The Impact of Mother Literacy and Participation Programs on Child Learning: Evidence from a Randomized Evaluation in India

Rukmini Banerji ASER Centre James Berry
Cornell University

Marc Shotland*
Jameel Poverty Action Lab

July 2014

Abstract

We report the results of a randomized evaluation of three programs designed to improve the home learning environment among rural households in India. Households were assigned into one of four groups that received either: (1) adult literacy classes for mothers, (2) training for mothers on how to enhance their children's learning at home, (3) a combination of the first two interventions, or (4) nothing, which serves as the control group. We find that mothers in the first three groups perform 0.11, 0.06, and 0.15 standard deviations better (respectively) on a combined language and math test when compared to the control group. We find that the three programs had statistically significant effects of 0.04, 0.05, and 0.07 standard deviations on children's math scores (respectively), but only the combined intervention had significant effects on language scores. We also find that the interventions increased women's empowerment, mother participation in child learning, and the presence of education assets in the home.

JEL Classifications: C93, D13, I21, O15

Keywords: adult education, education inputs, field experiments

^{*}We thank Annie Duflo for collaboration and insights on the study design and implementation. We are also grateful to Jessica Chan, Nandini Gupta, Ravi Gupta, Rachna Nag Chowdhuri, and Nikhil Wilmink for superb work coordinating the field activities in Rajasthan and Bihar. Laurel Wheeler and Kevin Kho provided excellent research assistance. This research was funded by the International Initiative for Impact Evaluation. All errors are our own.

1 Introduction

Improving the quality of primary education in the developing world remains a crucial issue for researchers and policymakers alike. While developing countries have made significant gains towards universal enrollment, with a net enrollment rate of 90% in low and middle income countries in 2011 (World Bank, 2013), learning has not matched this progress. For example, a 2012 survey in India found that 96% of rural primary school-aged children were enrolled, but only 38% could read a simple story (ASER Centre, 2013). Low quality education is often considered the result of a low quality education system, characterized by poor school infrastructure, limited materials, inappropriate pedagogy, and low-quality teachers. To address this issue, researchers are building evidence on interventions that improve education in developing countries through changes in inputs at school (Kremer et al., 2013).

However, low learning levels can also be attributed to the home environment: in low-income households parents spend less time on educational activities with their children, are less productive with the time they spend, have lower expectations, and allocate fewer resources to education. All of these factors are believed to be directly related to the low education levels of parents. While the correlations between parents' education levels, the home environment, and ultimately child outcomes are strong, endogeneity makes it difficult for researchers to establish causal links (Thomas et al., 1996). However, for policymakers who face a generation of parents with already low levels of education, perhaps the more important question is: if the household environment is indeed an important factor in the child's education, can policies targeted toward parents help promote a better home learning environment? In this case, evidence on effective interventions is much more limited, as we discuss below.

With the aim of influencing the home environment, some policymakers have initiated adult education campaigns, and this movement has been gaining momentum. In India, the National Literacy Mission was launched in 1988 "to impart functional literacy to non-literates in the age group of 15-35 years in a time-bound manner" (Government of India, 2009). In 2009, the Prime Minister of India launched Saakshar Bharat, the revised version of the National Literacy Mission, aiming to achieve an "80 percent literacy rate and reduc[e] the gender gap in literacy to 10 percent" by 2012 (UNESCO, 2012). Many other countries and donors are investing in such programs, in part because they could promote children's schooling (DFID, 2008). Unfortunately, the evidence of the effectiveness of such programs on child learning is sparse, especially in contexts where parents have little-to-no formal education.

This study is designed to evaluate whether child learning can be improved through interventions focused on improving the human capital of the mother herself, and/or by interventions that work with the mother but are focused on enhancing at-home learning for the child. We present the results of a randomized evaluation of three interventions in rural India designed by Pratham,

an education NGO in India¹, to improve child learning through increased mother literacy and direct encouragement of learning at home. We test for these effects by randomly assigning villages to one of four groups. In the first group, mothers in the village are offered the mother literacy (ML) intervention: daily literacy and math classes. In the second, mothers are given the Child Home Activities and Materials Packet (CHAMP) intervention: materials, activities, and training each week to promote enhanced involvement in their children's education at home. In the third, mothers are offered both the literacy and enhanced home-learning interventions (ML-CHAMP). The fourth group serves as a control with no intervention. The evaluation was carried out in 480 villages in the states of Bihar and Rajasthan. In each state, 240 villages were randomly assigned in equal proportions to the four groups.

We provide evidence that these programs can affected a broad set of learning outcomes as well as improving the home learning environment for children. For mothers, the ML program increased learning outcomes by 0.11 standard deviations, CHAMP increased test scores by 0.06 standard deviations, and ML-CHAMP increased test scores by 0.15 standard deviations. We also find significant impacts of each of the 3 programs an aggregate measure of women's empowerment outcomes. Turning to the results for children, we find that the ML, CHAMP, and ML-CHAMP increased child math scores by 0.04, 0.05, and 0.07 standard deviations, respectively. The only significant impacts on language scores were in the combined interventions. We find little evidence that the programs affected formal schooling behavior, but each of the 3 interventions affected mother's self-reported participation in child learning, and educational assets in the home. The evidence is therefore consistent with the interventions improving child learning by changing the home environment, particularly through increased productivity of the time children spend studying. However, we cannot rule out that the interventions affected children directly through either child attendance in mother literacy classes or through direct participation in CHAMP sessions. We also note that these are short-term effects, conducted after the programs had been run for 1 year. More research is needed to study whether these effects persist well after the programs have ended.

Our study adds to the literature that asks whether the skills believed to help parents influence their child's learning can be acquired as an adult. Such programs fall into three categories: (1) adult literacy programs, (2) child-participation programs, and (3) "family literacy" programs which typically bundle the first two, along with other components such as job training, remedial education for children, etc, in different combinations. Also, these programs are implemented in different contexts: some in higher-income countries, where parents have had some personal experience with a formal education system and varying levels of literacy, and developing countries where there is much less exposure, and literacy levels are far lower. We focus our literature review on research in developing countries, as parents in poor countries are much

¹Pratham, is a large, India-wide NGO specializing in child literacy and numeracy. For more information, see http://www.pratham.org.

less likely to have a substantial experience with formal education and therefore are likely to respond differently to these programs. However, we do highlight particularly relevant studies from higher-income countries.

Several evaluations attempt to establish the impact of developing-country adult literacy programs on adults and children, although much of the research suffers from methodological limitations. Some studies find significant impacts of adult literacy programs on adult learning using ex-post comparison with non-participants (Carron, 1990; Ortega and Rodriguez, 2008). Aker et al. (2011) conduct a randomized evaluation of a program that provided cell phones to participants in existing adult education classes in Niger and find significant impacts of the cell phone program on math and literacy scores. However, there is no evaluation of the adult literacy program, *per se*. Research on the effects of adult literacy programs *on children's outcomes* is sparse, and these studies also rely on retrospective selection of a comparison group (Aoki, 2005; Abadzi, 2003). ²

There are few existing studies evaluating developing-country participation programs that encourage parents to be more involved in their children's schooling. Bekman (1998) evaluates a Turkish program that trained mothers to help educate their children at home. Using a matching procedure to construct a comparison group, the study finds large effects of the program on child learning. In the developed country context, a randomized evaluation of a program in France to enhance parental involvement in the education of their adolescent children found significant positive effects on parental and student participation, student attitudes, and students' grades in school (Avvisati et al., 2011).

In the family literacy movement, we only know of one randomized evaluation, which is in the developed-country context: St. Pierre et al.'s (1993) evaluation of the National Even Start Program in the U.S. The authors find no statistically significant effects on child learning, performance, or parental help with studies. However, the sample size was small and takeup was low.

Our study adds to the prior literature by providing the first randomized evaluation (of which we are aware) of 1) an adult literacy program, 2) a participation program, and 3) a combined "family literacy" program, in a developing country. We also examine impacts on both adult and child outcomes, a feature that is relatively rare in prior literature.

Our paper is structured as follows. Section 2 discusses the programs and context. Section 3 outlines a conceptual framework for the effects of the programs on child learning. Section 4 covers the study design, data collected and analysis. Section 5 describes the results for mothers and 6, the results for children. We conclude in Section 7.

²Although there are numerous evaluations of adult literacy programs in the U.S., much of the research also suffers from methodological limitations (Beder, 1999).

2 Program Description

The interventions were conducted in two blocks (district subdivisions) of the Purnia district in Bihar and two blocks of the Ajmer district in Rajasthan. Bihar and Rajasthan were selected by Pratham based on the low literacy levels of the two states. According to the latest census, these states have the lowest female literacy rates in India at roughly 53% each (Census of India, 2011). Children's education outcomes are similar between the two states. For example, 48% of rural children in grades 3 to 5 can read at a grade 1 level in both states, just below the national average of 54% (ASER Centre, 2013). The intervention districts within each state were selected because of existing Pratham programs and infrastructure in those areas. Within the intervention districts, the blocks were selected because they did *not* have any pre-existing Pratham programs.

While education outcomes are similar between the two states, Rajasthan ranks substantially higher than Bihar along several other key demensions of economic development. Bihar has the lowest GDP per capita of any state in the country, and while Rajasthan is below the national average, its per capita GDP is double that of Bihar (Central Statistics Office, 2013). Similarly, in Rajasthan 67% of households have electricity, about the national average, while Bihar ranks last among Indian states, with only 16% of households having electricity (Census of India, 2011).

Households in our sample broadly follow these patterns. Appendix Table 1 displays the differences in baseline education, wealth, demographic, and time use variables between the two states. The average education level for a mother in our sample is under 1 year for Rajasthan and Bihar, and both have similar scores on our baseline test, with Rajasthan mothers scoring slightly higher in math. Child learning levels are also slightly higher in the Rajasthan sample. Households in the Rajasthan sample have substantially more assets and are more likely to be electrified. Women in the Rajasthan sample spend more time working (46 hours per week compared to 26), while women in the Bihar sample spend more time per week reading to their children or helping with homework (2.4 hours per week compared with 1.4).

Running the interventions in multiple sates in different areas of the country aids external validity of the evaluation. Although the interventions were identical in both states, they were implemented by different local teams and supervised by separate state-level Pratham leadership. And while learning levels in both states were similar, the differences in wealth and preexisting activities of the mothers presented distinct implementation challenges in each area.³

In each state, 240 hamlets were selected for the randomization. Hamlets were selected based on a target number of households (the approximate size that could support one mother literacy class) and geographic distance from other target locations to limit spillovers. In Rajasthan,

³In Appendix A we explore heterogeneity in the program effects on mother and child learning by state.

where villages are typically far apart, one appropriately-sized hamlet per village was selected, and the randomization was effectively conducted at the village level. In Bihar, where hamlets may be close to one another (whether in the same village or in different villages), hamlets of the target size were included if they were sufficiently far from other included hamlets. ⁴ For ease of exposition, we refer to the randomization unit as a "village" throughout.

In each state, 60 villages were randomly assigned to each of the four treatment groups. Randomization was stratified geographically to allow Pratham to organize its monitoring structure based on a known number of program villages in each area. The 240 villages in each state were first divided into geographically proximate "clusters" of 20 villages. These clusters of villages were further divided into 2 "phases". These phases determined the order of the rollout of the programs. The Pratham team rolled out the interventions in Phase 1 villages and began in Phase 2 villages approximately 3 weeks later. The randomization was stratified by the resulting 24 groups of 10 villages in each state. Assignment within each cluster of 20 villages was balanced such that each intervention was implemented in exactly 5 villages.

Three interventions were designed and implemented by Pratham in each location. Each was implemented for approximately one year. Recruitment of mothers for each program was targeted towards a set of women in each village with children aged 5 to 8. These mothers were targeted in order to maximize precision of estimated effects on children just beginning formal education. It was hypothesized that the programs would have the greatest effects on children that were just beginning to develop the most basic reading and math skills. Within each village in the sample, a census was conducted to determine a list of target mothers. Twenty-two mothers of children aged 5 to 8 years old were randomly selected to be targeted. If there were fewer than 22 such mothers in the village, all mothers were targeted. On average, there were 18.5 mothers in each village in the study.

The Mother Literacy (ML) intervention consisted of daily literacy classes held in the villages. In each location, a volunteer was recruited from the community to teach classes for two hours per day at the time and place that was most convenient to interested women. Volunteers utilized a version of Pratham's Read India methodology. This approach, shown effective in teaching children to read Banerjee et al. [2010], was modified to suit the interests of adults. While ML classes were open to any who wished to attend, pratham staff and volunteers were given a list of target mothers to recruit into the classes.

