. In both cases, we will be

relying on the quasi-random nature of droughts and positive rainfall shocks within districts

as a natural shifter of rural wages. We outline both strategies in detail below.

However, before we move to the reduced form estimation of the effect of rainfall shocks

on wages, we first need to show that rainfall and agricultural productivity (and thus, wages)

have a positive relationship. While there is extensive literature in economics and other fields

both documenting this fact and using it to estimate economic parameters of interest (see for

example Jayachandran (2006); Maccini and Yang (2009); Jensen (2000); Kaur (2011)), we

also test for the relationship using our data.

In Table 2, we measure the effect of rainfall shocks on wages for children, as well as

adult men and women. We find that for all three groups, positive rainfall shocks result in

increased wages. Children’s and women’s wages are more responsive to rainfall shocks than

men’s wages. In Appendix Table A1, we also show that agricultural yields are significantly

higher across all types of crops in years with more rainfall, controlling for labor and other

inputs. These results give us confidence that rainfall shocks are indeed a productivity, and

thus, wage shifter in this context.

4.1 Contemporaneous Rainfall Regressions

Theory predicts that if the effect of school-aged consumption is small, then we should expect

to see that wages during the school years (w2), are associated with lower levels of schooling

and lower overall human capital (that is, ∂f3
∂w2

, and ∂s2
∂w2

are negative). To test this empirically,

we estimate the regression:

Sijty = α + β1δj,y + β2δj,y−1 + θj,t + γj + φt + ψy + εijty (1)

where Sijty is the measure of human capital or schooling for student i in district j born

in year t and surveyed in year y. As measures of e3, we use math and reading test scores,

as well as “on track” which is a measure of age-for-grade. We define on track as a binary
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variable which indicates if a child is in the “correct” grade for his/her age. The variable is

coded 1 if age minus grade is at most six. That is, if an eight year old is in second or third

grade, he is coded as on track, but if he is in first grade, he is not. We use self-reported

attendance and an indicator of having dropped out of school as measures of s2 or schooling

in period 2. δj,y is rain shock in district j in year y and δj,y−1 is a lagged rain shock. β1

is the impact of current year rain shock on the various cognitive test scores and schooling

outcomes. β1 < 0 is consistent with our model in which school-aged consumption has little

impact on human capital. We also control for early life rainfall exposure by including θj,t,

a vector of early life rainfall shocks from in utero to age 4. γj is a vector of district fixed

effects, φt is a vector of age fixed effects, and ψy is a vector of year of survey fixed effects.

This specification allows us to compare children who are surveyed in different years from

the same district. Since our regressions contain district level fixed effects, the coefficient will

not be biased by systematic differences across districts. Standard errors are clustered at the

district level.

In Table 3 we report the results from Equation 1 estimating the impact of contempo-

raneous rainfall shocks on test scores and schooling outcomes of children aged 5-16. The

coefficient on math score is -.02, which means that, relative to a positive rainfall year, chil-

dren tested in a drought year score .04 points better (or 1.5 percent) on the math test.

The coefficient on math score 2 is -.05 which means that relative to a positive rainfall year,

children in a drought district score 0.1 more (or 8 percent). While rain shock this year does

not impact reading scores, lagged rainfall significantly decreases these scores as well.

While rainfall shocks in the current year have little effect on age for grade or dropping out,

rainfall shocks in the previous year affect both age for grade and dropping out significantly.

This makes sense, given that being a drop out or being held back are variables that are likely

more affected by previous behavior than behavior in the current year. Children in a positive

rainfall shock year are around .4 percentage points more likely to report having dropped

out in the following year, relative to children tested in drought years (this is an increase of
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10% from a mean of .037). Likewise, children tested in a positive shock year are about 2

percentage points less likely to be on track, relative to a drought year. In addition, children

who experience a current drought are 4 percentage points more likely to have attended school

in the previous week (from a mean of 86 percent) relative to a positive rainfall shock.

Figure 2 shows the effects of rainfall shocks on dropout behavior does seem to increase

with age. It appears that experiencing a positive rainfall shock from age 12 onward results in

a higher likelihood of dropping out, though the estimates are noisy. This makes sense since

this is the period children transition from primary to secondary school and when outside job

opportunities during high rainfall years might lure them away from school.

In Table 4, we also estimate the impact of rain shocks on children’s reported “primary

activity” using NSS data to corroborate the ASER attendance results. We find that during

positive rainfall shocks, children are 3.5 percent less likely to report attending school and 20

percent more likely to report working. Interestingly, the attendance results in Tables 3 and

4 are similar across both the datasets. Note that these categories (child primarily attends

school or primarily works) are mutually exclusive in the questionnaire, so that any intensive

margin changes in work or attendance are not picked up here. Because of this, it is possible

that these results understate the rain dependent substitution between schooling and labor

for children.

We find that both schooling and human capital are lower during higher rainfall years

when children are over the age of 5. These results are consistent with both the general

model and the predictions from Proposition 1.

4.2 Early Life Rainfall Exposure

We estimate the effect of early life wages on human capital for two reasons. First, our theory

predicts that if schooling is increased by early life wages, then human capital will increase

as well. This prediction is directly testable in the data. In addition, if we do find that

early life wages increase schooling investment ( ∂s2
∂w1

> 0), then this is evidence for dynamic
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complementarities in the human capital production function.

We use a lagged rainfall specification to estimate the effect of early life wages on later

schooling ( ∂s2
∂w1

) and human capital ( ∂f3
∂w1

) and to investigate longer-term effects of both early

life and school-aged wages on adult human capital ( ∂f3
∂w1

and ∂f3
∂w2

). In all specifications, we

look at lagged effects of rainfall shocks on current outcomes exploiting cohort variation in

rain exposure.15

To examine the effect of early life wages on human capital and schooling, we estimate

the following regression:

Sijhty = α + βθj,t + λh + φt + ψy + εijhty (2)

where Sijhty is the measure of human capital or schooling of student i in district j born in

year t and surveyed in year y, who is a member of household h. Again we use math and

reading scores and “on track” as our measures of e3 and “never enrolled in school” as a

measure of s2. θj,t is a vector of early life rain shocks from in utero to age 4, λh is a vector

of household fixed effects, φt is a vector of age fixed effects, and ψy is a vector of year of

survey fixed effects. β is the vector of coefficients of interest and it is the impact of early

life rainfall shocks at each age on human capital outcomes. Comparing children from the

same district who were born in different cohorts allows us to use household fixed effects in

this regression.16 Household fixed effects allow us to rule out the possibility that the results

are driven by lower ability children showing up more frequently in drought cohorts due to

selective migration and/or fertility. Standard errors are clustered at the district level. We

15In our data, we do not observe exact date of birth, only age at time of survey. We generate year of
birth=survey year-current age; but this measure of rainfall at each age will be somewhat noisy. We examine
this issue in detail in an appendix and show that the main results are similar when we correct for measurement
error.

