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T
 he task addressed in this article is the localization 
of an unknown number of targets using a mobile 
robot equipped with a visual sensor. The estimation 
of the number of targets and their locations is done 
using a recursive Bayesian filter over random finite 

sets (RFSs), and the position of the robot is assumed to be 
known. We present a computationally tractable control law 
whereby the robot follows the gradient of mutual information 
between target locations and detections. The method is 
verified through real-world experimental trials, reliably 
detecting multiple targets and ignoring clutter obstacles.

A Game of Fetch  
The ability for robots to locate and interact with objects of 
interest within an unstructured environment is very impor-

tant as robots move out of controlled settings. In this article, 
we examine a prototypical example of playing fetch with a 
robot. First the robot is shown a new object and then it must 
go into the field and locate a small yet potentially unknown 
number of these objects that are scattered throughout the 
environment. After locating all of the objects, the robot col-
lects them and returns them to the user. Such behavior has 
obvious extensions to household robots, inspection tasks, and 
search and rescue. Using real-world experiments with the 
robot shown in Figure 1, we present results showing the local-
ization of a variety of objects, focusing on the control and esti-
mation rather than the collection and return tasks.

The use of Bayesian filtering to estimate unknown and 
uncertain environments is well established, with many current 
methods summarized by Thrun et al. [19]. In particular, the 
problem of multiobject tracking has been addressed in several 
contexts, including simultaneous localization and mapping 
(SLAM), computer vision, and radar-based tracking, using a 
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variety of methods. To handle an unknown number of objects 
in many traditional SLAM implementations, a random vector 
of a specified size is initialized, and the size of this vector is 
increased when there is sufficiently high confidence that a new 
object has been detected [19]. This approach is further com-
plicated by unknown data associations, i.e., the correspon-
dence between a sensor measurement and a specific object, 
with many approaches only keeping the maximum likelihood 
correspondence or maintaining multiple filters for different 
correspondence hypotheses. 

Our approach to the task of estimation is based on finite set 
statistics (FISST), a rigorous probabilistic framework that nat-
urally suits problems where the dimension of the state space, 
i.e., the number of objects and detections, is unknown and 
possibly time varying. This was developed by Mahler [11] and 
includes several advantages over traditional methods, most 
notably removing the need to explicitly consider data associa-
tions. The primary tool in this field is the probability hypothe-
sis density (PHD) filter [11], which tracks the first moment of 
the distribution over RFSs of object locations. The PHD filter 
has been used to effectively track an unknown number of 
moving objects using stationary sensors by Vo et al. [21] and 
Vo and Ma [20], among others. Recently, the use of RFSs was 
adopted in mobile robotics for feature-based mapping by 
Mullane et al. [13], [14]. Lundquist et al. [10] used this to cre-
ate an obstacle map for a vehicle. Our approach differs from 
these works in that we do not use the PHD filter. Instead, we 
run a Bayesian filter over the distribution of RFSs under the 
assumption that the number of objects is small. 

Using this estimate of object locations, the robot then 
moves to maximize the immediate information gain, a strat-
egy sometimes called information surfing [3]. Grocholsky [7] 
and Bourgault et al. [2] use mutual information for object 
tracking and exploration tasks, but they do not use an ana-
lytic computation of the gradient. Hoffmann and Tomlin [8] 
use mutual information to localize objects, using particle fil-
ters to represent object locations and an iterative method to 
locally maximize mutual information around the sensor 
position. Julian et al. [9] use the gradient of mutual informa-
tion to drive multiple robots for state estimation tasks. All of 
these previous works only consider a known number of 
objects. Ristic and Vo [15] and Ristic et al. [16] consider the 
problem of localizing an unknown number of objects using a 
single robot by maximizing the expected RŽnyi divergence, a 
generalization of mutual information, to select between a 
discrete set of actions. Our approach uses the same gradient 
of mutual information between the sensor readings and 
object positions as [9], moving the sensor footprint to follow 
this gradient direction.

Problem Formulation
The robot moves about in a bounded, planar environment. 
The robotÕs pose within that environment consists of its posi-
tion and orientation. Although the robot moves about in con-
tinuous space, the environment is discretized into a finite col-
lection of cells for the robot to perform the sensing and 

estimation tasks. In this discrete representation, an RFS is a 
set of labels of occupied cells. The set of all such sets contains 
every combination from zero to N  cells, with N  being the 
maximum number of possible objects that are to be tracked 
in the environment. 