The Child and Mother Activities Packet (CHAMP) intervention was designed to engage the mothers at home with their children's learning. Once per week, a Pratham staff member visited each target mother and gave her a worksheet to help her child complete. Mothers were also given instruction on how to review her child's school notebooks, discuss child learning with her child's school teacher, and encourage the child to do schoolwork at home.

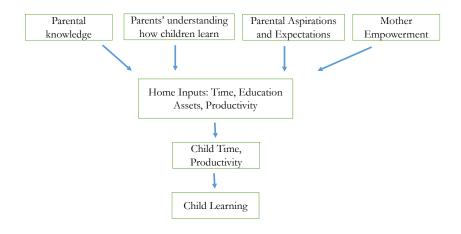
⁴Appendix B details the location selection procedure within the study blocks.

The combined intervention (ML-CHAMP) included both the ML and CHAMP interventions. The combined intervention was not integrated—both interventions were simply conducted in the same villages with the same target group of mothers.

3 Conceptual Framework and Theory of Change

This section presents a conceptual framework and theory of change for the ML and CHAMP interventions. Although the focus in this section is on how the programs can influence child learning, we recognize that some of the "intermediate" outcomes in the framework—in particular, mother learning and empowerment—could themselves be important policy objectives.

3.1 Conceptual Framework


In theory, the amount children learn at home is a function of the time they spend on educational activities and the productivity of that time spent. The factors that could contribute to both time and productivity are quite similar: child preferences, the educational inputs or assets available, time parents spend monitoring educational activities and/or directly instructing, and the productivity of the time parents spend. In other words, children will likely spend more time learning and be more productive learners when their parents dedicate resources and productive time to their education.

The amount of resources and time that parents spend on child learning, and the productivity of those inputs, can in turn be influenced by a number of factors. We identify three key factors relevant to our context, and motivate the discussion using relevant correlations in our baseline data. First, parents' own human capital and experience with and awareness of the process of learning influence the productivity of the time and inputs they provide (Rosenzweig and Wolpin, 1994). Our baseline data show that more literate mothers are more likely to help their children with homework and have more educational materials (books, magazines and stationery) at home, and their children are at higher learning levels. Similarly, mothers who identify in-home responsibilities for their children's education have children with higher test scores. Second, parents' expectations and aspirations can directly influence child motivation, parents' own time allocation, and the amount of resources they dedicate to educational assets in the home. According to our baseline data, households who believe their child will complete at least 12th grade are more likely to have educational materials at home, are more likely to help their children at home, and have children with better learning outcomes. Third, if mothers have a relative preference for educational outcomes, their own empowerment—defined

⁵Nguyen (2008) provides evidence that parental expectations of the returns to education influence child schooling outcomes.

broadly as control over decision making in the household—may serve as a key intermediate step in procuring educational assets, or allocating their time accordingly (Duflo, 2012). Our empowerment index, described in Section 5.5, is predictive of child outcomes, educational assets, and participation.

This conceptual framework can be summarized by the following figure.

Although it is not shown in the figure, there may also be feedbacks across the various sources of home inputs. For example, human capital, experience, and awareness may also influence parental aspirations, as well as relative empowerment. In our baseline, literacy, education level and awareness of activities, are all correlated with aspirations and our empowerment index.

3.2 Theory of Change

One driving assumption behind ML and CHAMP is that mothers in particular have a preference to help their children learn, but lack the skills, awareness and/or experience to do anything at home, and therefore do not dedicate as much productive time or resources. Nearly every mother in our baseline reported that the parents could do more (than sending their kids to school) to improve learning. Eighty-six percent of mothers reported that parents have specific responsibilities toward their children's education (beyond sending them to school). However, only one-third listed any in-home activities (spending time, telling stories, helping with, checking, or monitoring the completion of homework) that might help. Thirty percent reported that they did not know what responsibilities parents might have.

By design, ML was intended to directly influence the human capital of mothers—the skills. Classes focused on basic literacy and numeracy. Through an increase in these skills, the productivity of time and inputs that mothers provide to their children would increase. Specifically,

if more numerate or literate, mothers would better understand the concepts their children are learning, and can therefore use that knowledge to teach children directly as a supplement to school work. These classes could also give mothers experience in the process of learning as adults. While different from child learning (e.g. it doesn't involve the formal education system), mothers may still be able to translate their own experience of learning into an understanding of how children learn. For example, a better understanding of the importance of practicing concepts could induce mothers to motivate and monitor their children at home.

CHAMP was intended to increase mothers' awareness of the process of learning, time spent, and assets available in the home, but not human capital nor preferences directly. Parents were given materials and guidance on how to interact with their kids at home to foster child learning. In this case, the theory is that if mothers were given specific materials and instructed on activities known to promote learning, they would be able to mimic the environment and interactions that children of more educated parents have. Again, this increase in awareness is intended to increase the inputs and productivity of inputs that mothers provide. CHAMP could also improve the human capital of mothers. While not directly giving instruction on how to read, write or do math, the interaction—both with Pratham staff and/or with their own children—may result in mothers learning.

These interventions could influence preferences, aspirations, and expectations as well. In ML, direct exposure to the process of learning could increase mother interest in child learning and their aspirations for their children. In CHAMP, mothers may similarly increase their perceptions of the value of their children's education through their involvement in child learning.

Either intervention could also promote a sense of empowerment. To the extent that ML and CHAMP influence mother learning, this could increase mothers' ability to make decisions related to education or household decisions more broadly. Through direct exposure to a classroom environment, ML could also provide skills and confidence to make education decisions within the household. Although CHAMP provides exposure to the learning process through a slightly different mechanism, this exposure could similarly make mothers more empowered to make education decisions. In addition, by providing skills to mothers and exposure to education, both interventions could increase mother aspirations for daughters relative to sons.

Finally, either ML or CHAMP could also affect child learning directly. If children attend the ML classes (along with, or in place of mothers), it could influence children's own motivation, the time they spend on educational activities, and the productivity of that time. If children are present when CHAMP material and activities are being demonstrated, this could impact their productivity, time and preferences, independent from interacting with their mother.

4 Data collection

Baseline data were collected from selected households at the onset of the interventions, and endline data were collected after approximately one year. Data collection consisted of standardized tests and household surveys.

The standardized tests, designed to evaluate a basic set of Hindi and math skills, were developed by the ASER Centre, Pratham's research arm and were an expanded version of the ASER Centre's standard assessment tool used each year in their Annual Status of Education Report. At the baseline, the tests were administered to all eligible mothers, target children, other children in the household in grades 1 to 4, and children aged 4 and below who were going to be enrolled in school in the next year. The endline testing included all mothers and children tested at baseline, in addition to the remaining children who were aged 3 or 4 at the baseline. These tests were scored on a 20-point scale for children in both the baseline and endline, a 24-point scale for mothers at baseline, and a 28-point scale for mothers at endline. The mother test was the same as the child test, but included several additional questions that related to the material taught in the mother literacy classes. Minor additions and deletions were made in the testing instruments between baseline and endline. For the purposes of the analysis, test scores were normalized based on the control group means and standard deviations in each round of testing, separately for mothers and children.

In addition to the primary standardized testing instruments, at the baseline other household members were given very short tests designed to quickly assess whether they could read simple sentences and do basic subtraction.

The household surveys were administered to eligible mothers. The baseline contained modules on basic household demographics, asset ownership, schooling status of children in the household, mother perceptions of education, and mother's time use. In addition, questions were asked about the time use of the child aged 5-8 in the household (in the cases where there was more than one such child, one was randomly selected). The endline survey repeated the measures of the baseline survey, with the exception of demographics, and included additional questions on empowerment.

Table 1 contains descriptive statistics from the baseline tests and surveys and compares the means of the variables between each treatment group and the control group. Out of 60 comparisons performed, 6 are significant at the 10% level, and 3 are significant at the 5% level. No variable is jointly significantly different at the 10% level between the 3 treatment groups and the control group (not shown). On the whole, this suggests that the randomization was successful in creating comparable groups.

⁶The ASER tool is used in the ASER Centre's national assessments of child learning and is administered to approximately 450,000 children annually (ASER Centre, 2013).

Appendix Table 2 details weighting procedure and the weighted test scores for each question on the test. The average baseline mother scores on the test were 3.0/10 for reading and 3.1/14 for math. Mothers scored the highest on the most basic competencies on the test, such as picture recognition, letter recognition, writing one's own name, and number recognition. Child scores averaged 2.9/10 in reading, and 2.9/10 in math. As with mothers, children scored the highest on the most basic competencies.

Out of 8857 mothers tested at baseline, 8552 (97%) were re-tested for the endline. Child tests are available for 14,575 out of 15,502 (94%) of children tested at the baseline.

5 Results - Mothers

5.1 Estimating Equation

Throughout the analysis we utilize the following estimating equation:

$$Y_{1iv} = \beta_0 + \beta_1 M L_v + \beta_2 C H A M P_v + \beta_3 M L C H A M P + \beta_4 Y_{0ihv} + \delta G_v + \varepsilon_{iv}$$
 (1)

In this equation, Y_{ihv} is the outcome for individual i, in household h, in village v. ML, CHAMP, and MLCHAMP are dummies indicating the treatment status of the village. Y_{01} is the baseline value of the outcome of interest (when measured). G is a dummy for stratum, as described in Section 2 above. ε_{iv} is the individual error term, clustered by village, the level of randomization.

5.2 Program Takeup

Takeup of the mother literacy classes is analyzed in Table 2. Compared with the control group, approximately 32% more mothers in the ML treatment and 37% in the ML-CHAMP treatment reported ever having attended the classes. Children attended the classes as well. Children were 21% more likely to ever attend in the ML treatment, and 27% more likely to ever attend in the ML-CHAMP treatment, compared with the control group.

According to our focus group discussions and interviews, mothers reported self-motivation as a primary reason for attending ML classes. The primary excuses for absence were lack of free time, a perception that there was little value—some said it was too late for them to benefit from

⁷It is important to note that 7 percent of mothers in the control group attended classes. There are three potential explanations for this non-compliance. First, some control group mothers could have attended some classes in treatment villages. Second, a government program "Saakshar Bharat" that was conducted in the spring of 2012 in 11 villages in Bihar. Research staff monitored this program carefully. Where they were set up, classes were held for approximately one week, and were held in both treatment and control villages. Finally, some mothers may have misunderstood the survey question.

education, and Pratham should instead concentrate on teaching their children directly—and lack of support from the rest of the family. By the same token, we found a similar number of examples where mothers saw value and had support from family members. The quality and innovation of volunteers appeared to be a critical factor. For example, one volunteer posted a sign outside with mothers names and attendance. Another would bang a drum in the village before every class. At the other end of the spectrum, when volunteers were less motivated, mothers in one-on-one interviews blamed irregularity of classes as a reason for not attending.

In Table 3 we quantitatively analyze the determinants of mother takeup of mother literacy classes in the ML and ML-CHAMP treatments. We regress attendance in the classes on a set of variables including household characteristics, child schooling behavior, mother education, mother experience with literacy classes, work behavior, empowerment and participation in child learning. Column 1 includes a dummy for the state of Bihar, while Column 2 includes the full set of stratification unit dummies.

Household composition could affect demands on a mother's time (in the case of very young children), mother's interest in improving child learning (primary-aged children) and other household resources that could free mother's time (in the case of older household members). However, we little no evidence of a relationship between takeup and our three measures of household composition. Mothers of primary-aged children are 1-2 percentage points more likely to attend, although the coefficient is significant at the 10% level in one of the two specifications. We also find no evidence for a relationship between mother weekly housework or market work hours and takeup. We find weak evidence that mothers with children in school are slightly more likely to attend, but child test scores are not significantly related to takeup. Mothers are, however, 7% less likely to attend when their children are in private school. In this case, mothers who are already sending their children to private school may not see the classes as important to supporting child learning.

The relationship between mother education and attendance is non-monotonic: mothers are more likely to attend when they have some education, but more years of education makes them less likely to attend. In addition, mothers scoring higher on the baseline test are significantly more likely to attend the classes. Taken together, these results suggest that mothers are more interested in attending when they have some education, but the classes are not attractive at higher levels of education. Because the test only covered the most basic competancies, this implies positive relationship between test scores and attendance over the levels covered by the test, but attendance could be lower for women at higher-level competancies.

Mother experience with literacy classes in the past is a strong predictor of attendance in the Pratham classes: mothers who have attended in the past are 8% more likely to attend during the intervention. Similarly, members of a self-help group are 9-10% more likely to attend, implying that mothers with experiences meeting in groups of women are more comfortable attending.