16If drought exposure is indeed IID, and there are no intervening mechanisms which could affect outcomes,
this specification should yield exactly the same results as using district fixed effects, except that it is identified
off of households with more than one child. However, it is possible that parents could react to one child’s
drought exposure by reallocating resources within the household, either by shifting them toward or away
from the affected child. Thus, other children in the household could be affected by their sibling’s drought
exposure. Regressions estimated with district fixed effects are qualitatively similar, and available upon
request.
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discuss potential selection issues in Section 5 below.

Table 5 presents the main estimates of the effect of early life rainfall on test scores and

schooling outcomes. In the first three columns, we examine the effect of rainfall on math

test scores, math word problems, and reading test scores. The coefficient on rain shock

between the in utero period and age 3 ranges from .01-.02, which implies that for each year

of exposure to positive rainfall, children score .01-.02 points higher on these tests, and for

each year of exposure to drought, they score .01-.02 points lower. In column 4, we show that

drought exposure at every year from the in utero period to age 4 is associated with a higher

probability of the child never having enrolled in school. The coefficients range from -.002

to -.003, relative to a mean of .026. In column 5, we show that from the in utero period to

age 2, exposure to positive rainfall shocks significantly increases the probability of a child

being on track. The coefficients range from .01-.02, from a mean of 0.823. These results are

consistent with the idea that both schooling investments and human capital achievement are

higher when wages are higher in early life.

Additionally, our model predicts that children’s early life consumption should increase

with early life wages ( ∂c1
∂w1

> 0) under a wide range of assumptions. We test this prediction

in Table 6 using IHDS 2004–2005 data.17 We regress weight for age z-scores (using the 2006

WHO child growth standards for children ages 1-5) on rainfall shocks. We show that children

have significantly lower weight for age z-scores in drought years (by .12 standard deviation)

and higher weight for age z-scores in positive rainfall shock years. Consistent with our model,

we find evidence that early life consumption is higher when rainfall levels are higher.

Though others have examined the impact of early life shocks on health outcomes, wages,

and total years of schooling, there is little medium term evidence on human capital directly

(i.e. test scores). Our results are similar to Akresh et al. (2010) who also find negative

effects of shocks in utero and infancy and Maccini and Yang (2009) who find positive effects

17The India Human Development Survey (IHDS) is a nationally representative survey of 41,554 households
in 1503 villages and 971 urban neighborhoods across India. The data and more information is available online
at ihds.umd.edu.
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of early life rainfall on human capital. However, both of these papers find different effects for

different groups and ages. Akresh et al. (2010) find that the most important year is the in

utero year while Maccini and Yang (2009) find it is the year after birth (and only for girls).

We find largely similar effects for children under three and do not find large differences by

gender. Our coefficients suggest that the in utero effects are slightly larger for girls and that

girls exposed to droughts are more likely to not enrol in school relative to boys, but standard

errors in most cases do not allow us to detect significant differences between boys and girls

(results by gender are shown in Appendix Tables A4-A7).

We find that early life rainfall is associated with both higher early life consumption, and

also higher schooling investments and levels of human capital in later childhood. Under

the conditions laid out in Proposition 2, these results suggest that there are likely dynamic

complementarities between early life and later life human capital investments.

4.3 Long Term Effects of Rainfall Shocks

We are also interested in the effect of total childhood rainfall shocks experienced on adult

human capital ( ∂s2
∂w1

and ∂s2
∂w2

). Table 3 indicates that students in districts with positive

rainfall shocks have lower contemporaneous test scores. It is possible, however, that this

represents simple intertemporal substitution of school time, and that children make up these

differences in human capital over time. In fact, this is what the empirical literature to date

suggests (see Jacoby and Skoufias (1997); Funkhouser (1999)). Table 3 suggests that there

are lagged effects for rainfall shocks for at least one year, though it’s not clear whether these

effects will last into adulthood.

To test for this, we estimate Equation 2 using the NSS data on adults (ages 16-30).

However, instead of using only early life exposure, we replace θj,t with a vector of rain shocks

from the in utero period to age 16. Our outcome variable for this specification is total years

of schooling. We also use district, rather than household, fixed effects in this specification.

Table 7 indicates that starting at approximately age 4, in almost every year of life, higher
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rainfall is associated with lower levels of schooling. The magnitudes are largest between ages

11-13 (a positive rainfall shock at age 12 reduces total years of schooling by .23 years). This

makes sense, since the transition from primary to secondary school is a common time for

students to drop out of school. We graph the coefficients from this regression in Figure

3. The results clearly indicate that the worst time to experience a positive rainfall shock

for total years of schooling is in these transition years from primary to secondary. This is

already when many children drop out of school as shown in the ASER data and experiencing

a positive rainfall shock exacerbates this problem.

We find evidence in this section that the effects of rainfall on schooling and human

capital can last into adulthood. Those who experienced higher rainfall on average in later

childhood have fewer total years of schooling as adults. Thus, it is likely that students are

not substituting across time, but that these changes in human capital represent real, lasting

differences.

5 Alternative Explanations?

Since we use rainfall shocks as a proxy for wages in this paper, other aspects of abnormally

high or low rainfall that affect human capital could be a threat to our identification. We

discuss three such possibilities in this section. First, we examine whether direct disease

mechanisms, caused by excess water from high rainfall years, could cause children to become

sick and attend school less. Second, we explore whether school lunches, now a common

phenomenon in India, could be driving children to attend school more during drought years.

Third, we examine whether the rain shocks could affect the outside options for teachers,

affecting the quality of schooling directly. Each of these explanations could, in theory, bias

our estimated coefficients upward. Below, we examine each of these explanations in turn,

and find evidence in each instance that they are unlikely to be driving our results. We then

explore how selective migration and/or fertility responses may impact our main results.
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5.1 Healthier Children

If less rainfall leads to lower endemicity of particular diseases, this could cause children to

attend school more during drought years for reasons unrelated to their outside option. Two

common diseases for children in India for which there has been a link discussed between

weather patterns and disease rates are diarrhea and malaria. Rainfall variability as manifest

through more frequent flooding has been linked to increases in the prevalence of diarrhea

in studies cited by (IPCC, 2007) in India, Bangladesh, Mozambique, and even in the USA

(Curriero et al., 2001). However, other studies have shown that shortage of rainfall in

the dry season increases the prevalence of diarrhea (see for example Sub-Saharan Africa

(Bandyopadhyay et al., 2012)). In fact, heavy rainfall events decreased diarrhea incidence

following wet periods in Ecuador (Carlton et al., 2013).

The evidence for malaria is similarly controversial. While we generally think more rain is

associated with higher rates of malaria, there is evidence that droughts result in river margins

retreating leaving numerous pools suitable for vector breeding exacerbating the spread of

malaria (Haque et al., 2010). Nevertheless, since malaria prevalence varies considerably by

region, we can test for the possibility that differences in malaria infections during drought

years might explain the test score results. In Table A9 we re-estimate our contemporaneous

shock regressions including an interaction of rainfall shock with an indicator for whether

the district is in a high-malaria state 18. The results in Table A9 indicate that there is no

additional statistically significant effect of rainfall shocks in malaria states, and thus it is

unlikely this channel is driving the contemporaneous test score results.