As is evident from this construction, the number of such 
RFSs will become intractably large when either the total num-
ber of cells or the maximum number of objects becomes 
large. The former is mitigated by using an adaptive discretiza-
tion of the environment based on a quadtree data structure 
while the latter is not an issue as we are considering small 
numbers of objects. The positions of these objects are corre-
lated: discovering targets in one region of the environment 
drives down the likelihood of objects being in other regions 
due to the assumption that the number of targets is small 
compared with the number of cells. On the other hand, the 
PHD filter allows for tracking a larger number of objects by 
making the potentially restrictive assumption that their posi-
tions are independent. In addition, it is much more difficult to 
capture the correlations in object locations with the feature-
based representations used for the PHD filter, e.g., weighted 
particle sets and mixtures of Gaussians. 

In our quadtree representation, cells are initialized to be 
large, and only when the probability of occupancy exceeds 

Figure 1.  The robot platform used in this article, consisting of:  
1) a Segway base, 2) object scoop, 3) two Mac Minis, 4) front-
facing camera for object detection, 5) horizontal-scanning light 
detection and ranging (LIDAR) for obstacle avoidance, 6) stereo 
camera for visual odometry, and 7) vertical-scanning LIDAR for 
pitch estimation on uneven terrain. 
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some threshold (near one) do we divide the cell into four sub-
cells, as shown in Figure 2. This refinement procedure contin-
ues until cells reach a minimum size, chosen to be near the 
standard deviation of the measurement noise, as targets can-
not be located with significantly higher precision even in a 
continuous representation of the environment. If a large cell is 
divided due to a series of false positive detections, we also 
allow the fusion of four empty cells back into the larger parent 
cell, as shown in Figure 2. These cell refinement and merging 
procedures are done in such a way as to keep the probability of 
an object being within the parent cell constant, where the 
refinement initializes all subcells to have a uniform probability 
of occupancy. See [15] for pseudocode descriptions of these 
cell operations. 

Sensing
The sensor model used for multiobject problems must con-
sider the possibility of missing an object within the footprint 
(i.e., a false negative), detecting an object that is not there 
(i.e., a false positive or clutter detection), or returning noisy 
estimates of true objects. To this end, we use the general 
form of the FISST measurement model with Poisson clutter 
detections [11] as follows: 
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where ( )zl  is the clutter PHD, ( ; )p x qd  is the detection likeli-
hood, ( ; )g z x q;  is the single-object measurement model, 
: { , , } { , , , }n m1 0 1"f fi  is a data association, and q is the 

pose of the robot. Note that ( )j 0i =  means that the object is 
not detected, i.e., a false negative, and any element of 
{ , , }m1 f  not in the range of ({ , , })n1 fi  is a false positive. 
Also the pose, ,q  is shown to emphasize the dependence of 
the measurements on the robot’s pose. Intuitively, this func-
tion averages over all possible data associations. This is not 
prohibitively large for small numbers of objects n and mea-
surements m where in a single data association, ,i  each mea-
surement z Z!  is either said to originate from a target 
x X!  or be due to a false positive. The first two terms in (1) 

represent false positives, the next term represents false nega-
tives, and the final term represents true detections. 

In our case, the robot is equipped with a front-facing cam-
era (label 4 from Figure 1) for object detection, which sees a 
finite subset of the environment that we call the footprint. 
Mathematically, the footprint is the set of cell labels that are at 
least partially visible by the robot. The system runs a tem-
plate-matching algorithm to detect objects of interest within 
the image using shape and color and combines this with the 
pitch estimate to calculate the position of the objects relative 
to the robot. It then returns a list of cells occupied by objects 
with a sufficiently good match. 

To determine models for the detection and measurement 
likelihoods, we conduct a set of experiments placing objects at 
known locations in front of the robot and collecting measure-
ments. The results of this are shown in Figure 3 overlaid on 
the sensor footprint. Below this is the detection likelihood 
function, ( ; )p x qd c , where xc represents a continuous domain 
position. The single-target measurement model is the posi-
tion of the target corrupted by Guassian noise, ( ; )g z x qc c;  

( , ),x 0N R= +  and the noise covariance R is found from 
this training data.