Finally, mothers in Bihar had 11% higher takeup than those in Rajasthan. This mirrors Pratham and research staff observations that mothers were on average more motivated and had more time to attend, and volunteers were more readily available to teach in Bihar. In Column 2 of Table 3, we replace the dummy for Bihar with the 48 stratification unit dummies. As indicated above, the stratification unit varies both by geographic area and implementation phase. In this case, differences in takeup could be driven by geography, Pratham staff and volunteer characteristics, and perhaps by slight changes in implementation across phases. The stratification unit dummies are highly jointly significant, implying that implimentation or geographic differences did affect takeup.

CHAMP was a door-to-door intervention where Pratham staff visited each mother in her household. Although complete data on CHAMP takeup is pending, administrative data from Rajasthan implies that 97% of mothers were visited at least once, and mothers were visited 12 times during the year, on average.

Interviews with parents suggested that the inherent interest and ability of the child were key determinants parental engagement. Some identified child lack of interest and lack of ability as the reason they did not invest in the process. Others were less involved because their child was "sharp" and able to complete the worksheets on her own. These parents often felt that their primary responsibility was to monitor that the worksheets were completed, and not necessarily to explain the activities.

5.3 Test Scores

Turning to the results on mother learning, Table 4 presents the effect of the treatment groups on mothers' normalized test scores. All three programs had statistically significant impacts on literacy, math and combined test scores. The Mother Literacy program improved mother test scores by 0.09 standard deviations in Hindi and 0.12 standard deviations in math, and 0.11 standard deviations overall. The last column in the table presents instrumental variables estimates of the effects of takeup of the program on learning, instrumenting takeup with assignment to the ML treatment. To account for spillovers within households, "takeup" is defined as either the mother or the child attending a class at least once. Using this method, the effect of takeup is 0.33 standard deviations overall.⁸

The CHAMP program improved mother test scores as well. Test scores improved by 0.04 standard deviations in Hindi, 0.07 standard deviations in math, and 0.06 standard deviations overall.

⁸Note that the exclusion restriction in the IV estimation assumes that the mother literacy classes influenced learning *only* through attendance in the classes. This assumption would be violated, if, for example, mother learning was influenced by the attendance of other members in the community.

The effect of the combined intervention on total test scores was 0.15 standard deviations. While this is slightly lower than the sum of the effects of the ML and CHAMP interventions, we cannot reject that the ML-CHAMP effect equals the sum of the effects of the two individual interventions (p-value = 0.335).

Appendix Tables 3 and 4 display the treatment effects on each question of the test for language and math, respectively. For comparability across questions, the maximum score for each question is re-scaled to 1. On the language portion of the test, ML and ML-CHAMP interventions had the largest effects on more basic skills such as reading letters, reading simple words, and writing the mother's name. For example, mothers in the ML group were 3.5 percentage points more likely to be able to read letters, while mothers in the ML-CHAMP group were 4.7 percentage points more likely to read letters, compared with the endline control group mean of 17.3%. The point estimates for CHAMP, on the other hand, were modest and positive (about 0.5 to 1.5 percentage points) on most questions, although most of the estimated effects are not statistically significant.

On the math portion of the test, all three interventions had the strongest effects on the number recognition questions, the most basic skills tested. For example, the mothers' ability to identify digits 1-9 was 7, 3 and 11 percentage points higher in ML, CHAMP, and ML-CHAMP, respectively, compared to the control group mean of 47%. Interestingly, all three interventions also had statistically significant effects on the mother's ability to complete the division word problem in addition to the more basic math skills. This suggests that either classes attracted some relatively more numerate mothers, or that the programs were particularly effective in "mental math" (i.e. solving word problems) in addition to the more basic skills.

The fact that the interventions affected more basic skills is supported by our qualitative observations. In focus groups, mothers in ML classes identified basic skills such as the ability to write their own name and those of family members, and the ability to dial numbers on a cell phone as the primary skills they expected to learn. In CHAMP, qualitative observations suggested that were more actively engaged in understanding basic activities on the worksheets, rather than simply monitoring their children's work. This could explain why CHAMP improved mothers' basic number recognition.

5.4 Intermediate Outcomes

The programs could have affected mother learning through a variety of channels. In addition to the more direct effects that mother literacy and child participation could have had on mother learning, there are a number of indirect channels. Section 6 analyzes changes in the home environment, including education assets at home (e.g., books, slates) and mothers' involvement in child learning. We find that the programs did increase both assets and mothers' involvement

in child learning, both of which could have had feedbacks to mother learning.

We also find evidence that the programs induced others in the households to help the mothers learn. Table 5 analyzes whether the mother reported learning various skills from family members. We find that significantly more mothers in the ML and ML-CHAMP treatments reported learning any of the skills from family members, from 21% in the control group to 26% in ML and ML-CHAMP. For the CHAMP interventions, we find smaller coefficients, and the coefficients are significant only for learning about counting and counting change.

5.5 Empowerment and Time Use

This subsection examines the effects of the programs on women's empowerment and time use. These indicators are both potential channels through which the program could have affected mother and child learning, as well as important outcomes in and of themselves.

We first turn to the effects of the programs on women's empowerment. We include 19 variables from the survey instrument reflecting a number of underlying aspects of empowerment. First, we include a set of variables reflecting the mother's ability to make decisions and carry out tasks on her own. Second, we include a set of variables indicating whether the mother is involved in certain household decisions. Third, we include a set of variables reflecting beliefs about own and daughters' education. Finally, we include a measure of happiness. ⁹

Using these variables, we construct an index of empowerment using the methodology from Kling et al (2007). Each variable is normalized by subtracting the control group mean and dividing the result by the control group standard deviations. The resulting normalized variables are then averaged to create the index. We construct separate indices for both the baseline and endline. The baseline index contains fewer elements than the endline index, as additional empowerment questions were added to the endline questionnaire.

Table 6 presents the program effects on the index and its components. Using our index, we find positive and statistically significant impacts of each of the three treatments on empowerment. The estimated effects of the ML and CHAMP programs were both 0.04 standard deviations, both significant at the 5% level. Turning to the components of the index, both the ML and CHAMP interventions had significant impacts on whether the mother counts change, beliefs about adult daughter's choices, and beliefs that the mother should be responsible for her children's education. The ML intervention also had impacts on several variables more directly related to mother literacy and math (the mother signing her name, considering herself literate, the value of goods she could buy), and beliefs about a wife's level of education relative to her

⁹We note that involvement in work activities could also arise as as a result of empowerment, or it could provide a greater sense of empowerment (Duflo, 2012). We do not include work in our index, as our available measures do not include detail on the type of work or on women's own earnings.

husband. The CHAMP intervention had a significant impact on leaving the village without adult accompaniment and a small negative impact on self-help group membership.

We next turn to the effects of the programs on women's time use. Andrabi et al. (2012) find that women with more education spend more time with their children. In Table 7, we examine whether the ML, CHAMP and combined programs affect mother time use in this manner. Across all measures, we see little evidence that the programs impacted time use. The combined interventions increased weekly hours spent on paid work by 1 hour per week (significant at the 10% level), and livestock work by 0.5 hours per week (significant at the 5% level). These effects could be a result of increased productivity brought about by the interventions. In addition, increases in empowerment could have led women to work more. However, because we have somewhat limited data on labor supply, more work is needed to understand the mechanisms behind these effects.

6 Results - Children

6.1 Test Scores

Table 8 presents the effects of the treatment groups on child test scores. All children tested at the endline are included in this table, including the younger children not tested at baseline. The regressions include a dummy variable for missing values of the baseline test scores.

All three interventions had significant impacts on math skills: the effect size is 0.04 standard deviations for ML, 0.05 standard deviations for CHAMP, and 0.07 standard deviations for ML-CHAMP. The effects of ML and CHAMP on literacy and cumulative scores are not statistically different from zero. However, ML-CHAMP had statistically significant effects on literacy (0.05 standard deviations), and cumulative scores (0.06 standard deviations).

The last column of Table 8 follows the mother test score results in Table 4 by presenting instrumental variables estimates of the effect of a mother or child attending the ML classes on child learning. The IV estimate of the effect of attendance is 0.11 standard deviations for math and is significant at the 5% level. Because the reduced-form estimates are not significant for literacy or cumulative test scores, it is not surprising that the IV estimates are not significant at conventional levels.

Appendix Tables 5 and 6 disaggregate the test score effects by individual question. As with the mother results, we re-scale the questions so that the maximum possible score for each is 1. The results for language are displayed in Appendix Table 5. The ML intervention did not have a statistically significant impact on any competency, and the estimated magnitudes are very small and inconsistently signed. For the CHAMP intervention, the magnitudes of the

coefficients on each question is positive, but none reaches statistical significance. The ML-CHAMP intervention had positive and statistically significant impacts on the child's ability to read letters, matra (more complex) words, and paragraphs.

Appendix Table 6 displays question-wise results for math. Across all three interventions, the largest effects are concentrated in the more basic number recognition questions. For example, child scores were 2.3, 4.0 and 3.9 percentage points higher on the question that asked the child to identify the digits 1 to 9, compared with the endline control group mean of 56.0 percent.

From discussions with mothers, volunteers and Pratham staff found that there was more demand from mothers to learn math. This could have driven the stronger child results for math, in that mother enthusiasm for learning math could have led mothers to engage more with their children in math.

6.2 Intermediate Outcomes

This section analyzes impacts of the treatment groups on intermediate outcomes. We start by discussing outcomes that relate to learning outside of the home. Table 9 presents the impacts of the programs on school participation. We find no evidence that the individual programs affected current enrollment, regular attendance or recent absences, although we find a small positive impact on school attendance of the combined program. Finally, we find a statistically significant increase in monthly tuition expenditures for the ML group, but the effects are smaller and statistically insignificant in the ML and ML-CHAMP groups. On balance, this table shows limited, if any, impacts of the interventions on schooling outcomes. We note, however, that enrollment is relatively high among our study population. In interviews, many parents claimed that the most they could do within the formal schooling system is send their children to school and cited poor quality and poor access as barriers they could not overcome. ¹⁰

We next turn to a set of indicators of the mother's participation in the child's schooling. We include 9 measures of mother involvement, including indicators of school visits, helping with homework, and talking to the child and others about the child's studies. We construct an index of mother involvement using the 9 measures, following the procedure outlined above. These survey questions were asked about the randomly selected child, and hence the sample size is equal to the sample of mothers.

Table 10 presents the results on mother involvement. We find positive and statistically sig-

¹⁰While one father expressed dissatisfaction with the schooling system, claiming ""like any government employee, the teachers don't do anywork...the best solution is to send the children to private school," he lemented that "there is no private school in the vicinity, so they are still studying [at the government school]." One mother explained, "even if the teachers taught for a couple of hours in a day, our children would at least learn something," and later expressed that "all [Pratham] could do [to help] is spend money and send [her child] to a better school." Another mother complained "she and her husband want to shift [their children] into a private school [But] there is no private school nearby so they are contemplating their options."

nificant impacts of all three programs on the index of indicators. The magnitudes are approximately 0.04 for ML, 0.07 for CHAMP and 0.05 for ML-CHAMP. While both ML and CHAMP had statistically significant impacts on the mother looking at the child's notebook, talking to the child about studies and talking to others about the child's studies, CHAMP had impacts on the mother knowing whether the child received homework and on helping her child with homework. This is encouraging given qualitative observations from early in the intervention which suggested that mothers in CHAMP villages were learning how to monitor CHAMP worksheets, but were not transfering the skills over to school homework.

We next examine impacts on child time use. Table 11 presents the estimated impacts of the program on the child's weekly time use. Overall, there were very few impacts. The combined ML-CHAMP intervention increased time spent on homework by 0.3 hours per week, statistically significant at the 5% level. While the effects of the individual interventions fail to reach statistical significance at the 5% level, the magnitude of the CHAMP effect is 0.2 hours per week, significant at the 10% level, suggesting that the ML-CHAMP effect could be driven primarily by CHAMP. The ML and ML-CHAMP interventions also have significant impacts on time spent in household business. An increase in labor supply of children is similar to the labor supply increases found in the time use analysis for mothers. In the case of children, increases in labor supply could be due to complementarities with mother labor supply, or because the interventions made children more productive in household businesses. As with the mother labor supply results, however, more work is needed to understand the mechanisms behind these impacts.

Table 12 presents the treatment effects on the presence of education assets in the home. These assets include pencils, school books, other books, newspapers/magazines, and slates. For the ML intervention, the only statistically significant effect is on the presence of schoolbooks, with an estimated magnitude of 0.018. The CHAMP intervention, on the other hand, had a statistically significant effect on the presence of pencils, school books, other books, and newspapers/magazines. The combined intervention increased the presence of school books, other books, and slates. (Note that pencils are present in 95% of comparison group households, so minimal of movement on this indicator is unsurprising.)