We test for the overall health impacts of rainfall shocks on children ages 5-16 using the

IHDS data in Table A8. The concern is that for whatever health reason, children are healthier

during drought years which results in them attending school more and doing better on their

tests. In column 1 we regress the number of days ill in the past month due to diarrhea,

cough, and/or fever. The results indicate that children are actually healthier in positive

18Orissa, Chhattisgarh, West Bengal, Jharkhand, and Karnataka (Kumar et al., 2007)
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rainfall shock areas. Children spend 0.52 fewer days (or 10 percent) being ill. In column 2,

we regress ln health expenditures (doctors, medicine, hospital and transportation) on rainfall

shocks. Again the results suggest that children are healthier in positive rainfall shock years.

Medical health expenditures are 44 percent lower in positive rainfall shock years, relative

to drought.19. Therefore, we can conclude that children do not appear to be healthier in

drought years; rather, the opposite is true.

5.2 School Lunches

In November 2001, in a landmark reform, the Supreme Court of India directed the Govern-

ment of India to provide cooked midday meals in all government primary schools (Singh et

al., forthcoming). Since that time, many schools have begun lunch programs, but compliance

is still under 100 percent. One concern is that schools might be more likely to serve lunches

during droughts and that students and parents respond to this by sending their children

to school for the meals. We test whether schools are more likely to serve lunches during

droughts using the ASER School Survey data, and do not find any evidence of this. In fact,

column 2 of Table A10 indicates that lunches are more likely to be provided in positive

rainfall shock years. This makes sense since these are the years everyone is better off so

districts and/or schools may have more resources to provide lunches.

5.3 Teacher Attendance

Tables 4 and 2 illustrate that employment and wages are affected by rainfall shocks. Thus,

as the outside option for students and parents increases in value, so does the outside option

for teachers. It is possible that the effects of rainfall shocks on test scores, and even on

student absence and dropout rates, could be the result of teacher absences. We think this

is unlikely in the context of India, because while absence rates for teachers are high overall

(Chaudhury et al., 2006), teachers are well educated and fairly well paid workers, and the

19This is despite the fact that incomes are higher in positive shock years and lower in negative shock years
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wages that are most affected by rainfall shocks are those for agricultural laborers who earn

very little. The additional wage income available during good years for day labor such as

weeding and harvesting is small relative to teacher’s salaries.20

In column 1 of Table A10 we show the impact of rainfall shocks on teacher attendance

rates recorded by surveyors in the ASER School Survey. The results indicate that teachers

are less likely to be absent from school in positive rainfall shock years. Therefore, teacher

absence cannot be the main driver of the contemporaneous test score results.21

5.4 Selective Migration in Contemporaneous Regressions

The primary selection concern for our main results in Table 3 is that ASER is sampling

a different set of children in districts experiencing higher than average rainfall relative to

districts experiencing lower rainfall. Specifically, if higher ability children are systematically

less likely to be surveyed when rainfall is highest, this could bias our results upward. For-

tunately, ASER has a procedure designed to reduce sample selection as much as possible.

Enumerators are instructed to visit a random sample of households only when children are

likely to be at home; they must go on Sundays when children are not in school and no one

works. If all children are not home on the first visit, they are instructed to revisit once they

are done surveying the other households (ASER, 2010).

This would not alleviate the issue if these students are leaving their districts permanently

when rainfall is particularly high (or low). However, migration rates in rural India are

extremely low. For example, Topalova (2005) using data from the National Sample Surveys

finds that only 3.6 percent of the rural population in 1999-2000 reported changing districts

in the previous 10 years. In a paper titled “Why is Mobility so Low in India?”, Munshi and

Rosenzweig (2009) using the Rural Economic Development Survey also conclude that rural

20Indeed, wages in the educational sector can be as much as 10 times higher than wages in the agricultural
sector (NSS 2005 data).

21It is important to note that the school lunch and teacher absence results presented in Table A10 are
suggestive because the schools sampled in the ASER School Survey (unlike the households) are not a repre-
sentative, random sample of schools in the district.
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emigration rates are low. Indian Census data from 2001 shows that the inter-district rural

migration rate for all ages is .078. However, the rates drops to .02 when we look at children

ages 5-14. Interestingly, the main reason for migration for females is marriage (65 percent

of female migrants) and work/employment for men (37.6 percent of male migrants).

In Table A12 using NSS data from round 55 (1999-2000) we regress whether members

of households have stayed in the same village for the past 6 months or more. This allows

us to test whether individuals are responding to positive and/or negative rainfall shocks by

migrating. In columns 2 and 4 we restrict our samples to children ages 5-16. The results are

very much in line with the census data. Firstly, only about 2 percent of rural households

report to having moved in the last 6 months (or more). However, it does not appear that

migration decisions are being driven by rainfall shocks. The magnitudes of the coefficients

are close to 0 and the results are not statistically significant.

We can take these coefficients seriously and bound our results in the spirit of Manski

(1990). We assume the “worst case scenario” for our hypothesis: that all excess movement

into drought districts is high-scoring children and all movement into positive shock districts is

from low-scoring children. Essentially, we want to ask whether there is any way the amount

of rain-responsive migration could be driving our results. In simulations, we find that even

under the starkest assumptions (that all children who move into a drought district scored 4

on all tests and all children who moved into positive shock districts scored 0 on all tests),

our results are remarkably unchanged. Ninety-five percent of the simulation results changed

the coefficients for math score, math word score, and reading score by less than .0007, .0003,

and .0006 respectively. Migration rates, particularly short-term migration rates among young

children are simply too small to explain our results.

Lastly, we are encouraged by the fact that the NSS results tell the same story as the

ASER test score results. For the NSS survey, children do not need to be at home to take

tests or answer questions; one family member answers basic questions (such as working status

and school enrollment) for the entire household. In addition, in the long-term analysis using
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the NSS data, people who experienced higher rainfall at particular ages have lower overall

schooling, which is consistent with the dropout rates we observe in the ASER sample.

5.5 Selective Migration in Early Life Regressions

The sort of selective migration that could bias our early life regressions in Table 5 is somewhat

different. Even if migration patterns are driven by rainfall patterns, as long as these migration

patterns are not age specific, then they would not bias our estimated coefficients. In the

context of our early life results, this is reasonable. For instance, even if children exposed

to drought conditions under the age of two are more likely to move (and those who move

are positively selected biasing our results upward), they would likely move with their whole

family including older and younger siblings. Thus, each “treatment” child would likely travel

with several “control” children. In our main specification in Table 5, we use household fixed

effects which means that the child is only compared to the other children in his household

mitigating any concerns that household migration could be driving our results.

In the long term results in Table 7, our main finding is that rainfall shocks around the

ages of 11-15 matter for later life outcomes. In the NSS and the ASER data, we assume that

the district in which an individual is surveyed is the district in which he spent those years.

As stated above, cross district migration is not terribly common in India, and to the extent

that it is orthogonal to drought exposure in childhood, it will simply attenuate our results.

However, if children are systematically moving out of districts in which there is low rainfall

when they are leaving school, this could bias our results. However, again to the extent that

these migrants are positively selected this will bias our results downward, since high rainfall

at puberty is negatively associated with later life outcomes.