Due to our discrete representation of the environment, 
these continuous domain detection and measurement models 
must be converted into a discrete form. Since the target loca-
tion is uniform within a cell, we may simply average the 
detection model over the cell domain to obtain the detection 
likelihood for a cell

Figure 3. (a) The experimental results showing the true (blue 
circles) and estimated (red xs) object positions as measured in 
the body frame of the robot. This is superimposed on the sensor 
footprint and represents approximately 600 data points. (b) The 
detection likelihood as a function of the distance to the robot. 
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Figure 2. A simple 2 #  2 grid example where the shading 
indicates the probability that a cell is occupied, with white being 
zero and black being one. (a) A cell-refinement procedure where 
a large occupied cell is divided into four smaller cells with equal 
occupancy probability in each. (b) A grid-merging procedure 
where four empty subcells with the same parent cell are merged 
to form the parent cell. 
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which may be approximated by a finite sum over representative 
points within the cell. This same process may be used to find 
the probability of a measurement originating from a target in a 
given cell (of the smallest resolution), where any cell greater 
than three standard deviations from the detection is set to zero 
likelihood. This detection grid is then convolved with a candi-
date target cell, x, a process similar to Gaussian blurring in 
image processing. This process is shown in Figure!4. Note that 
this approach requires the small cell measurement model to 
have finite support, which could be taken as the bounds of the 
environment if the sensor is able to see the entire environment. 

Finally, the clutter is modeled as a Poisson RFS, where the 
number of false positive detections follows a Poisson distribu-
tion with mean ( ) ,z dzn l= #  and the clutter detections are 
independent and identically distributed from the PHD ( )zl . 
Without any prior knowledge, the most natural choice is to 
set ( )zl  to be uniform within the sensor footprint and zero 
outside, as no detections can occur outside the footprint. 

Multiobject Estimation
In the scenario under consideration, the robot only needs to 
estimate the locations of targets as we assume that the robot is 
well localized, i.e., the uncertainty in the pose estimate from 
the wheel and visual odometry is small compared with the 
uncertainty in sensing. As the robot moves about the environ-
ment and collects measurements, a Bayesian filter keeps track 
of its current belief about the state of the environment. The 
formulation of such a filter is standard

 ( )
( ; ) ( )

( ; ) ( )
,p X Z

p Z X q p X
p Z X q p X

X X

;
;

;
=

!
/  (2)

requiring only the measurement model (1) and a prior belief, 
which in general is initialized to the uniform distribution. 

However, there are several quantities of interest that we 
may extract from this distribution over RFSs. In particular, we 
can find the probability that a given cell is occupied by adding 
the probability of all RFS realizations that contain that cell 
label; we can find out whether the cell is empty by taking the 
complement. This idea can be easily extended to find the 
probability over larger subsets of the environment by simply 
adding all RFS realizations that differ only outside the region 
of interest. Another quantity that may be of interest is the 
number of objects within the environment. The distribution 
over object number may be calculated by adding the proba-
bility of all RFS realizations containing a particular number of 
cells. Then, using the distribution, we can extract statistics 
such as the mean and variance of the estimate. 

Information-Based Control
Mutual information is a concept defined by Shannon [18] that 
attempts to quantify the amount that can be learned about 
one random variable by observing another and is defined as
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where x is the space of all object locations X, z is the space 
of measurements Z, and q is again the pose of the robot. 
The measurement term within the log is computed through 
marginalization 
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In our case, we seek to learn the object positions, which are 
only indirectly observable through sensor measurements. 
Another interpretation of mutual information is the expected 
difference, as measured by the KullbackÐLeibler divergence, 
between the current and next estimates of the object positions. 
In this light, we wish for the robot to move to the location where 
the measurement is expected to change the estimate most.

Computational Considerations
One drawback of using mutual information is that it is compu-
tationally expensive: if one were to sum up all possible mea-
surement and object location RFSs, the computation would be 
prohibitively slow to use for real-time localization of objects. To 
this end, we define a coarse sensor model based on the detec-
tion likelihood that returns a single binary reading, and so the 
integration over Z is reduced to a sum of two terms: either the 
robot sees at least one object within the footprint or it sees 
nothing. This coarse model can be thought of as the probability 
of returning a good measurement. Therefore, maximizing this 
should lead to faster localization of the objects, a concept we 
have used in other work [4], [5]. This differs from the approach 
by Ristic and Vo [15], who use the full sensor model but sample 
from it to achieve computational tractability. 

Deriving this binary model is straightforward as the only 
way to get no detections in the footprint is to not have any 
false positive readings and to not see any objects within the 
footprint. In other words,
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Figure 4.  A simple large cell, with uniform probability of  
the object being in each subcell, is convolved  with the small 
cell measurement model. The resulting array can then  
be converted to the large cell model by simply taking the  
sum of the likelihood in each of the subcells. The relative sizes 
of each cell are to scale, and the shading corresponds to the  
likelihood, with values outside the displayed cells being 
implicitly zero.
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Then, the probability of at least one detection is simply the 
additive complement of this. 