Finally, in Table 13 we turn to a set of indicators that reflect mother aspirations for their children and perceptions of child reading ability. We do not find statistically significant impacts of any of the interventions on the highest grade that the mother aspires her child to pass. In interviews mothers often reported inherent child ability and future achievement as given, and not something they had much control over. We do find that the CHAMP and combined interventions increased mother perceptions of her child's reading and math ability. When compared to the child's actual ability, however, the CHAMP and combined programs caused mothers to be overly optimistic: the absolute difference between the mother's perception and measured child ability increased for the CHAMP and combined interventions.

7 Conclusion

Adult literacy and participation programs are increasing in popularity, frequency, funding and influence—particularly in developing countries. Proponents and policymakers draw an explicit link between the education of parents and child welfare outcomes when advocating for such programs. The underpinning theory starts with the observation that parent levels of education are strongly correlated with child outcomes, and draws on further evidence that the relationship is causal (rather than due to other factors such as inherent ability, or cultural preferences, which could lead to both outcomes independently). Educating parents in adulthood, the theory goes, will shift preferences toward demanding more quantity of education and of higher quality, household resources toward more educational assets at home, time allocation toward more time educating their children at home, and increased productivity of that time. However, there is very little rigorous evidence on whether these programs are actually effective in the developing country context.

We show that an adult literacy and a participation program targeting mothers in rural India were effective at "educating parents"—improving mothers' basic literacy and numeracy skills. These programs also had an impact on measures of women's empowerment, educational assets in the home, and the participation of mothers in child learning. Lastly, they improved learning levels of younger school-aged children. Literacy classes were more effective at educating the mothers than the participation program, while the participation program was most effective at improving child learning outcomes. The results on learning (for mothers and children) were highest when the two interventions were combined, suggesting that the two interventions are at least additive, and not substitutes.

We find that the programs influenced a number of intermediate outcomes that could in turn have affected child learning. However, we cannot isolate the most important of these factors in the effectiveness of the programs. Understanding the importance of the each mechanism is a key area for future research. Nonetheless, our evaluation shows that literacy and participation programs can impact both mother and child learning. This is encouraging evidence for policymakers looking to improve adult and child learning, as well as the education environment in the home.

¹¹Appendix C analyzes cost effectiveness of the interventions.

References

- Adult literacy: An update. Department for International Development Briefing August 2008, August 2008.
- Helen Abadzi. Adult literacy: A review of implementation experience. *The World Bank Operations Evaluation Department*, 2003.
- Jenny C. Aker, Christopher Ksoll, and Travis J. Lybbert. Can mobile phones improve learning? evidence from a field experiment in niger. *American Economic Journal: Applied Economics*, 4(4):94–120, 2012.
- Tahir Andrabi, Jishnu Das, and Asim. What did you do all day?: Maternal education and child outcomes. *Journal of Human Resources*, 47:873–912, 2012.
- Aya Aoki. Assessing learning achievements and development impact: Ghana's national functional literacy program. *Australian Journal of Adult Learning*, 45, November 2005.
- Francesco Avvisati, Marc Gurgand, Nina Guyon, and Eric Maurin. Getting parents involved: A field experiment in deprived schools.
- Abhijit V. Banerjee, Rukmini Banerji, Esther Duflo, Rachel Glennerster, and Stuti Khemani. Pitfalls of participatory programs: Evidence from a randomized evaluation in education in india. *American Economic Journal: Economic Policy*, 2(1):1–30, 2010.
- Hal Beder. The outcomes and impacts of adult literacy education in the United States. *National Center for the Study of Adult Learnign and Literacy Report* 6, (6), 1999.
- Sevda Bekman. A fair chance. an evaluation of the mother-child program. *Mother-Child Education Foundation Publication* 13, 1998.
- G. Carron. The functioning and effects of the kenya literacy program. *African Studies Review*, 33(3):97–120, 1990. ISSN 00020206.
- Central Statistics Office of India. Statement: Per capital net state domestic product at constant (2004-2005) prices. Technical report, Central Statistics Office, 2013. URL http://mospi.nic.in/Mospi_New/upload/Item_12_SDP-2004-05.xls.
- ASER Centre. Annual status of education report (rural) 2012. 2013.
- Esther Duflo. Women empowerment and economic development. *Journal of Economic Literature*, 50(4):1051–1079, 2012.
- Jeffrey R. Kling, Jeffrey B. Liebman, and Lawrence F. Katz. Experimental analysis of neighborhood effects. *Econometrica*, 75 (1):83–119, 2007.
- Trang Nguyen. Information, role models and perceived returns to education: Experimental evidence from Madagascar. *Mimeo, MIT*, January 2008.
- India Office of the Registrar General & Census Commissioner. Provisional population totals paper 1 of 2011 india. Technical report, 2011.

- Daniel Ortega and Francisco Rodriguez. Freed from illiteracy? a closer look at venezuelaÿs mision robinson literacy campaign. *Economic Development and Cultural Change*, 57(1): 1–30, 2008.
- Mark R. Rosenzweig and Kenneth I. Wolpin. Are there increasing returns to the intergenerational production of human capital? maternal schooling and child intellectual achievement. *The Journal of Human Resources*, 29, 1994.
- Robert St.Pierre, Janet Swartz, Stephen Murray, Dennis Deck, and Phil Nickel. National evaluation of the Even Start Family Literacy Program: Report on effectiveness. *US Department of Education Office of Policy and Planning*, October 1993.
- The World Bank Group. World development indicators, education statistics. Technical report, The World Bank Group, 2013.
- Duncan Thomas, Robert F. Schoeni, and John Strauss. Parental investments in schooling: The roles of gender and resources in urban brazil. *Labor and Population Program, Working Paper Series*, 96-02, 1996.

Table 1: Randomization Check

	Mean	R	elative to (Control	
	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)
Assets					
First Pincipal Component of Durables Ownership	-0.0328	0.00923	0.0924	0.0282	8888
	[2.261]	[0.0866]	[0.0952]	[0.0906]	
Main Income Source of Household					
Farming	0.431	0.0251	0.00974	0.0414*	8819
	[0.495]	[0.0230]		[0.0226]	0010
Wages	0.431	-0.0121	-0.0149	-0.0370*	8819
	[0.495]	[0.0215]		[0.0216]	0010
Other	0.447	-0.0129		-0.00445	8819
Newshan of Harris de ald March and	[0.497]	[0.0133]	[0.0143]	[0.0131]	
Number of Household Members Target-Aged Children (5 yrs to 8 yrs)	1.453	-0.0351*	-0.0293	-0.0158	8888
Target-Aged Children (5 yrs to 6 yrs)	[0.612]	[0.0184]		[0.0179]	0000
Other Primary-Aged Chilred (4 yrs and 9 yrs)	1	0.0475	0.0217	0.0467*	8888
Other Filliary-Aged Chined (4 yrs and 9 yrs)	[0.960]	[0.0298]		[0.0275]	0000
Younger Children (Less than 4 yrs)	0.942	-0.0161	0.0115	0.0639**	8888
Touriger Chridren (Less than 4 yrs)	[0.909]	[0.0299]		[0.0303]	0000
Older Children (More than 0 yrs)	3.269	0.00905	0.114*	0.0932	8888
Older Children (More than 9 yrs)	[1.751]	[0.0632]		[0.0634]	0000
Mother Test Scores	[1.731]	[0.0032]	[0.0007]	[0.0034]	
Mother- Literacy	2.993	0.0442	0.134	0.0548	8857
	[2.474]	[0.110]	[0.131]	[0.115]	
Mother- Numeracy	3.022	0.0885	0.147	0.0822	8857
	[3.376]	[0.153]	[0.181]	[0.160]	
Mother- Composite	6.015	0.133	0.281	0.137	8857
Troub.	[5.616]	[0.259]	[0.307]	[0.271]	0007
Children's Test Scores	. ,	. ,	. ,	. ,	
Children- Literacy	2.803	0.0603	0.0730	0.0824	15502
	[2.370]	[0.0883]	[0.0908]	[0.0876]	
Children- Numeracy	2.770	0.114	0.131	0.0857	15502
	[3.032]	[0.111]	[0.117]	[0.109]	
Children- Composite	5.573	0.175	0.204	0.168	15502
	[5.233]	[0.195]	[0.204]	[0.192]	
Other Members' Reading/Math					
Other Members- Can Read?	0.380	-0.00151	0.0274	0.0163	13891
	[0.485]	[0.0162]	[0.0178]	[0.0175]	
Other Members- Can Do Math?	0.249	0.00460	0.0249	0.0233	13891
	[0.433]	[0.0146]	[0.0170]	[0.0147]	
Parent Education					
Mother Education Level	0.764	0.0475	0.152	0.0694	8864
	[2.282]	[0.102]	[0.118]	[0.103]	
Father Education Level	3.876	-0.150	0.133	0.234	8181
	[4.438]	[0.203]	[0.226]	[0.213]	
Mother Has Past Experience with Literacy Classes	0.117		-0.00825		8635
	[0.321]	[0.0123]	[0.0130]	[0.0124]	
Child Gender	0.521	0.0122	0.00001	0.001.455	15500
Child Is Male	0.521	-0.0133	-0.00804		15500
Notes:	[0.500]	[0.0108]	[0.0110]	[0.0106]	

Columns 2,3 and 4 display the differences in means between each treatment group and the control group.

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 2: Takeup of Mother Literacy Classes

	Mean	OLS: I	mpact of tre	eatment in end	line
	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)
Knew about ML classes	0.218	0.402***	-0.00558	0.451***	8581
	[0.413]	[0.0226]	[0.0199]	[0.0217]	
Mother attended ML classes	0.0710	0.321***	-0.00101	0.368***	8581
	[0.257]	[0.0184]	[0.0128]	[0.0177]	
Child attended with mother	0.0252	0.161***	0.0000870	0.218***	8581
	[0.157]	[0.0126]	[0.00727]	[0.0133]	
Child attended alone	0.0380	0.140***	-0.00884	0.179***	8511
	[0.191]	[0.0115]	[0.00728]	[0.0132]	

Columns 2, 3 and 4 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies. Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 3: Determinants of Mother Takeup

	-	t Variable: Attended
	(1)	(2)
1st PC of Durables	-0.00227	-0.000612
150 T C 01 D 014010	[0.00644]	[0.00526]
# Children 0-4	-0.000514	-0.000447
	[0.0101]	[0.00924]
# Children 5-14	0.0165*	0.0110
	[0.00840]	[0.00694]
# Adults 15+	-0.00707	-0.00195
	[0.00597]	[0.00491]
Total hours worked per week	0.000456	0.000389
	[0.000398]	[0.000370]
Selected child age	0.00486	0.0115*
	[0.00946]	[0.00664]
Selected child is a girl	-0.00143	-0.0146
	[0.0177]	[0.0153]
Selected child in school	0.0333	0.0473**
	[0.0271]	[0.0200]
Selected child in private school	-0.0808**	-0.0878***
	[0.0364]	[0.0332]
Seleted child test score	0.00121	-0.00725
	[0.0113]	[0.0101]
Father education level	-0.00585**	-0.00331
	[0.00234]	[0.00210]
Mother total test score	0.282**	0.311***
	[0.120]	[0.109]
Mother education > 0	-0.0304***	-0.0289***
	[0.00610]	[0.00562]
Mother education: years	0.0587***	0.0563***
	[0.0145]	[0.0126]
Mother age	-0.00210	-0.00270**
	[0.00138]	[0.00120]
Has mother attended adult literacy classes before	0.0832***	0.0777***
	[0.0295]	[0.0250]
SHG Member	0.0967***	0.0910***
	[0.0268]	[0.0239]
Baseline Empowerment Index	0.0594**	0.0615***
	[0.0255]	[0.0230]
Baseline Mother-Child Participation Index	0.0255*	0.0197
	[0.0151]	[0.0129]
State = Bihar	0.0996***	
	[0.0316]	
Mean of Den Var	0.425	
Mean of Dep. Var. R-Squared	0.425 0.0600	0.0869
P-value: test that all stratification unit dummies =		0.000
P-value: test that all stratification unit dummies = N	· U	0.000

Columns 1 and 2 display estimated coefficients of a regression of the mother a child attendance respectively on the determinants in each row.

* denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 4: Mother Learning

	eline Mean	Baseline Mean Endline Mean		OLS: Impa	OLS: Impact of treatment in endline	t in en	dline	First stage	IV
							P-value:	Attend lit	Attend lit Impact of lit
	All Obs	Control	ML	CHAMP	ML-CHAMP	Z	CHAMP ML-CHAMP N additive effects	class	class
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)
Literacy	0.0430	0.115	0.0913***	0.0913*** 0.0400**	0.126***	8552	0.848	0.341***	0.261***
	[1.055]	[1.329]	[0.0185]	[0.0185] [0.0193]	[0.0188]			[0.0189]	[0.0529]
Numeracy	0.0616	-0.0158	0.120***	0.0693***	0.159***	8552	0.226		0.353***
	[1.065]	[1.017]	[0.0167]	[0.0167] $[0.0158]$	[0.0173]				[0.0493]
Total	0.0560	0.0414	0.111	0.0587***	0.150***	8552	0.385		0.325***
	[1.066]	[1.153]	[0.0151]	[0.0151] [0.0142]	[0.0158]				[0.0439]

fotes:

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values.