It is also important to remember that rainfall shocks are defined as the top and bottom

quintile of rainfall, respectively. The average child will experience 2 or 3 “droughts” by this

definition over the course of his childhood, and it is unlikely that he is leaving the district

in response to relatively small productivity fluctuations.
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5.6 Selective Fertility and Mortality

In the early life analysis, one potential concern with trying to understand the effect of drought

on cognitive development is that we only observe children who survive and make it into the

sample; if drought exposure increases infant and early childhood mortality, it could affect

the composition of our sample in “control” and “treatment” years. This selection would

most likely bias our results downward; since these are the children who survived, they are

positively selected and probably do better on health and educational outcomes relative to the

children who died off. Therefore, we are less concerned about bias from selective mortality.

However, another potential concern with the early life results could be if women are

delaying and/or changing fertility patterns in response to droughts. For example, mothers

may choose to wait out a drought year before having a child. If droughts are in fact impacting

fertility decisions, the empirical results could be biased upward if the children being born in

drought years are negatively selected.

Since our dataset includes only children ages 5-16, both of these selection effects would

show up as smaller cohort sizes observed for treatment cohorts (assuming that most of the

selective mortality happens before age 3). Unfortunately, population by district is only

available every 10 years from census data. Therefore we investigate the issue of selective

fertility for individuals born in 1991 or 2001 (since that is when census data is available).

We regress the ln number of children in each cohort by district on measures of drought and

ln population by district. In column 3 instead of total population, we use female population

ages 15-49 from the 2001 Census since this is the relevant childbearing population. Given

we are not exactly sure when mothers and fathers make decisions about when to conceive,

we investigate the period 5 years prior to birth.

Table A11 reports the results of these OLS regressions for 1991 and 2001. All of the

coefficients are small, and none are statistically significant in 1991. In columns 2-3, drought

in t-4 is significantly (and positively) correlated with number of births. However, none

of the other coefficients are statistically significant. These data do not suggest that there
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is a systematic difference in the size of “treated” cohorts, and thus selective fertility and

mortality are unlikely to be driving our results. Recall also that these are not necessarily

severe droughts in that they are defined as rainfall below 20th percentile within the district.

Another piece of evidence which points against selective fertility (and selective migration)

are the household fixed effects results of Table 5. If either of these mechanisms is driving

the results, then within household variation in drought exposure should not affect cognitive

test scores. This story relies on between household variation–i.e. that “good” households are

acting differently with respect to droughts compared to “bad” households. That is, if “good

households” are leaving the area after droughts, or delaying their fertility when there are

droughts, then our sample of exposed children would be more heavily weighted toward “bad

households” which could bias our results upward. However, the results with and without

household fixed effects are extremely similar (results without household fixed effects that

include district fixed effects are available upon request), which leads us to conclude that this

type of selection is unlikely to be biasing the estimates.

6 Discussion and Conclusion

In this paper we present a simple model of human capital investment, and show that under

reasonable conditions, we would expect the effect of wages on human capital investment to

be negative when children are school-aged. We also show that, in the presence of strong

dynamic complementarities, early life wages will positively affect investment and schooling

and overall human capital.

We estimate these comparative statics using test score, schooling, and labor market data

from rural India. We show that positive productivity shocks cause lower school enrollment

and attendance and lower overall test scores. We argue that this is due to children substitut-

ing from human capital producing activities to outside work or home production when wages

are high, using evidence from the NSS labor market survey on children’s reported activities.

In addition, we show that the lagged effects of early life positive rainfall shocks on both
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schooling and human capital are positive. Children who were exposed to droughts in early

life score significantly worse on math and reading tests, and are more likely to be behind

in school or to never have enrolled. According to our model, this is evidence of dynamic

complementarities in the human capital production function: the early life investments in

these children (due to increased consumption) increase not just the level of human capital

but also the return to additional human capital investments.

It is important to note that our model assumes that schooling has no direct costs, and

that there is sufficient scope for substitution from schoolwork to productive work either in

the home or in the labor market. In particular, school fees together with liquidity constraints

could cause substitution away from schooling during lower wage years even if the assumptions

of our strictest model hold. These assumptions are reasonable in India but may differ in

other developing country settings.

These results indicate that opportunity costs of human capital investment matter even for

young children, and that higher wages for low education jobs could have the counterintuitive

effect of lowering human capital investments in children. This research could inform policy

decisions about poverty alleviation programs. Many poverty alleviation programs in the

developing world take the form of work programs with inflated wages for agricultural laborers.

For example, NREGA in India generated 2.57 billion person days of employment (in 2010-

11). If these types of programs raise prevailing wages, they could cause students to substitute

toward work and away from for school attendance even if the programs are only in place for

adults. Lump sum grants or even conditional cash transfers might be better options in this

context.

Though these results focus on productivity fluctuations rather than steady growth, they

indicate that the reaction to wage growth in low income areas could be to decrease investment

in human capital which could be detrimental to long term growth and poverty reduction.

If poor countries want to increase school enrollment and attendance, they should not only

consider fees and tuition, but the opportunity cost of attendance in terms of wages as well.
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Table 1: Summary Statistics

ASER Summary Statistics

Mean Std. Dev. Observations
Male .54 .498 2,377,477
Age 10.46 3.15 2,405,642
Math Score 2.63 1.31 2,356,028
Math Score2 1.26 .919 843,827
Reading Score 2.72 1.40 2,368,101
Dropped Out .037 .188 2,193,040
Never Enrolled .026 .161 2,405,642
On Track .823 .381 1,788,427

Rainfall Summary Statistics

Rain Shock This Year .148 .631 2,193,040
Rain Shock Last Year .029 .631 2,193,040
Rain Shock in Utero -.011 .572 2,405,642
Rain Shock at Age 1 -.024 .566 2,405,642
Rain Shock at Age 2 -.047 .558 2,405,642
Rain Shock at Age 3 -.058 .558 2,405,642
Rain Shock at Age 4 -.068 .561 2,405,642

NSS Sample

Works (≤ 18) .378 .49 473,327
Attends School (≤ 18) .58 .49 453,160
ln Wages 5.86 0.91 164,597
Total Years of School Ages 16-30 6.21 4.92 306,925
Total Droughts Ages -1 to 16 3.25 1.12 306,925
Total Positive Shocks Ages -1 to 16 3.59 1.23 306,925

Notes: This table shows summary statistics from the ASER data, the NSS data, and the rainfall data.