For the controller, we use a different detection model than 
that used in the estimation as the piecewise-linear model in 
Figure 3 has a piecewise-constant gradient that always points 
directly backwards. The controller detection model, shown in 
Figure 5, is a truncated Gaussian in polar coordinates. This 
functional form was chosen for two primary reasons: 1) it is 
differentiable everywhere except on the edge of the footprint 
and 2) it pushes the robot to center the camera (i.e., the peak 
in the model) on regions of high uncertainty. 

We can also reduce the effective number of possible object 
RFSs by exploiting the fact that sensors have a finite footprint, 
as this means that robots cannot distinguish between RFSs 
that differ only outside the footprint. Thus, we can precom-
pute the distribution over possible RFSs within the footprint, 
as this will be, in general, much smaller than the total number 
of RFSs within the environment. This reduced set is then used 
to compute mutual information.

Gradient Controller
In (4), we have used the definition of conditional probability to 
write the expression using the binary sensor model ( ; )p Z X q;  
and filter estimate ( ) .p X  Recall that the sensor model implic-
itly depends on the position of the robot due to the finite foot-
print, directionality of the sensor, and nonuniform detection 
likelihood. Thus, taking the gradient with respect to a vector ,v
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yields a meaningful result and moves the robot in the direction 
of maximum local information gain, following that for a fixed 
distance. See [17] for a derivation of (7). The vector, ,v  could be 
taken to be the robotÕs pose, ,q  but a more natural choice for our 
problem is the location of the camera center projected onto the 
ground plane, i.e., the peak of the binary sensor model in Fig-
ure!5. The robot then moves in such a way that the camera 

center follows this gradient direction, effectively directing the 
sensor field of view toward regions of high uncertainty. 

In the event that the estimate has nearly converged within 
the footprint of the sensor, the mutual information and its 
gradient will be near zero, so the local, greedy controller may 
get stuck. Longer time-horizon path planning is the best way 
to prevent this. However, even with the reductions in com-
plexity, mutual information is prohibitively expensive for such 
searches. Instead, when mutual information is below some 
threshold, ,1I %x  the robot drives toward the cell with the 
highest entropy in the probability of occupancy, i.e., with 
probability closest to 0.5. The intuition here is that, because 
maximizing mutual information is equivalent to maximizing 
the expected reduction in entropy due to a sensor reading, 
driving toward the cell with the highest uncertainty will still 
lead to the desired behavior. Note that this choice ignores 
uncertainty in sensing and only considers marginal distribu-
tions of ( )P X  over individual cells, so while it is sufficient to 
perturb the robot away from local extrema in the greedy con-
troller, it will not perform as well for local searches. 

Test Results
The platform considered in this article, shown in Figure 1, is a 
differential drive robot built on a Segway platform with a maxi-
mum speed of 4.4 m/s but limited to 0.55 m/s for our trials. It is 
equipped with a single front-facing camera, which detects objects 
using shape and color matching. There is also a pair of stereo 
cameras for visual odometry, a vertical-scanning light detection 
and ranging (LIDAR) for pitch estimation to correct distance 
measurements, wheel encoders for odometry, and a horizontal 
scanning LIDAR for obstacle detection. Onboard processing is 
done using two Mac Mini computers running Ubuntu and the 
Robot Operating System [1], each with 2.0-GHz Intel core i7 
processors and 4 GB of RAM, mounted to the robot chassis. 
While the platform is outfitted with an extensive sensor suite, the 
front-facing color camera yields the best performance for object 
detection since the black-and-white stereo cameras are not as 
reliable and the LIDAR cannot detect small objects on the 
ground. For more information on the platform, see [6]. 

To test the performance of our proposed algorithm, we 
conduct a series of field tests on the robot. In general, visual 
sensors can be very noisy, returning false positives due to 
other objects in the environment (e.g., if using shape detec-
tion to locate a ball, the wheel of a car is a potential false posi-
tive) and false negatives due to variable lighting conditions 
and occlusions. To take this into account, we set the expected 
clutter rate to .0 05n =  and the probability of a false negative 
to .P 0 05fn =  based on empirically observed performance. In 
the binary sensor model (6), the peak is located 7 m directly 
in front of the robot and standard deviations 2 m in the radial 
direction and 0.5 rad in the angular direction. The sensor has 
a 10-m range and a 40¡ field of view. 