Column 7 displays the p-value of the test that the coefficients ML+CHAMP=ML-CHAMP.

Column 9 displays the impact of litteracy class attendance on the dependent variables, using assignment to the ML treatment group as Column 8 displays the impact of assignment to the mother literacy treatment group on literacy class attendance by mother or child. an instrument for attendance.

Standard errors are clustered at the village level.

* denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 5: Family Assistance in Mother Learning

	Endline Mean	OLS: In	npact of tre	eatment in end	line
	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)
Family member taught mother: ANY	0.206 [0.404]	0.0507***	0.00683	0.0560*** [0.0146]	8581
Family member taught mother: to write her name		0.0414*** [0.0131]	-0.00953 [0.0135]	0.0502*** [0.0130]	8581
Family member taught mother: counting	0.0818 [0.274]	0.0509*** [0.0106]	0.0200* [0.0107]	0.0577*** [0.0105]	8581
Family member taught mother: hh accounts	0.0537 [0.226]	0.0230*** [0.00825]	0.0118 [0.00826]	0.0285*** [0.00828]	8581
Family member taught mother: counting change	0.0514 [0.221]	0.0314*** [0.00820]		0.0295*** [0.00956]	8581

Columns 2, 3 and 4 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies.

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 6: Empowerment

	Baseline Mean	Endline Mean	OLS: In	npact of tre	atment in endl	ine
	All Obs	Control	ML	_	ML-CHAMP	
	(1)	(2)	(3)	(4)	(5)	(6)
Empowerment Index	-0.00625	0.000225	0.0409***	0.0360**	0.0695***	8539
•	[0.391]	[0.378]	[0.0143]	[0.0147]	[0.0148]	
Times left village in the past month	1.405	1.146	0.0338	0.0741	0.0977	8581
	[2.244]	[1.672]	[0.0607]	[0.0627]	[0.0661]	
Left without adult accompaniment (% of mothers)	0.127	0.114	0.00319	0.0286***	0.00449	8581
	[0.333]	[0.318]	[0.00998]	[0.0103]	[0.0103]	
Left village without permission (% of mothers)	0.0258	0.0168	-0.00426	0.000597	-0.00313	8581
	[0.159]	[0.129]	[0.00366]	[0.00390]	[0.00372]	
Signed name on official documents	0.538	0.562	0.0630***	0.0127	0.0829***	8581
	[0.499]	[0.496]	[0.0140]	[0.0134]	[0.0138]	
Counts change	0.876	0.869	0.0250**	0.0227**	0.0421***	8581
	[0.330]	[0.337]	[0.0117]	[0.0114]	[0.0112]	
Caught mistakes counting change	0.310	0.318	0.0151	-0.00742	0.0269	8581
	[0.463]	[0.466]	[0.0172]	[0.0169]	[0.0174]	
Considers self literate		0.235	0.0479***	0.0165	0.0730***	8581
		[0.424]	[0.0164]	[0.0176]	[0.0170]	
Value of goods can buy alone		2442.0	130.4	80.68	165.3*	8581
		[2259.3]	[83.58]	[91.02]	[91.72]	
Does not believe husband should be more educated	0.380	0.350	0.0441***		0.0567***	8581
	[0.485]	[0.477]	[0.0163]	[0.0174]	[0.0170]	
Does not believe daughter should be at home or married when 18	0.0539	0.0439	-0.00217	0.00592	0.00308	8581
	[0.226]	[0.205]	[0.00631]	[0.00649]	[0.00648]	
Believes daughter should be doing further studies	0.161	0.383		0.0701***		8581
/ what they want / paid work outside home	[0.368]	[0.486]	[0.0169]	[0.0183]	[0.0186]	
Would have wanted to study up to: grade level		5.620	-0.432***	0.183	-0.261	8581
		[4.434]	[0.161]	[0.181]	[0.159]	
Member of self help group (SHG)	0.277	0.330	0.00665	-0.0303*	-0.00403	8581
	[0.447]	[0.470]	[0.0171]	[0.0169]	[0.0160]	
Happiness		3.101	0.0556	0.0784	0.0558	8581
		[1.439]	[0.0501]	[0.0511]	[0.0470]	
Involved in purchasing: utensils, cot or cycle		0.586	0.0271	0.0118	0.0247	8581
		[0.493]	[0.0181]	[0.0180]	[0.0194]	
Involved in purchasing: educational materials		0.479	0.0209	0.0188	0.0383**	8581
		[0.500]	[0.0183]	[0.0179]	[0.0183]	
Involved in deciding: girl or boy enrollment		0.519	0.0114	0.00638	0.0156	8581
		[0.500]	[0.0173]	[0.0173]	[0.0175]	0.520
Involved in deciding: girl or boy school type		0.522	0.0115	0.00966	0.0287*	8539
M d /1 d 1 111 21 6 121 1 d		[0.500]	[0.0170]	[0.0174]	[0.0171]	0501
Mother/ both should be responsible for child's education		0.717	0.0409***		0.0424***	8581
Notes:		[0.451]	[0.0138]	[0.0138]	[0.0136]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

The "empowerment index" is an average of z-scores of the other variables in the table, using the control group means and standard deviations.

The baseline empowerment index only includes indicators for which data were collected. Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 7: Mother Time Use

I	Baseline Mean	Endline Mean	OLS: In	npact of tr	eatment in end	lline
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Help w/ homework (weekly hrs)	1.686	2.313	0.114	0.126	0.0602	8519
	[2.903]	[2.704]	[0.0919]	[0.0973]	[0.0918]	
Read (weekly hrs)	0.201	0.324	-0.0116	-0.0217	0.00582	8399
	[1.056]	[1.332]	[0.0397]	[0.0365]	[0.0422]	
Play with child (weekly hrs)	0.255	1.322	0.0720	0.0544	-0.0272	8472
	[1.309]	[3.172]	[0.110]	[0.116]	[0.108]	
Share stories (weekly hrs)	0.383	0.515	0.0196	-0.00556	0.0358	8514
	[1.201]	[1.401]	[0.0464]	[0.0438]	[0.0507]	
Paid work (weekly hrs)	26.81	31.27	1.022*	0.487	0.975	8547
	[18.53]	[20.93]	[0.604]	[0.587]	[0.610]	
Livestock work (weekly hrs)	9.242	9.528	0.171	-0.253	0.505**	8573
	[7.020]	[6.745]	[0.246]	[0.231]	[0.241]	
Collect animal feed (weekly hrs)		6.828	0.209	-0.161	0.178	8577
		[6.601]	[0.261]	[0.266]	[0.274]	
Collect wood (weekly hrs)		3.302	0.0804	-0.125	0.00144	8570
		[4.962]	[0.179]	[0.193]	[0.189]	
Housework (weekly hrs)	22.20	18.86	0.365	0.252	0.316	8581
	[8.844]	[7.918]	[0.304]	[0.301]	[0.286]	
Buy supplies (weekly hrs)	4.832	1.231	-0.0582	-0.0654	-0.0182	8567
	[6.188]	[2.656]	[0.0901]	[0.0905]	[0.0877]	
Look after children (weekly hrs)	5.751	4.640	-0.209**	-0.143	0.0737	8581
	[4.035]	[3.695]	[0.106]	[0.109]	[0.104]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where possible). Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

	92rn1ng	Zumz/
۲	_	4
-	,	ŧ
_	_	4
:	5	
	÷	;
-	0	

	Baseline Mean Endline Mean	Endline Mean		OLS: I	OLS: Impact of treatment in endline	ment in	endline	First stage	IV
						I	P-value: ML-CHAMP	Attend lit	Attend lit Impact of lit
	All Obs	Control	ML	CHAMP]	ML CHAMP ML-CHAMP N	N	= ML + CHAMP	class	class
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)
Literacy	0.0253	0.134	-0.00229	-0.00229 0.0288	0.0537***	18282	0.331	0.352***	0.000552
	[1.008]	[1.130]	[0.0192]	[0.0192] [0.0197]	[0.0186]			[0.0199]	[0.0548]
Numeracy	0.0306	0.127	0.0374**	0.0374** 0.0469**	0.0685***	18282	0.552		0.114**
	[1.014]	[1.058]	[0.0185]	[0.0185] $[0.0189]$	[0.0182]				[0.0523]
Total	0.0292	0.134	0.0194	0.0194 0.0387**	0.0632***	18282	0.841		0.0635
	[1.012]	[1.085]	[0.0176]	[0.0176] [0.0183] [0.0171]	[0.0171]				[0.0499]

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values. Missing value dummies are included for children not tested at baseline.

Column 7 displays the p-value of the test that the coefficients ML+CHAMP=ML-CHAMP.

Column 9 displays the impact of litteracy class attendance on the dependent variables, using assignment to the ML treatment group as Column 8 displays the impact of assignment to the mother literacy treatment group on literacy class attendance by mother or child. an instrument for attendance.

Standard errors are clustered at the village level.

* denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 9: Child Schooling

	Baseline Mean	Endline Mean	OLS: I	mpact of tr	eatment in end	line
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Monthly tuition fees	14.25	20.92	3.564*	2.114	1.299	8438
	[36.68]	[53.28]	[1.926]	[1.962]	[1.839]	
Child is enrolled		0.775	0.0122	0.0136	0.0144	25053
		[0.418]	[0.0118]	[0.0116]	[0.0118]	
Child is / will be enrolled		0.905	-0.00203	0.00483	0.00964	25053
		[0.293]	[0.00741]	[0.00724]	[0.00722]	
Child attends school	0.833	0.845	-0.00486	0.00349	0.0193*	25053
	[0.373]	[0.362]	[0.0109]	[0.0108]	[0.0106]	
Child attends private school	0.114	0.0805	0.00565	-0.000640	0.00427	25053
	[0.318]	[0.272]	[0.00847]	[0.00859]	[0.00883]	
Hours spent in school	3.642	4.063	0.0554	0.0827	0.0885	8475
	[1.971]	[1.599]	[0.0554]	[0.0537]	[0.0558]	
Days missed per month		2.152	-0.0820	-0.0206	-0.133	7383
_		[4.753]	[0.175]	[0.183]	[0.164]	
Days missed in last week	2.825	1.379	0.0275	-0.0572	-0.0361	6980
	[2.469]	[1.946]	[0.0710]	[0.0760]	[0.0683]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available). Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 10: Mother-Child Participation

	Baseline Mean	Endline Mean	OLS: I	mpact of tre	atment in end	line
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Mother-Child Participation Index	0.0231	0.0123	0.0371**	0.0634***	0.0507**	8231
	[0.643]	[0.512]	[0.0184]	[0.0196]	[0.0198]	
Take child to school (# times/week)	0.255	0.336	-0.0385	0.0370	-0.00939	8451
	[1.095]	[1.130]	[0.0380]	[0.0420]	[0.0357]	
Visit school (% of mothers)	0.128	0.155	0.00511	0.0136	0.0132	8451
	[0.335]	[0.362]	[0.0119]	[0.0129]	[0.0123]	
Visit school (% of mothers, not because of bullying or for fees)	0.0969	0.0763	0.00894	0.0157*	0.00824	8451
	[0.296]	[0.266]	[0.00951]	[0.00903]	[0.00895]	
Know whether child received homework (% of mothers)		0.762	0.0158	0.0321**	0.0189	8479
		[0.426]	[0.0151]	[0.0150]	[0.0162]	
Help child with homework (% of mothers)	0.325	0.708	0.0158	0.0419***	0.0258*	8479
•	[0.469]	[0.455]	[0.0153]	[0.0146]	[0.0154]	
Time spent helping per week (weekly hrs)	1.686	2.313	0.114	0.126	0.0602	8519
	[2.903]	[2.704]	[0.0919]	[0.0973]	[0.0918]	
Looked at notebook (% of mothers)	0.126	0.216	0.0300**	0.0651***	0.0495***	8572
	[0.332]	[0.412]	[0.0149]	[0.0157]	[0.0152]	
Talk to child about school: number of times per week		3.090	0.222**	0.194*	0.247**	8438
•		[3.018]	[0.101]	[0.105]	[0.105]	
Talk to others about child's studies: number of times per week	0.551	1.609	0.235***	0.181**	0.251***	8521
1	[0.497]	[2.222]	[0.0778]	[0.0773]	[0.0797]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