Table 2: Effect of Rain Shocks on Wages

Effect of Rain Shocks on Wages

Dependent Variable: ln Wages ln Wages ln Wages
(Age≤18) (Females) (Males)

Rain Shock This Year .09 .07 .02
(.02)∗∗∗ (.01)∗∗∗ (.009)∗∗

Observations 15,038 40,913 108,646
Mean Dependent Variable 5.47 5.42 6.04

Notes: This table shows our estimates of the effect of rain shocks on ln wages using rounds 60, 61, 62, and
64 of NSS data. Rain shock is defined as 1 if rainfall is in the highest quintile, -1 if rainfall is in the lowest
quintile, and 0 otherwise. All regressions contain district and age fixed effects. Standard errors, clustered at
the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10%
level.
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Table 3: Effect of Contemporaneous Rainfall Shocks on Human Capital

Dependent Variable:
Math Math Read Dropped On Attendance
Score Score2 Score Out Track

Rain Shock This Year -.02 -.05 .002 .0002 .003 -.02
(.01)∗ (.02)∗∗∗ (.01) (.0008) (.002) (.006)∗∗∗

Rain Shock Last Year -.02 -.04 -.02 .002 -.010
(.01) (.02)∗ (.01)∗ (.0009)∗∗ (.003)∗∗∗

Observations 2,109,162 843,827 2,120,708 2,193,040 1,687,128 467,606
Mean Dependent Variable 2.62 1.26 2.71 .037 .810 .863

Notes: This table shows our estimates of the effect of rainfall shocks on current test scores. “Math Score”
and “Read Score” range from 0-4. “Math Score2” ranges from 0-2 and was only available in 2006 and 2007.
“On Track” is equal to one if age minus grade is at least six, and zero otherwise. Columns 1-5 contain
fixed effects for district, year and age. Since attendance is only observed in 2008, column 6 contains fixed
effects for state and age. All columns contain controls for early life rainfall shock exposure (in utero-age 4).
Standard errors, clustered at the district level, are reported in parentheses. ***indicates significance at 1%
level, ** at 5% level, * at 10% level.

Table 4: Effect of Rain Shocks on Schooling and Child Labor

Effect of Rain Shocks on Working
Dependent Variable: Attends School Works

(Age ≤ 18) (Age ≤ 18)
Rain Shock This Year -.01 .007

(.002)∗∗∗ (.001)∗∗∗

Observations 453,160 473,327
Mean Dependent Variable .58 .07

Notes: This table shows our estimates of the effect of rain shocks on school attendance and working using
rounds 60, 61, 62, and 64 of NSS data. Rain shock is defined as 1 if rainfall is in the highest quintile, -1 if
rainfall is in the lowest quintile, and 0 otherwise. All columns restrict the sample to both males and females
less than 18 years old. All regressions contain district and age fixed effects. Standard errors, clustered at
the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10%
level.

34



Table 5: Effect of Early Life Rainfall Shocks on Human Capital

Dependent Variable:
Math Math Read Never On
Score Score2 Score Enrolled Track

Rain Shock In Utero .01 .006 .01 -.002 .02
(.004)∗∗∗ (.004) (.004)∗∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock Year of Birth .01 .009 .01 -.002 .02
(.004)∗∗∗ (.004)∗∗ (.004)∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock at Age 1 .01 .02 .01 -.003 .01
(.004)∗∗∗ (.005)∗∗∗ (.004)∗∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock at Age 2 .01 .02 .01 -.003 .01
(.004)∗∗ (.004)∗∗∗ (.004)∗∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock at Age 3 .001 .008 .007 -.002 .0003
(.004) (.005)∗ (.004) (.0004)∗∗∗ (.002)

Rain Shock at Age 4 .002 -.008 .01 -.002 .001
(.004) (.004)∗ (.005)∗∗∗ (.0004)∗∗∗ (.002)

Observations 2,356,028 843,827 2,368,101 2,405,642 1,788,427
Mean Dependent Variable 2.63 1.26 2.72 .026 .823

Notes: This table shows our estimates of the effect of early life rainfall shocks on current test scores and
schooling outcomes. “Math Score” and “Read Score” range from 0-4. “Math Score 2” ranges from 0-2, and
was only available in 2006 and 2007. “On Track” is equal to one if age minus grade is at least six, and zero
otherwise. All regressions contain fixed effects for household, year and age. Standard errors, clustered at
the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10%
level.

Table 6: Effect of Rainfall Shocks on Child Weight

Weight z-score

Rain Shock This Year .12
(.05)∗∗

Rain Shock Last Year .22
(.06)∗∗∗

Observations 15,307
Mean Dependent Variable -1.516

Notes: This table shows our estimates of the effect of rainfall shocks on weight for age z-scores. These are
anthropometric z-scores using the 2006 WHO child growth standards. The sample is children ages 1 to 5
in the IHDS 2004–2005 data. The regression contains age, year, and state fixed effects. Standard errors,
clustered at the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5%
level, * at 10% level.
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Table 7: Effect of Rain Shocks on Total Schooling

Dependent Variable: Years of Education
(NSS data)

In Utero Rain Shock .01
(.02)

Rain Shock in Year of Birth -.03
(.02)

Rain Shock at Age 1 -.06
(.03)∗∗

Rain Shock at Age 2 -.03
(.03)

Rain Shock at Age 3 -.11
(.03)∗∗∗

Rain Shock at Age 4 -.12
(.03)∗∗∗

Rain Shock at Age 5 -.12
(.03)∗∗∗

Rain Shock at Age 6 -.05
(.03)∗

Rain Shock at Age 7 -.02
(.03)

Rain Shock at Age 8 -.05
(.03)∗

Rain Shock at Age 9 -.07
(.03)∗∗∗

Rain Shock at Age 10 -.13
(.03)∗∗∗

Rain Shock at Age 11 -.28
(.03)∗∗∗

Rain Shock at Age 12 -.23
(.03)∗∗∗

Rain Shock at Age 13 -.28
(.03)∗∗∗

Rain Shock at Age 14 -.07
(.03)∗∗∗

Rain Shock at Age 15 -.13
(.03)∗∗∗

Rain Shock at Age 16 -.04
(.03)∗

Mean Dependent Variable 6.04
Observations 306,925

Notes: This table shows our estimates of the effect of childhood rain shocks on total years of schooling using
rounds 60, 61, 62, and 64 of the NSS data for individuals 16-30. Rain shock is defined as 1 if rainfall is in
the highest quintile, -1 if rainfall is in the lowest quintile, and 0 otherwise. The regressions contain age and
district fixed effects. Standard errors, clustered at the district level, are reported in parentheses. ***indicates
significance at 1% level, ** at 5% level, * at 10% level.
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Table 8: Model Predictions and Empirical Results

Source: Model Model Data Data Data
General Specific Contemporaneous Early Life Long Term

∂s2
∂w2

? - - -

∂f3
∂w2

? - - -

∂s2
∂w1

? + +

∂f3
∂w1

? + +

∂c1
∂w1

+ + +
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Figure 1: Variation in Drought Across District and Time
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Table A1: Drought and Crop Yields: 1957-1987
Dependent Variable:

Rice Wheat Jowar

Rain Shock .06 .08 .002 .05 .01 .02
(.02)∗∗ (.02)∗∗∗ (.01) (.008)∗∗∗ (.01) (.009)∗∗∗

Year fixed effects Y Y Y Y Y Y
District fixed effects Y Y Y Y Y Y
Controls Y N Y N Y N
Observations 7161 8401 6680 8401 6265 7409
Mean Dependent Variable 1.51 1.51 .856 .856 .589 .589

Notes: This table shows results from a regression of crop yields on rain shocks. Data on crop yields and
inputs is from World Bank India Agriculture and Climate Data set which has agricultural yield (revenues
per acre) data from 1975-1987. An observation is a district-year. Controls are measures of inputs used in
production: labor, bullocks, fertilizer, and machinery, as well as 3-year average yield. Standard errors are
reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10% level.