Experimental Results
The environment used for field tests with the robot, shown in 
Figure 6(a), is the simplest example of a nontrivial topology in 

Figure 5.  The experimental results showing the true and 
estimated object positions as measured in the body frame of the 
robot. The angular bias appears to be independent of the true 
position while the distance error is smallest for the objects placed 
at m.x 8=  Performance significantly degrades at the mx 12=  
line. This is overlaid on the binary detection model, where darker 
shading indicates a higher probability of a measurement. 
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the prior belief. In this scenario, the robot begins at the center 
of the environment and searches for targets in an annular 
region surrounding it, where the shaded cells have nonzero 
probability of occupancy in the prior. We tested two separate 
cases: 1) where there is a single object in the environment and 
the robot believes that there are either zero or one target within 
the environment and 2) where there are two targets (red dog 
bone toys) and the robot believes there are up to four. In the 
second case, there were also multiple false targets (dog toys of 
varying color and shape) placed within the environment. 

Single Object
We performed 12 trials with random initial positioning of the 
object. Since the total number of RFSs is small (the number of 
cells plus the empty set), we elected to use a fixed grid with 
1-m resolution. To see the progression of information gain, the 
resulting time history of the entropies is shown in Figure 6(b). 

In ten runs, the robot correctly located the object within the 
precision of the grid. Initially, the entropy decreases slowly as 
the robot sweeps out some of the area. The sudden drop is due 
to the fact that the number of objects is limited to one; this 
causes the distribution to rapidly converge when multiple 
detections are made in the same cell as that means that the 
object cannot be in any of the other cells. The variation in time 
to convergence is due to the random placement of the object, 
with short times corresponding to the object being placed 
nearer the initial footprint of the robot. The robot failed to 
localize the object after a full sweep of the environment in two 
runs due to failures in the perception system, which are likely 
due to adverse lighting conditions. The system was able to 
recover in one such instance, shown by the dark blue line in 
Figure 6(b), nearly converging to the incorrect cell before 
being switching to the correct cell, causing the large spike in 
entropy near the end of the trial. 

Figure 6.  The sample results from the experimental data. (a) A 
typical path taken by the robot, starting from the center of the 
annulus, is indicated by the solid line, and the final position of 
the robot and its sensor footprint are indicated by the dashed 
line. The true object location is indicated by the red diamond, 
and clutter objects are indicated by green circles. The shaded 
cells correspond to the nonzero prior probability of the cell 
containing an object. (b) The time history of the entropy of the 
distribution of object locations over 12 representative runs. 
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Figure 7.  The sample results from the experimental data. (a) A 
typical path taken by the robot, starting from the center of the 
annulus, is indicated by the solid line. The true object locations 
are indicated by the red diamonds. Shaded cells correspond to 
the nonzero prior probability of the cell containing an object. 
(b) The time history of the entropy of the distribution of object 
locations over ten representative runs. 
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Two Objects
In this case, the robot began with a coarse grid of 5-m cells 
with a minimum resolution of 0.625 m. The trials took 
noticeably longer to complete as the robot must sweep out the 
entire area to determine that there are no targets present in 
the cells that are unexplored. This is a result of the maximum 
number of possible targets (four) being greater than the true 
number of targets (two). It also means that in this scenario, 
we do not expect to see the sudden drop in entropy at the end 
of a trial as we did with a single object. The time evolution of 
the entropy is shown in Figure 7(b), where the units are given 
in bits times square meters to take the variable cell size into 
account as a big cell contains a larger amount of the total 
uncertainty in an environment than a small cell with the same 
probability of occupancy. The initial true and clutter object 
locations were random, in some cases with true objects within 
one meter of each other. In the ten trials, the robot only failed 
to detect one of the 20 total targets, and this failure was due to 
a sudden change in the lighting conditions outdoors. The 
results of a typical run are shown in Figure 7(a), where the 
left-most target was not perfectly localized (the cell to the 
right has a nonzero probability of occupancy) due to the 
object being located on the cell boundary. However, over the 
course of these experimental runs (1Ð10!min), the robot 
experienced insignificant drift in the position estimate. This 
may become an issue for much larger environments where 
the robot is in use for longer periods of time. The robot also 
never localized a clutter object despite several isolated false 
positive detections. 

Conclusions
In this article, we proposed a method to drive a robot 
equipped with a visual sensor to localize an unknown num-
ber of objects in an environment by following the gradient of 
mutual information between the object locations and the 
probability of detection. The number and locations of objects 
are modeled using RFSs over an adaptive discretization of 
the environment, allowing for arbitrarily fine resolution 
while keeping the computations tractable. A recursive Bayes-
ian filter maintains the robotÕs belief of object locations. The 
complexity is further reduced by noting that real sensors 
have a limited field of view in the environment. Thus, sensor 
measurements will be conditionally independent of objects 
that are not visible. Finally, the experimental results illustrate 
the performance of our proposed algorithm by reliably find-
ing the true object locations. It should also be possible to 
include multiple robots by combining the techniques from 
this article with those from [4] and [5]. 
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