The "Mother-Child Participation Index" is an average of z-scores of the other variables in the table, using the control group means and standard deviations. The baseline participation index only includes indicators for which data were collected. Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 11: Child Time Use

	Baseline Mean	Endline Mean	OLS: In	npact of tre	eatment in end	lline
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Homework (weekly hrs)	2.992	3.760	-0.00138	0.241*	0.302**	8331
	[4.103]	[4.243]	[0.149]	[0.141]	[0.138]	
Reading (weekly hrs)	0.258	0.460	-0.0451	-0.00993	0.0549	7942
	[1.253]	[1.571]	[0.0485]	[0.0526]	[0.0531]	
Drawing/ painting (weekly hrs)	0.465	0.698	0.00414	0.0743	0.0901*	7902
	[1.339]	[1.543]	[0.0531]	[0.0520]	[0.0527]	
Playing w/ adult (weekly hrs)	0.448	0.547	0.000218	-0.0281	-0.0997	8337
	[2.001]	[1.953]	[0.0653]	[0.0654]	[0.0622]	
Tuition (weekly hrs)	1.848	2.263	0.194	0.151	0.0103	8416
	[4.428]	[4.861]	[0.180]	[0.194]	[0.174]	
Television	3.832	3.673	-0.112	0.144	0.0408	8339
	[5.644]	[4.934]	[0.169]	[0.175]	[0.164]	
Housework (weekly hrs)	3.182	3.552	0.0547	0.115	0.129	8408
	[4.211]	[3.987]	[0.132]	[0.129]	[0.130]	
Household business (weekly hrs) 1.175	1.786	0.229*	0.0882	0.328**	8407
	[3.550]	[3.705]	[0.128]	[0.134]	[0.128]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available). Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 12: Education Assets

	Baseline Mean Endline Mean OLS: Impact of treatment in endlin						
	All Obs	All Obs Control		CHAMP ML-CHAMP			
	(1)	(2)	(3)	(4)	(5)	(6)	
Education assets in home: pencil (% of hh)	0.930	0.945	-0.0000251	0.0148**	0.0123	8581	
	[0.256]	[0.227]	[0.00850]	[0.00727]	[0.00795]		
Education assets in home: school books		0.906	0.0179*	0.0168*	0.0264***	8581	
		[0.292]	[0.00978]	[0.00935]	[0.00990]		
Education assets in home: other books/ comics	0.229	0.245	0.0164	0.0364**	0.0410**	8581	
	[0.420]	[0.430]	[0.0155]	[0.0169]	[0.0159]		
Education assets in home: newspaper/ magazine	0.122	0.0533	0.0105	0.0301***	0.00867	8581	
	[0.328]	[0.225]	[0.00789]	[0.00881]	[0.00789]		
Education assets in home: slate		0.891	0.0125	-0.00444	0.0259***	8581	
		[0.312]	[0.0103]	[0.0104]	[0.00974]		
Education assets in home: none		0.0154	-0.00161	-0.00581	-0.00197	8581	
		[0.123]	[0.00398]	[0.00357]	[0.00375]		
Education assets index	0.0176	7.45e-09	0.0344	0.0613***	0.0708***	8581	
	[0.651]	[0.570]	[0.0212]	[0.0206]	[0.0211]		

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Table 13: Mother Perceptions

	Baseline Mean	OLS: Impact of treatment in endline				
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Number of things for which parents are responsible	0.730	1.345	0.0559	0.0434	0.0668*	8888
	[0.773]	[1.025]	[0.0426]	[0.0433]	[0.0392]	
Number of things mother can do to help child	1.246	1.856	0.0454	0.00462	0.0816*	8888
	[0.950]	[1.151]	[0.0436]	[0.0486]	[0.0441]	
Mother thinks child will likely pass 8th standard	0.798	0.818	-0.000437	0.0121	0.0134	8490
	[0.402]	[0.386]	[0.0138]	[0.0134]	[0.0134]	
Mother thinks child will likely pass 12th standard	0.579	0.608	0.00665	0.0168	0.0124	8482
• •	[0.494]	[0.488]	[0.0177]	[0.0175]	[0.0174]	
Highest standard to which mother aspires for child to study	9.881	10.13	-0.0180	0.0929	0.222	3200
	[2.817]	[3.079]	[0.125]	[0.130]	[0.139]	
Mother's perception of child's reading ability	1.645	2.452	-0.0421	0.132***	0.105**	7595
	[1.252]	[1.589]	[0.0513]	[0.0508]	[0.0512]	
Mother's perception of child's math ability	1.954	2.558	0.00103	0.237***	0.160***	7711
	[1.593]	[1.612]	[0.0544]	[0.0551]	[0.0577]	
Reading: Abs. value of diff. between mother's guess and child score	1.085	1.601	-0.0256	0.103**	0.0315	7235
	[1.089]	[1.373]	[0.0429]	[0.0445]	[0.0426]	
Math: Abs. value of diff. between mother's guess and child score	1.265	1.476	-0.0403	0.161***	0.0997**	7350
	[1.302]	[1.275]	[0.0444]	[0.0486]	[0.0458]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

A Impact Heterogeneity

We use the following estimating equation to examine heterogeneity in treatment effects:

$$Y_{1iv} = \beta_0 + \beta_1 Var_i + \beta_2 ML_v + \beta_3 CHAMP_v + \beta_4 MLCHAMP_v + \beta_5 Var * ML_v$$
$$+ \beta_6 Var * CHAMP_v + \beta_7 Var_i * MLCHAMP_v + \beta_4 Y_{0ihv} + \delta G_v + \varepsilon_{iv}$$

In this equation, Var_i is the interacted variable, and the remainder of the variables are defined as in equation (1).

A.1 Mothers

Table 14 examines heterogeneity in treatment effects of the interventions on mother test scores. We focus on heterogeneity by the state where the intervention took place, the mother's baseline score, mother's age, and mother's education level.

The first three columns of Appendix Table 7 examine heterogeneity by state. There is evidence that the ML and ML-CHAMP interventions were more effective in Bihar. For example, the effects of the ML intervention were 0.02 standard deviations higher for language, 0.13 standard deviations higher for math, and 0.09 standard deviations higher for composite scores in Bihar compared with Rajasthan. The latter two results are significant at the 1 percent level. Similarly, the ML-CHAMP intervention increased language, math, and combined scores by 0.08, 0.12, and 0.11 standard deviations more in Bihar than in Rajasthan. There are no significant differences in treatment effects across states for the CHAMP intervention. The greater effectiveness of the ML and ML-CHAMP interventions in Bihar is consistent with the fact that mothers were 10% more likely to attend the classes in Bihar (see Section 5.2).

Columns 4 through 7 of Appendix Table 7 examine heterogeneity by mother's baseline test score. Although mothers did take up the mother literacy classes more often at higher test scores, there is little evidence that ML and ML-CHAMP were more effective for mothers with higher or lower test scores. ML-CHAMP increased composite scores significantly more for mothers who scored *lower* at the baseline, but the interaction effects on the disaggregated language and math scores are insignificant and inconsistently signed. On the other hand, the CHAMP intervention was significantly more effective for mothers with higher initial test scores. This result implies that a basic level of literacy and numeracy was helpful for mothers to improve their own learning in CHAMP.

The remaining columns of Table 14 examine heterogeneity by mother age and education level. Here, there are few significant interaction effects, and the magnitudes are small. There is evidence that ML-CHAMP was more effective for less-educated mothers in increasing math and composite scores, although these interactions are not reflected in either the ML or CHAMP interventions.

A.2 Children

Appendix Tables 8a and 8b examine heterogeneity in treatment effects on child test scores. Appendix Table 8a uses the same set of variables that were used in the analysis for mothers. Overall, there is little evidence of heterogeneity by any of these variables. Unlike the effects found for mothers, there is no significant heterogeneity by state, although the point estimates do suggest that ML and ML-CHAMP were more effective in Bihar. Children with older mothers had significantly stronger effects of the ML intervention on math and composite scores.

Table 8b examines heterogeneity by child age, child baseline score, and gender. Again, there are few large or statistically significant effects. There is some evidence that ML-CHAMP was more effective for older children in improving literacy and composite scores. The only other statistically significant interaction in the table suggests that lower-scoring children performed better in math in the ML-CHAMP intervention, although this heterogeneity is not reflected in language or composite scores.

B Location Selection

Because of the slightly different organization of the villages in Rajasthan and Bihar, a different selection procedure was used in each state. The procedure focused on finding distinct geographic units, called 'hamlets', in which the programs could run, while limiting spillovers. Hamlet eligibility was therefore determined based on size, according to the number of households, and distance from other target hamlets. Size and location of hamlets were determined from "Rapid Rural Assessments" conducted in study blocks.

In Rajasthan, dispersed clusters of villages comprise larger geographic units known as, 'Gram Panchayats'. Villages are divided into smaller hamlets, which are known there as, 'mohellas'. Hamlets in Rajasthan met the size eligibility requirements if they contained between 40 and 100 households, whereby a household is defined as a family that eats from one kitchen. ¹² To limit spillovers, one hamlet per village was selected.

All villages in two blocks, Kekri and Bhinay, were targeted for the intervention in Rajasthan. Within each village, first preference was given to hamlets with 60-80 households, as Pratham

¹²In one instance, a hamlet containing more than 100 households was split into smaller "synthetic hamlets" for the purposes of the intervention.

and the research team determined this to be the approximate size to support one adult literacy class. In each village, the hamlet with 60-80 households was selected unless there was more than one, in which case one hamlet of that size was chosen at random. If there were no hamlets in a village with 60-80 households, second preference was given to hamlets of 40-100 households. Again, if there was only one hamlet in a target village with 40-100 households, it was selected; otherwise, one hamlet of that size was selected at random. To identify a total of 240 target hamlets, the boundaries of Kekri and Bhinay were extended into a third block. Target hamlets were identified using the same procedure used in Kekri and Bhinay until 240 had been selected. The average size of study hamlets was 74 households. Targeted households contained 7.0 members, on average.

In Bihar, the village boundaries are less distinct and villages are much denser than in Rajasthan. Each panchayat has multiple revenue villages, with each revenue village comprising smaller hamlets known there as, 'tolas' (the equivalent of a 'mohella' in Rajasthan). Within each revenue village, there is typically a main village and hamlets that surround the main village. In Bihar, hamlets were considered eligible if they contained between 25 and 150 households and if they were at least 500 meters from any other target hamlet.

All revenue villages and hamlets in two blocks, Dhamdaha and B. Kothi, were targeted for the intervention. To limit spillovers, hamlets in Bihar were selected only if their boundaries were 500 meters or more from the boundaries of other target hamlets. ¹⁴ If an eligible hamlet was closer than 500 meters in proximity from another eligible hamlet, the hamlet with between 40 and 80 households was selected, as Pratham determined this to be the approximate size to support one adult literacy class. If more than one hamlet contained 40-80 households within the 500 meter radius, one was randomly selected for the intervention. Second preference was given to a hamlet of 25-150 households whenever no hamlet in the 500 meter radius contained between 40 and 80 households. ¹⁵ If the eligible hamlets were in an adjacent row, the hamlets at the ends of the row were selected. ¹⁶

The selection process yielded 269 eligible hamlets. Of those, 240 hamlets were randomly selected, and the remainder were used by Pratham for pilot activities. The average size of study hamlets was 68 households. Targeted households contained 6.6 members, on average.

¹³The household criteria differed between Rajasthan and Bihar because the criteria for Rajasthan would not have produced a sufficient number of eligible hamlets were it applied in Bihar. Due to the higher upper bound on number of households, Pratham agreed to hold more than one class in a target hamlet where necessary in Bihar.

¹⁴GPS coordinates were used to confirm distances between the boundaries of hamlets. Distances were checked between hamlets within revenue villages as well as across revenue villages.

¹⁵In any given 500-meter radius, if there were no hamlets of 40-80 households but multiple hamlets of 25-150 households, one hamlet of 25-150 households was selected at random.

¹⁶In two cases, target hamlets were eliminated because Pratham determined that adult literacy rates were too high to sustain classes.

C Cost Effectiveness

This section presents a summary of program costs and a discussion of cost-effectiveness. As with most cost-effectiveness comparisons across studies, we note that differences in target population, competancies tested, testing instruments, local prices, and methods of calculating costs may limit comparability. Our cost-effectiveness calculation follows the methodology in Kremer, et. al (2013).

We report costs in dollars, converted using the exchange rate as of when the study began. Program costs can be divided into 3 components: Pratham staff costs, the opportunity cost of volunteer time, and training, monitoring, and materials costs.