41



Table A2: Percent of Droughts and Positive Rainfall Shocks by Year
Year % Top Quartile % Bottom Quartile

Rainfall Rainfall

1975 .35 .03
1976 .16 .17
1977 .29 .09
1978 .29 .14
1979 .03 .46
1980 .13 .22
1981 .11 .15
1982 .06 .30
1983 .26 .08
1984 .26 .17
1985 .26 .16
1986 .12 .26
1987 .24 .35
1988 .44 .05
1989 .13 .15
1990 .43 .02
1991 .11 .19
1992 .01 .45
1993 .14 .15
1994 .29 .05
1995 .11 .13
1996 .11 .19
1997 .12 .15
1998 .20 .03
1999 .07 .22
2000 .03 .22
2001 .04 .14
2002 .02 .42
2003 .08 .14
2004 .06 .24
2005 .19 .17
2006 .20 .30
2007 .25 .04
2008 .29 .05

Notes: This table shows the percent of districts each year that experience a drought and positive rainfall
shock by our definitions.
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Table A3: Effect of Contemporaneous Rainfall Shocks on Human Capital (Ordered Logit)

Dependent Variable:
Math Math Read
Score Score2 Score

Rain Shock This Year -.03 -.15 -.002
(.02) (.07)∗∗ (.02)

Rain Shock Last Year -.03 -.15 -.04
(.02) (.08)∗∗ (.02)∗

Observations 2,109,162 843,827 2,120,708

Notes: This table shows ordered logit estimates of the effect of rainfall shocks on current test scores. “Math
Score” and “Read Score” range from 0-4. “Math Score 2” ranges from 0-2 and is only available in 2006 and
2007. All regressions contain fixed effects for district, year and age. All columns contain controls for early
life rainfall shock exposure (in utero-age 4). Standard errors, clustered at the district level, are reported in
parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10% level.

Table A4: Effect of Contemporaneous Rainfall Shocks on Human Capital (Boys)

Dependent Variable:
Math Math Read Dropped Attendance
Score Score2 Score Out

Rain Shock This Year -.01 -.05 .003 -.0004 -.02
(.01) (.02)∗∗∗ (.01) (.0008) (.006)∗∗∗

Rain Shock Last Year -.01 -.04 -.02 .002 -.03
(.01) (.02)∗∗ (.01)∗ (.0009)∗∗ (.008)∗∗∗

Observations 1145,955 465,547 1152,131 1192,358 250,178
Mean Dependent Variable 2.66 1.281 2.723 0.035 0.863

Notes: This table shows the effect of rainfall shocks on current test scores for boys. Columns 1-4 contain fixed
effects for district, year and age. Since attendance is only observed in 2008, column 5 contains fixed effects
for state, year, and age. All columns contain controls for early life rainfall shock exposure (in utero-age 4).
Standard errors, clustered at the district level, are reported in parentheses. ***indicates significance at 1%
level, ** at 5% level, * at 10% level.

Table A5: Effect of Contemporaneous Rainfall Shocks on Human Capital (Girls)

Dependent Variable:
Math Math Read Dropped Attendance
Score Score2 Score Out

Rain Shock This Year -.02 -.05 .002 .0008 -.02
(.01)∗ (.02)∗∗∗ (.01) (.0008) (.006)∗∗∗

Rain Shock Last Year -.02 -.04 -.02 .002 -.04
(.01)∗ (.02)∗ (.01)∗ (.0009)∗∗ (.009)∗∗∗

Observations 951,233 378,280 956,529 988,483 208,602
Mean Dependent Variables 2.567 1.225 2.662 0.039 0.863

Notes: This table shows the effect of rainfall shocks on current test scores for girls. Columns 1-4 contain fixed
effects for district, year and age. Since attendance is only observed in 2008, column 5 contains fixed effects
for state, year, and age. All columns contain controls for early life rainfall shock exposure (in utero-age 4).
Standard errors, clustered at the district level, are reported in parentheses. ***indicates significance at 1%
level, ** at 5% level, * at 10% level.
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Table A6: Effect of Early Life Rainfall Shocks on Human Capital (Boys)

Dependent Variable:
Math Math Read Never On
Score Score2 Score Enrolled Track

Rain Shock In Utero .008 .003 .01 -.001 .02
(.004)∗ (.006) (.005)∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock Year of Birth .01 .01 .008 -.002 .02
(.004)∗∗ (.006)∗ (.004)∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock at Age 1 .01 .02 .01 -.002 .01
(.005)∗∗ (.006)∗∗∗ (.005)∗∗ (.0005)∗∗∗ (.002)∗∗∗

Rain Shock at Age 2 .01 .02 .01 -.003 .01
(.004)∗∗∗ (.006)∗∗∗ (.004)∗∗∗ (.0004)∗∗∗ (.002)∗∗∗

Rain Shock at Age 3 .006 .01 .01 -.002 -.0002
(.005) (.006)∗∗ (.005)∗∗ (.0004)∗∗∗ (.002)

Rain Shock at Age 4 .003 -.008 .01 -.002 .002
(.005) (.006) (.005)∗∗ (.0004)∗∗∗ (.002)

Observations 1,271,233 465,547 1,277,571 1,297,538 959,304
Mean Dependent Variable 2.66 1.281 2.723 0.026 0.811

Notes: This table shows our estimates of the effect of early life rainfall shocks on current test scores and
schooling outcomes for boys. “On Track” is equal to one if age minus grade is at least six, and zero otherwise.
All regressions contain fixed effects for household, year and age. Standard errors, clustered at the district
level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10% level.

Table A7: Effect of Early Life Rainfall Shocks on Human Capital (Girls)

Dependent Variable:
maths Math Read Never On
score Score2 Score Enrolled Track

Rain Shock in Utero .02 .009 .02 -.002 .03
(.005)∗∗∗ (.006) (.005)∗∗∗ (.0006)∗∗∗ (.003)∗∗∗

Rain Shock Year of Birth .01 .005 .01 -.002 .02
(.005)∗∗ (.007) (.006)∗∗ (.0006)∗∗∗ (.003)∗∗∗

Rain Shock at Age 1 .01 .01 .02 -.003 .02
(.005)∗∗∗ (.007) (.005)∗∗∗ (.0005)∗∗∗ (.003)∗∗∗

Rain Shock at Age 2 .007 .01 .01 -.003 .01
(.005) (.007)∗∗ (.005)∗∗ (.0006)∗∗∗ (.003)∗∗∗

Rain Shock at Age 3 -.005 -.002 .002 -.001 -.0002
(.005) (.007) (.005) (.0006)∗ (.002)

Rain Shock at Age 4 -.003 -.01 .009 -.002 .0000306
(.005) (.007)∗ (.005)∗ (.0005)∗∗∗ (.002)

Observations 1,057,467 378,280 1,062,888 1,079,939 808,469
Mean Dependent Variable 2.567 1.225 2.662 0.035 0.811

Notes: This table shows our estimates of the effect of early life rainfall shocks on current test scores and
schooling outcomes for boys. “On Track” is equal to one if age minus grade is at least six, and zero otherwise.
All regressions contain fixed effects for household, year and age. Standard errors, clustered at the district
level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10% level.
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Table A8: Effect of Rain Shocks on Days Sick and Health Expenditures
Days Health
sick expenditures (ln Rs)

Rain Shock This Year -.52 -.22
(.22)∗∗ (.07)∗∗∗

Rain Shock Last Year -.38 .005
(.22)∗ (.1)

Observations 6293 6293
Mean Dependent Variable 6.07 4.28

Notes: This table shows our estimates of the effect of rainfall shocks on number of days sick in last month due
to diarrhea, fever, and/or cough and health expenditures (hospital, doctor, medicine, tests, and transport)
for children ages 5-16. Each cell is a separate OLS regression. The sample is children ages 5-16 in the IHDS
2004–2005 data. All regressions contain age, gender and state fixed effects. Standard errors, clustered at
the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10%
level.