	ML	CHAMP	ML-CHAMP
Pratham staff	\$37,521	\$30,699	\$68,219
Opportunity cost of volunteer time	21,653	0	21,653
Training, monitoring, and materials	14,821	4,730	17,289
Total	74,035	35,428	107,162

We divide these costs by the total number of beneficiaries of each program and the estimated treatment effects reported in Tables 3 and 7 to compute the standard deviation improvement per \$100 spent.

	Motl	hers	
	ML	CHAMP	ML-CHAMP
Literacy	0.27	0.24	0.25
Math	0.35	0.41	0.32
Composite	0.33	0.35	0.30
Mothers Affected	2,176	2,115	2,151

	Chile	lren	
	ML	CHAMP	ML-CHAMP
Literacy			0.23
Math	0.23	0.59	0.30
Composite	_	0.49	0.27
Children Affected	4,572	4,447	4,653

For mother outcomes, the three intervientions produce very similar gains per \$100 spent. The ML intervention is most cost effective for literacy, while the CHAMP intervention is most cost effective for math and composite scores. As noted in the introduction, our study is the first

to provide a rigorous evaluation of the effects of adult literacy or home input interventions on adult learning outcomes. As such, we are unable to compare our effects on mothers with those found in other studies.

For child learning, CHAMP is most cost effective for math and composite scores, while ML-CHAMP is most effective in improving literacy.

We first compare the child results to an evaluation of a volunteer-based intervention conducted by Pratham in Uttar Pradesh (Banerjee, et al., 2010). The Uttar Pradesh program was run similar to the ML intervention evaluated here, but was targeted at children aged 6-14. The children in the program were tested using the ASER test, which consisted of a subset of the questions used in the our evaluation. The Uttar Pradesh program resulted in statistically significant increases of 1.7 percentage points of children reading at the letter level and a 1.8 percent increase in the percentage of children reading at the word or paragraph level. The ML and CHAMP programs did not result in statistically significant increases in the proportion of children reading at these competencies. The ML-CHAMP intervention, however, resulted in an increase of 2.7 percent increase in reading letters, and a 1.2-1.3 percent increase in reading at the word or paragraph level. Even though the average treatment effects were similar for ML-CHAMP and the Uttar Pradesh program, takeup of the Uttar Pradesh program was only about 13 percent, while takeup in the programs here was substantially higher. Further, the Uttar Pradesh study did not find effects on math levels, while we find significant effects of ML, CHAMP, and ML-CHAMP on math.

To compare our results with a broader set of alternative interventions aimed at improving child learning, we compare our impact estimates for children with those reviewed in Kremer, et al. (2013). Our estimates, ranging 0.04 to 0.07 standard deviations, fall below the range of statistically-significant estimates in the Kremer, et al. (2013) study. This latter set of estimates ranges from 0.14 standard deviations to 0.6 standard deviations. Turning to cost-effectiveness, 14 out of the 15 studies in Kremer, et al. (2013) that found statistically significant impacts are also more cost-effective than the interventions studied here.

Even though the interventions may be less cost effective than others in improving child test scores, our study examines and finds impacts on a broad set of outcomes, including mother learning, women's empowerment, and the home learning environment. A full cost-effectiveness analysis would take into account the full set of impacts relative to costs. However, given the limited number of studies that examine these outcomes, in addition to a lack of a consistent framework to compare cost-effectiveness along these dimensions, we are unable to perform this broader comparison. Without an explicit comparison with alternative interventions, we tentatively conclude that the interventions studied here are cost-effective considering the broad set of outcomes affected and the relatively low cost of the interventions (between \$17 and \$50 per beneficiary household). Our study should serve as a starting point for future work to

deepen the evidence base so that more explicit cost-effectiveness comparisons can be made in the future.

Appendix Table 1: Baseline Means of Variables in Rajasthan and Bihar Samples

		Rajasthan	Bihar
		(1)	(2)
Education and			
	Mother education level	0.741	0.922
		(2.173)	(2.480)
	Father education level	4.819	3.124
		(4.436)	(4.296)
	Mother's weighted baseline literacy score	3.220	2.871
		(2.535)	(2.548)
	Mother's weighted baseline numeracy score	3.612	2.601
		(3.504)	(3.391)
	Child attends school	0.840	0.827
		(0.366)	(0.378)
	Child attends private school	0.155	0.0240
		(0.362)	(0.153)
	Child's weighted baseline literacy score	3.144	2.626
		(2.546)	(2.224)
	Child's weighted baseline numeracy score	3.022	2.730
		(3.018)	(3.116)
Assets and De	* * -		
	First Principal Component of Durables Ownership	1.250	-1.202
		(2.281)	(1.397)
	Does household have electricity	0.808	0.154
		(0.394)	(0.361)
	Roof has cement, stone, metal, beams, or plastic	0.981	0.626
		(0.136)	(0.484)
	Family's largest source of income was self-employed agriculture or rent agriculture	0.517	0.385
		(0.500)	(0.487)
	Family's largest source of income was agricultural wages, regular wages, or irregular wages	0.311	0.543
		(0.463)	(0.498)
	Number of children (14 and younger) in household	4.671	5.038
		(1.777)	(1.657)
	Number of adults (15 and older) in household	3.682	2.980
		(2.099)	(1.395)
Mother Time 1			
	Hours weekly spent on housework	21.27	23.10
		(8.374)	(9.185)
	Hours weekly spent on agricultural, paid, and livestock work	46.11	26.38
		(17.78)	(19.03)
	Hours weekly spent looking after, telling stories to, or playing with kids	5.300	7.456
		(3.945)	(4.886)
	Hours weekly spent helping with homework or reading with kids	1.378	2.385
		(2.458)	(3.876)

Appendix Table 2a: Question-wise Literacy Baseline Means

	Baseline	Endline	Baseline We	eighted Score
	Weight	Weight	Mothers	Children
	(1)	(2)	(3)	(4)
Identify Pictures	2	2	1.495	1.458
			(0.388)	(0.566)
Read Letters	2	2	0.392	0.690
			(0.712)	(0.838)
Read simple words	1	1	0.146	0.251
			(0.341)	(0.416)
Read complex words	1	1	0.131	0.214
			(0.327)	(0.393)
Read paragraph	2	2	0.197	0.250
			(0.596)	(0.662)
Read Story *		2		
Write own name *	1	1	0.565	
			(0.496)	
Write child's name *	1	1	0.117	
			(0.321)	
Write village name *		2		
Literacy score	10	14	3.042	2.863
			(2.547)	(2.390)

Columns 1 and 2 display the weights used in aggregating the test questions.

^{*} Denotes that the question appeared only on the mother test.

Appendix Table 2b: Question-wise Numeracy Baseline Means

	Baseline	Endline	Baseline We	eighted Score
	Weight	Weight	Mothers	Children
	(1)	(2)	(3)	(4)
Subtraction word problem *	1	1	0.402	
			(0.490)	
Division word problem *	1	1	0.228	
			(0.420)	
Read digits 1-9	1	1	0.593	0.626
			(0.471)	(0.466)
Identify digits 1-9	1	1	0.448	0.529
			(0.459)	(0.474)
Read digits 11-20	1	1	0.299	0.449
-			(0.443)	(0.492)
Identify digits 11-20	1	1	0.192	0.349
, ,			(0.371)	(0.457)
Identify numbers 21-99	1	1	0.103	0.163
3			(0.286)	(0.339)
Single digit addition	1	1	0.127	0.266
			(0.333)	(0.442)
Double digit addition	1	1	0.101	0.207
Ç			(0.302)	(0.405)
Single digit subtraction	1	1	0.0781	0.151
0 0			(0.268)	(0.358)
Double digit subtraction	2	2	0.0865	0.124
Ç			(0.407)	(0.483)
Tell time: 10:30 *	0.5	0.5	0.117	
			(0.212)	
Tell time: 1:40 *	0.5	0.5	0.0826	
			(0.186)	
Dial a number read out loud *	1	1	0.238	
			(0.426)	
Numeracy score	14	14	3.096	2.863
-			(3.483)	(3.075)

Columns 1 and 2 display the weights used in aggregating the test questions.

^{*} Denotes that the question appeared only on the mother test.

Appendix Table 3: Mother Question-wise Treatment Effects--Language

	Baseline Mean	Endline Mean	OLS: In	npact of tre	atment in endl	ine
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Identify Pictures	0.747	0.775	0.00275	0.00759	0.0116**	8552
	[0.194]	[0.186]	[0.00477]	[0.00471]	[0.00450]	
Read Letters	0.196	0.173	0.0351***	0.00927	0.0474***	8552
	[0.356]	[0.338]	[0.00593]	[0.00580]	[0.00609]	
Read simple words	0.146	0.115	0.0165***	0.0117**	0.0244***	8552
	[0.341]	[0.308]	[0.00472]	[0.00486]	[0.00499]	
Read complex words	0.131	0.0922	0.00540	0.00973**	0.0108**	8552
	[0.327]	[0.278]	[0.00436]	[0.00460]	[0.00432]	
Read paragraph	0.0985	0.0776	0.00243	0.00714	0.00334	8552
	[0.298]	[0.268]	[0.00421]	[0.00507]	[0.00443]	
Read story		0.0627	0.00303	0.0141	0.00571	8580
		[0.242]	[0.00968]	[0.0112]	[0.00986]	
Write own name	0.565	0.556	0.0794***	0.00835	0.0907***	8552
	[0.496]	[0.497]	[0.0145]	[0.0134]	[0.0143]	
Write child's name	0.117	0.105	0.0212***	0.00537	0.00571	8551
	[0.321]	[0.306]	[0.00668]	[0.00615]	[0.00986]	
Write name of village		0.0856	0.00843	0.0136	0.0159	8580
		[0.280]	[0.0113]	[0.0133]	[0.0116]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Appendix Table 4: Mother Question-wise Treatment Effects--Math

	Mean	Endline Mean	OLS: Impact of treatment in endline
	All Obs	Control	ML CHAMP ML-CHAMP N
	(1)	(2)	(3) (4) (5) (6)
Read digits 1-9	0.593	0.627	0.0967*** 0.0457*** 0.140*** 8552
	[0.471]	[0.460]	[0.0134] [0.0129] [0.0128]
Identify digits 1-9	0.448	0.469	0.0661*** 0.0304*** 0.109*** 8552
	[0.459]	[0.460]	[0.0103] [0.0100] [0.0108]
Read digits 11-20	0.299	0.298	0.0677*** 0.0204** 0.0779*** 8552
	[0.443]	[0.442]	[0.00997] [0.00965] [0.0101]
Identify digits 11-20	0.192	0.182	0.0228*** 0.0130* 0.0399*** 8552
	[0.371]	[0.361]	[0.00677] [0.00737] [0.00752]
Identify numbers 21-99	0.103	0.0964	0.0140*** 0.00636 0.0147*** 8552
	[0.286]	[0.276]	[0.00435] [0.00441] [0.00439]
Single digit addition	0.127	0.129	0.0124
	[0.333]	[0.335]	[0.00752] [0.00727] [0.00762]
Double digit addition	0.101	0.0781	0.00200 0.00555 0.0137** 8552
	[0.302]	[0.268]	[0.00550] [0.00592] [0.00565]
Single digit subtraction	0.0781	0.0692	0.00651 0.00445 0.00592 8551
	[0.268]	[0.254]	[0.00574] [0.00580] [0.00570]
Double digit subtraction	0.0432	0.0580	0.0127* 0.0134* 0.00608 8552
· ·	[0.203]	[0.234]	[0.00674] [0.00689] [0.00615]
Double digit subtraction with carryover		0.0355	0.00662 0.0147* 0.00253 8580
·		[0.185]	[0.00735] [0.00882] [0.00728]
Subtraction word problem	0.402	0.240	0.0239 0.0238 0.0381*** 8552
•	[0.490]	[0.427]	[0.0149] [0.0160] [0.0145]
Division word problem	0.228	0.134	0.0264** 0.0271** 0.0238** 8552
•	[0.420]	[0.340]	[0.0110] [0.0115] [0.0115]
Tell time at 10:30	0.233	0.252	0.00952 0.00460 -0.00427 8552
	[0.423]	[0.434]	[0.0111] [0.0129] [0.0124]
Tell time at 1:40	0.165	0.0767	0.0107
	[0.371]	[0.266]	[0.00771] [0.00773] [0.00765]
Dial a number that is read out to her	0.238	0.261	0.0287** 0.00522 0.0283** 8552
	[0.426]	[0.440]	[0.0111] [0.0119] [0.0112]

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available). Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Appendix Table 5: Child Question-wise Treatment Effects--Language

	Baseline Mean	Endline Mean	OLS: I	mpact of tr	eatment in end	lline
	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Identify Pictures	0.729	0.758	0.000473	0.0104*	0.00966	18282
	[0.283]	[0.285]	[0.00633]	[0.00625]	[0.00603]	
Read Letters	0.345	0.387	0.00110	0.0146	0.0272***	18282
	[0.419]	[0.430]	[0.00892]	[0.00917]	[0.00894]	
Read simple words	0.251	0.271	-0.00517	0.0124	0.0121	18282
	[0.416]	[0.421]	[0.00826]	[0.00862]	[0.00818]	
Read complex words	0.214	0.175	0.00116	0.00983	0.0122**	18282
	[0.393]	[0.352]	[0.00642]	[0.00633]	[0.00618]	
Read paragraph	0.125	0.117	-0.00211	0.00215	0.0134**	18282
	[0.331]	[0.321]	[0.00620]	[0.00621]	[0.00611]	
Read story		0.0757	0.00713	0.00749	0.0101	18282
		[0.265]	[0.00875]	[0.00838]	[0.00823]	

Notes:

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available).

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Appendix Table 6: Child Question-wise Treatment Effects--Math

	Mean	Endline Mean	OLS: In	npact of tre	eatment in endl	ine
_	All Obs	Control	ML	CHAMP	ML-CHAMP	N
	(1)	(2)	(3)	(4)	(5)	(6)
Read digits 1-9	0.626	0.652	0.0249***	0.0227**	0.0397***	18282
	[0.466]	[0.459]	[0.00938]	[0.00925]	[0.00885]	
Identify digits 1-9	0.529	0.560	0.0203**	0.0385***	0.0399***	18282
	[0.474]	[0.474]	[0.00856]	[0.00876]	[0.00861]	
Read digits 11-20	0.449	0.487	0.0195*	0.0275***	0.0482***	18282
	[0.492]	[0.496]	[0.0101]	[0.0102]	[0.00974]	
Identify digits 11-20	0.349	0.387	0.00338	0.0189*	0.0332***	18282
	[0.457]	[0.470]	[0.00936]	[0.00987]	[0.00887]	
Identify numbers 21-99	0.163	0.200	0.00104	0.00285	0.00800	18282
	[0.339]	[0.367]	[0.00724]	[0.00713]	[0.00692]	
Single digit addition	0.266	0.311	0.0130	0.0254**	0.0192*	18282
	[0.442]	[0.463]	[0.0104]	[0.0104]	[0.0102]	
Double digit addition	0.207	0.196	0.0231**	0.00822	0.00790	18282
	[0.405]	[0.397]	[0.00946]	[0.00914]	[0.8800]	
Single digit subtraction	0.151	0.171	0.00757	0.0193**	0.0143*	18282
	[0.358]	[0.377]	[0.00838]	[0.00896]	[0.00842]	
Double digit subtraction	0.0622	0.133	0.0132	0.0153*	0.0131	18282
	[0.241]	[0.339]	[0.00912]	[0.00914]	[0.00918]	
Double digit subtraction with carryover		0.0579	0.0150*	0.00115	0.00637	18282
		[0.234]	[0.00779]	[0.00742]	[0.00693]	

Columns 3, 4 and 5 display estimated coefficients of a regression of the outcome in each row on treatment group dummies, controlling for stratification unit dummies and baseline values (where available). Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01

Appendix Table 7. Heterogeneity in Impact Outcome: Mother Test Scores

						Inter	Interacted Variable					
		State = Bihar	ar	M	Mother Baseline Score	Score		Mother Age		Mo	Mother Education Level	evel
	Literacy	Numeracy	Numeracy Composite	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
ML	0.0810***		0.0657***	0.0903***	0.120***	0.111***	0.0615	0.0610	0.0596	0.0988***	0.122***	0.117***
	[0.0266]	[0.0199]	[0.0183]	[0.0180]	[0.0164]	[0.0148]	[0.0768]	[0.0615]	[0.0563]	[0.0153]	[0.0165]	[0.0142]
CHAMP	0.0681**	0.0740***	0.0773***	0.0370**	0.0659***	0.0557***	0.0933	0.164***	0.138**	0.0264*	0.0544***	0.0459***
	[0.0272]	[0.0196]	[0.0177]	[0.0181]	[0.0150]	[0.0135]	[0.0768]	[0.0601]	[0.0564]	[0.0148]	[0.0156]	[0.0127]
ML-CHAMP	0.0865***	0.0973***	0.0958***	0.125***	0.161***	0.151***	0.179**	0.123*	0.150**	0.131***	0.173***	0.162***
	[0.0265]	[0.0221]	[0.0201]	[0.0181]	[0.0170]	[0.0155]	[0.0792]	[0.0635]	[0.0604]	[0.0163]	[0.0176]	[0.0153]
Variable	0.221***	0.0811	0.169***	1.182***	0.899***	1.059***	-0.000776	-0.00692***	-0.00258**	0.149***	0.0711***	0.0917***
	[0.0825]	[0.0504]	[0.0598]	[0.0260]	[0.0117]	[0.0141]	[0.00158]	[0.00124]	[0.00119]	[0.00871]	[0.00594]	[0.00560]
Variable x ML	0.0201	0.130***	0.0890***	0.0221	-0.00952	-0.00602	0.000921	0.00179	0.00160	-0.0133	-0.00567	-0.0104
	[0.0369]	[0.0321]	[0.0294]	[0.0324]	[0.0171]	[0.0192]	[0.00215]	[0.00181]	[0.00163]	[0.0103]	[0.00814]	[0.00759]
Variable x CHAMP	-0.0561	-0.00996	-0.0375	0.0571*	0.0371**	0.0369**	-0.00166	-0.00298*	-0.00247	0.00518	0.00852	0.00607
	[0.0376]	[0.0299]	[0.0265]	[0.0326]	[0.0159]	[0.0180]	[0.00212]	[0.00172]	[0.00161]	[0.00905]	[0.00772]	[0.00635]
Variable x ML-CHAMP	**88**	0.123***	0.109***	0.0370	-0.0358**	-0.0118	-0.00165	0.00110	0.0000176	-0.0107	-0.0198***	-0.0176***
	[0.0370]	[0.0333]	[0.0304]	[0.0330]	[0.0170]	[0.0181]	[0.00220]	[0.00188]	[0.00174]	[0.00971]	[0.00735]	[0.00644]
N	8552	8552	8552	8552	8552	8552	8552	8552	8552	8528	8528	8528

Each column displays the results of a regression of the mother's normalized literacy, numeracy or composite test score on treatment dummies, the interaction variable indicated, and interactions of the variable and treatment dummies.

Regressions control for baseline test scores (except where the interacted variable is the baseline score itself), and stratum dummies. Standard errors are clustered at the village level. ** at 0.05, *** at 0.01

Appendix Table 8a. Heterogeneity in Impact Outcome: Child Test Scores

						Interac	Interacted Variable					
		State = Bihar		Mot	Mother Baseline Score	core		Mother Age		Moth	Mother Education Level	evel
. 1	Literacy	Numeracy Composite	Composite	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
ML	-0.00299	0.0281	0.0147	-0.00107	0.0385**	0.0207	-0.101	-0.0849	-0.0946	-0.00679	0.0371**	0.0173
	[0.0277]	[0.0243]	[0.0242]	[0.0187]	[0.0179]	[0.0170]	[0.0718]	[0.0635]	[0.0622]	[0.0188]	[0.0182]	[0.0172]
CHAMP	0.0231	0.0511**	0.0386	0.0226	0.0453**	0.0350**	-0.0300	-0.0251	-0.0317	0.0116	0.0402**	0.0275
	[0.0282]	[0.0255]	[0.0252]	[0.0174]	[0.0180]	[0.0167]	[0.0733]	[0.0626]	[0.0620]	[0.0179]	[0.0182]	[0.0170]
ML-CHAMP	0.0438	0.0494**	0.0480**	0.0525***	0.0682***	0.0625***	0.0200	0.121*	0.0800	0.0457**	0.0655***	0.0579***
	[0.0269]	[0.0224]	[0.0223]	[0.0174]	[0.0176]	[0.0162]	[0.0752]	[0.0685]	[0.0669]	[0.0183]	[0.0177]	[0.0166]
Variable	-0.0695	-0.0243	-0.0406	0.0775***	0.0638***	0.0743***	-0.00481***	-0.00235*	-0.00381***	0.0336***	0.0302***	0.0316***
	[0.0667]	[0.0600]	[0.0586]	[0.0125]	[0.0110]	[0.0112]	[0.00152]	[0.00125]	[0.00123]	[0.00610]	[0.00597]	[0.00578]
Variable x ML	0.00153	0.0169	0.00854	0.00496	0.0172	0.00795	0.00303	0.00379**	0.00352*	0.00648	0.00317	0.00452
	[0.0383]	[0.0363]	[0.0349]	[0.0174]	[0.0151]	[0.0151]	[0.00209]	[0.00187]	[0.00180]	[0.00807]	[0.00807]	[0.00766]
Variable x CHAMP	0.0103	-0.00762	0.000133	0.0298*	0.0141	0.0177	0.00180	0.00223	0.00217	0.0147*	0.00461	96800.0
	[0.0393]	[0.0372]	[0.0363]	[0.0178]	[0.0152]	[0.0158]	[0.00209]	[0.00183]	[0.00177]	[0.00844]	[0.00760]	[0.00753]
Variable x ML-CHAMP	0.0182	0.0350	0.0279	0.0217	0.0225	0.0219	0.00103	-0.00164	-0.000539	0.00815	0.00301	0.00552
	[0.0372]	[0.0355]	[0.0337]	[0.0184]	[0.0150]	[0.0155]	[0.00221]	[0.00200]	[0.00193]	[0.00918]	[0.00795]	[0.00803]
N	18282	18282	18282	17823	17823	17823	18282	18282	18282	18234	18234	18234

Each column displays the results of a regression of the child's normalized literacy, numeracy or composite test score on treatment dummies, the interaction variable

indicated, and interactions of the variable and treatment dummies.

Regressions control for baseline test scores (except where the interacted variable is the baseline score itself), and stratum dummies. Standard errors are clustered at the village level.

* denotes significance at 0.10; *** at 0.05; *** at 0.01

Appendix Table 8b. Heterogeneity in Impact Outcome: Child Test Scores

				Int	Interacted Variable	ole			
		Child Age		Chi	Child Baseline Score	ore		Gender	
	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite	Literacy	Numeracy	Composite
	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
ML	0.0256	0.0188	0.0226	-0.00954	0.0385*	0.0165	-0.00873	0.0360	0.0164
	[0.0351]	[0.0331]	[0.0300]	[0.0210]	[0.0198]	[0.0186]	[0.0235]	[0.0231]	[0.0214]
CHAMP	0.0110	0.0306	0.0230	0.0172	0.0460**	0.0325*	0.0370	0.0588**	0.0496**
	[0.0350]	[0.0338]	[0.0316]	[0.0203]	[0.0197]	[0.0186]	[0.0238]	[0.0240]	[0.0222]
ML-CHAMP	-0.0367	0.0389	0.00669	0.0547***	0.0723***	0.0658***	0.0554**	***6090.0	0.0598***
	[0.0326]	[0.0342]	[0.0310]	[0.0198]	[0.0194]	[0.0179]	[0.0225]	[0.0228]	[0.0209]
Variable	0.0412***	0.0685***	0.0486***	0.970***	0.888**	0.951***	0.0481***	0.0829***	0.0651***
	[0.00558]	[0.00551]	[0.00516]	[0.0133]	[0.0118]	[0.0102]	[0.0180]	[0.0185]	[0.0166]
Variable x ML	-0.00456	0.00283	-0.000608	0.00909	0.00940	0.00925	0.0137	0.00442	0.00707
	[0.00597]	[0.00548]	[0.00487]	[0.0201]	[0.0161]	[0.0150]	[0.0248]	[0.0253]	[0.0226]
Variable x CHAMP	0.00265	0.00259	0.00244	0.0195	-0.0173	0.000399	-0.0156	-0.0225	-0.0207
	[0.00603]	[0.00546]	[0.00514]	[0.0198]	[0.0163]	[0.0150]	[0.0263]	[0.0257]	[0.0237]
Variable x ML-CHAMP	0.0143**	0.00447	*06800.0	0.0193	-0.0302*	-0.00619	-0.00200	0.0175	0.00862
	[0.00555]	[0.00548]	[0.00488]	[0.0184]	[0.0166]	[0.0142]	[0.0263]	[0.0257]	[0.0239]
N	18281	18281	18281	14575	14575	14575	18282	18282	18282

Regressions control for baseline test scores (except where the interacted variable is the baseline score itself), and stratum dummies. Each column displays the results of a regression of the child's normalized literacy, numeracy or composite test score on treatment dummies, the interaction variable indicated, and interactions of the variable and treatment dummies.

Standard errors are clustered at the village level.

^{*} denotes significance at 0.10; ** at 0.05; *** at 0.01