Table A9: Effect of Rain Shocks on Test Scores in High Malaria States
Dependent Variable:

Math Reading
Score Score

Rain shock -.08 -.03
(.03)∗∗ (.03)

Malaria state -.14 -.1
(.12) (.12)

Rain shock*Malaria state .07 .03
(.07) (.06)

Rain Shock Last Year .04 .02
(.03) (.03)

Observations 1,892,741 2,115,547

Notes: This table shows the results of our contemporaneous rainfall specification focusing on the five high
malaria states. All specifications include state region fixed effects and are clustered at the state level. All
columns contain controls for early life rainfall shock exposure (in utero-age 4). Standard errors, clustered at
the district level, are reported in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10%
level.

Table A10: Are Teacher Absences or School Lunches Driving the Results?

Dependent Variable: Teacher Absence Rate Midday Meal Provision

Rain Shock -.03 .04
(.01)∗∗ (.02)∗∗

Rain Shock Last Year .002 .06
(.01) (.02)∗∗∗

Observations 20,297 24,203
Mean Dependent Variable 0.18 0.81

Notes: This table shows the effect of rainfall shocks on teacher absence rates and midday meal provision
using the 2005 and 2007 ASER School Survey. Rain Shock is defined as -1 if rainfall was below the 20th
percentile for the district, 1 if rainfall was above the 80th percentile for the district, and 0 otherwise. All
regressions contain village and year fixed effects. Standard errors, clustered at the district level, are reported
in parentheses. ***indicates significance at 1% level, ** at 5% level, * at 10% level.
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Table A11: Does Drought Impact Fertility Decisions?
ln cohort size ln cohort size ln cohort size
(born 1991) (born 2001) (born 2001)

(1) (2) (3)

Drought (t) -.01 -.01 -.01
(.02) (.02) (.02)

Drought In utero (t-1) .04 -.002 -.005
(.06) (.03) (.03)

Drought (t-2) .008 -.04 -.04
(.02) (.02) (.02)

Drought (t-3) -.04 .03 .03
(.04) (.06) (.06)

Drought (t-4) -.02 .09 .09
(.02) (.03)∗∗∗ (.03)∗∗∗

Drought (t-5) -.03 -.02 -.02
(.03) (.03) (.03)

ln Population 1991 .04
(.02)∗∗

ln Population 2001 .02
(.02)

ln Female Population 2001 (15-49) .01
(.02)

Observations 104,631 207,905 205,728
Mean Dependent Variable 5.33 5.98 5.98

Notes: These are OLS regressions where the dependent variable is ln number of births in each district
in 1991 and 2001. All regressions contain state and year of survey fixed effects. Standard errors are
clustered at the district level and are reported in parentheses. ***indicates significance at 1% level, **
at 5% level, * at 10% level.

Table A12: Effect of Rain Shocks on Migration Rates
Has Not Moved (Last Six Months)

Full Sample Ages 5-16 Full Sample Ages 5-16

Drought This Year .001 .002
(.003) (.003)

Drought Last Year .006 .006
(.003)∗ (.004)

Positive Shock This Year -.003 .007
(.01) (.009)

Positive Shock Last Year .0002 -.001
(.007) (.007)

Observations 236,429 67,521 236,429 67,521
Mean Dependent Variable .987 .987 .987 .987

Notes: These are OLS regressions using NSS round 55 data (1999-2000) where the dependent variable
is has not moved from district in past six months or more. In odd numbered columns we use the entire
sample and in all even numbered columns we restrict the sample to 5-16 year olds. All regressions contain
state fixed effects. Standard errors are clustered at the district level and are reported in parentheses.
***indicates significance at 1% level, ** at 5% level, * at 10% level.
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Mathematical Appendix

Effect of School-Aged Wages on Schooling

Parents Solve:

max
s2

{
u (αw1h) + βu (αw2 (h+ (1− s2) e2)) + β2 (f3 (αw1h, αw2(h+ (1− s2)e2), s2))

}
which yields

F.O.C.: β
du

dc
αw2e2 − β2

(
∂f3
∂s2
− ∂f3
∂c2

(αw2e2)

)
= 0

We can take the total derivative with respect to w2 (noting that e2 = f2 (αw1h) and

e3 = f3 (αw1h, αw2(h+ (1− s2)e2), s2):

βαe2

[
d2u

dc2
w2

(
α (h+ (1− s2) e2)− αw2e2

∂s2
∂w2

)
+
∂u

∂c

]
=

β2

[
∂2f3
∂s2∂c2

(
α (h+ (1− s2) e2)− αw2e2

∂s2
∂w2

)
+
∂2f3
∂s22

∂s2
∂w2

]

−β2

[
αe2

((
∂2f3
∂c22

(
α (h+ (1− s2) e2)− αw2e2

∂s2
∂w2

)
+

∂2f3
∂c2∂s2

∂s2
∂w2

)
w2 +

∂f3
∂c2

)]
and solve for ∂s2

∂w2

∂s2
∂w2

= Ψ

(
β

[
γ

(
∂2f3
∂s2∂c2

− αe2
∂2f3
∂c22

w2

)
− αe2

∂f3
∂c2

]
− αe2

[
γw2

d2u

dc2
+
∂u

∂c

])

where

Ψ(u(c), f3(e2, c2, s2)) = −
(
β

[
∂2f3
∂s22
− 2αe2w2

∂2f3
∂c2∂s2

+ α2e22w
2
2

∂2f3
∂c22

]
+ α2e22w

2
2

d2u

dc2

)−1

and
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γ = α (h+ (1− s) e2)

Proposition 1.

If:

1. The effect of school aged consumption is relatively small (∂f3
∂c2
≈ 0), and

2. Income effects are small (d2u
dc2
≈ 0)

Then:

∂s

∂w2

∝ −αe2
∂u

∂c
< 0

df3
dw2

≈ ∂f3
∂s2

∂s2
∂w2

< 0

Proof. We know that

∂s2
∂w2

= −Ψ

[
αe2

∂u

∂c
− β

(
γ

(
∂2f3
∂s2∂c2

− αe2
∂2f3
∂c22

w2

)
− αe2

∂f3
∂c2

)
+ αe2γw2

d2u

dc2

]

where

γ = α (h+ (1− s) e2)

and Ψ is the negative inverse of the second order condition.

By assumption, Ψ is positive, so that

∂s2
∂w2

∝ −αe2
∂u

∂c
+ β

(
γ

(
∂2f3
∂s2∂c2

− αe2
∂2f3
∂c22

w2

)
− αe2

∂f3
∂c2

)
+ αe2γw2

d2u

dc2

By condition (1), ∂f3
∂c2
≈ 0 everywhere, and thus we can write

∂s2
∂w2

∝ −αe2
∂u

∂c
− αe2γ

d2u

dc2

By condition (2), d2u
dc2
≈ 0
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=⇒ ∂s2
∂w2

∝ −αe2
∂u

∂c
< 0

Since α, e2,
∂u
∂c
> 0 by assumption.

Likewise,

df3
dw2

= γ
∂f3
∂c2

+
∂f3
∂s2

∂s2
∂w2

− αe2
∂f3
∂c2

∂s2
∂w2

By condition (2), d2u
dc2
≈ 0

=⇒ df3
dw2

≈ ∂f3
∂s2

∂s2
∂w2

< 0

Effect of Early Life Wages on Schooling

Parents Solve:

max
s2

{
u (αw1h) + βu (αw2 (h+ (1− s2) e2)) + β2 (f3 (αw1h, αw2(h+ (1− s2)e2), s2))

}
which yields

F.O.C.: β
du

dc
αw2f2 − β2

(
∂f3
∂s2
− ∂f3
∂c2

(αw2f2)

)
= 0

Taking the total derivative with respect to period 1 wages yields

βαw2

[
d2u

dc22
e2

(
αw2

(
(1− s2)

df2
dc1

αh− e2
∂s2
∂w1

))
+
du

dc2

(
∂f2
∂c1

αh

)]
=

β2

[
αh

(
∂f 2

3

∂s2∂c1

)
+

∂f 2
3

∂s2∂c2

(
αw2

(
(1− s2)αh

∂f2
∂c1
− e2

∂s2
∂w1

))
+
∂f 2

3

∂s22

∂s2
∂w1

]

−β2

[
αw2

(
αh

(
∂f 2

3

∂c2∂c1

)
+
∂f 2

3

∂c22

(
αw2

(
(1− s2)αh

∂f2
∂c1
− e2

∂s2
∂w1

))
+

∂f 2
3

∂c2∂s2

∂s2
∂w1

)
e2 +

∂f3
∂c2

∂f2
∂c1

αh

]
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Rearranging, we have

∂s2
∂w1

= Ψ[β

(
αh

(
∂f 2

3

∂s2∂c1
− αw2e2

∂f 2
3

∂c2∂c1

)
+ δ

(
∂f 2

3

∂s2∂c2
− αw2e2

∂f 2
3

∂c22

)
∂f2
∂c1

+
∂f3
∂c2

∂f2
∂c1

αh

)

−αw2

(
λ
d2u

dc2
de2
dc1

+
du

dc

∂f2
∂c1

αh

)
]

where

Ψ(u(c), f3(e2, c2, s)) = −
(
β

[
∂2f3
∂s2
− 2αe2w2

∂2f3
∂c2∂s

+ α2e22w
2
2

∂2f3
∂c22

]
+ α2e22w

2
2

d2u

dc2

)−1

> 0

and

δ = αw2 ((1− s2)αh)

and

λ = e2αw2(1− s)αh

Proposition 2.

If:

1. The effect of school-aged consumption is relatively small (∂f3
∂c2
≈ 0), and

2. Income effects are small (d2u
dc2
≈ 0)

Then:

∂s2
∂w1

∝ β
∂2f3
∂s∂c1

− αw2
∂u

∂c
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and thus

∂s2
∂w1

> 0 =⇒ ∂2f3
∂s∂c1

> 0

Proof. From the F.O.C.,

∂s2
∂w1

∝ β

(
αh

(
∂f 2

3

∂s2∂c1
− αw2e2

∂f 2
3

∂c2∂c1

)
+ δ

(
∂f 2

3

∂s2∂c2
− αw2e2

∂f 2
3

∂c22

)
∂f2
∂c1

+
∂f3
∂c2

∂f2
∂c1

αh

)

−αw2

(
λ
d2u

dc2
df2
dc1

+
du

dc

∂f2
∂c1

αh

)
By condition (1), ∂f3

∂c2
≈ 0

=⇒ ∂s2
∂w1

∝ βαh
∂f 2

3

∂s2∂c1
− αw2

(
λ
d2u

dc2
df2
dc1

+
du

dc

∂f2
∂c1

αh

)
By condition (2), d2u

dc2
≈ 0

=⇒ ∂s2
∂w1

≈ βαh
∂f 2

3

∂s2∂c1
− αw2

du

dc

∂f2
∂c1

αh

αw2
du
dc

∂f2
∂c1
αh is positive by assumption. Thus,

∂s2
∂w1

> 0 =⇒ ∂2f3
∂s∂c1

> 0

Corollary 2. If:

1. Conditions (1) and (2) hold, and

2. ∂s2
∂w1

> 0

Then:
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df3
dw1

≈ αh
∂f3
∂c1

+
∂f3
∂s

∂s

∂w1

> 0

Proof. From the human capital production function:

df3
dw1

= αh
∂f3
∂c1

+

(
(αw2(1− s))

∂f2
∂c1

αh

)
∂f3
∂c2
−
(
αw2e2

∂f3
∂c2
− ∂f3

∂s

)
∂s

∂w1

It directly follows that

df3
dw1

≈ αh
∂f3
∂c1

+
∂f3
∂s

∂s

∂w1

By condition (2), ∂s2
∂w1

> 0

αh∂f3
∂c1

is positive by assumption

Thus,

df3
dw1

≈ αh
∂f3
∂c1

+
∂f3
∂s

∂s

∂w1

> 0

Selfish Parents Extension to Model

In the main version of our model, we assume that parents maximize the utility of the child.

While this is convenient for us in terms of explication, many papers have shown that this

”unitary household” model does not perfectly capture the decision-making of most house-

holds. In this section we consider an alternative model, in which parents maximize their own

consumption, and some benefit of human capital.

Denote parent’s consumption as cP , which will again be a constant fraction (1 − α) of

household income. The parent still derives some benefit from the child’s human capital,

VP (e3), which can be thought of in this case as potential remittances.

The Parent Solves:
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max
s2

{
u (cP1) + βu (cP2) + β2 (VP (e3))

}
Where now

cP1 =(1− α)w1h

cP2 =(1− α)w2(h+ (1− s2)e2)

So we can rewrite the parent’s maximization problem as

max
s2

{
u ((1− α)w1h) + βu ((1− α)w2 (h+ (1− s2) e2)) + β2 (VP (e3))

}
which is exactly analogous to the problem in which parents are maximizing the utility

of the child. The key here is the assumption about children consuming a constant fraction

of household income. Because of this assumption, it doesn’t matter whether parents are

maximizing their own consumption or the consumption of their children, because in both

cases they simply maximize total household consumption.
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