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task addressed in this article is the localizatitant as robots move out of controlled settings. In this article,
of an unknown number of targets using a mobilee examine a prototypical example of playing fetch with a
robot equipped with a visual sensor. The estimati@obot. First the robot is shown a new object and then it must
of the number of targets and their locations is dorgd into the field and locate a small yet potentially unknown
using a recursive Bayesian filter over random finitumber of these objects that are scattered throughout the
sets (RFSs), and the position of the robot is assumed teinaronment. After locating all of the objects, the robot col
known. We present a computationally tractable control laects them and returns them to the user. Such behavior has
whereby the robot follows the gradient of mutual informationbvious extensions to household robots, inspection tasks, and
between target locations and detections. The methodsearch and rescue. Using real-world experiments with the
verified through real-world experimental trials, reliablyobot shown in Figure 1, we present results showing the local
detecting multiple targets and ignoring clutter obstacles.  ization of a variety of objects, focusing on the control and esti
mation rather than the collection and return tasks.
A Game of Fetch The use of Bayesian filtering to estimate unknown and
The ability for robots to locate and interact with objects ahcertain environments is well established, with many current
interest within an unstructured environment is very impormethods summarized by Thrun et [d9]. In particular, the
problem of multiobject tracking has been addressed in several
Digital Object Identiier 10.1100/MRA.2013.2205047 contexts, including simultaneous localization and mapping
Date of publication: 8 May 2014 (SLAM), computer vision, and radar-based tracking, using a
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variety of methods. To handle an unknown number of obje@stimation tasks. In this discrete representation, an RFS is a
in many traditional SLAM implementations, a random vectaet of labels of occupied cells. The set of all such sets contains
of a specified size is initialized, and the size of this vectagviery combination from zero thl cells, withN being the
increased when there is sufficiently high confidence that a neaximum number of possible objects that are to be tracked
object has been detectd®]. This approach is further cem in the environment.
plicated by unknown data associations, i.e., the correspon As is evident from this construction, the number of such
dence between a sensor measurement and a specific olifgt3s will become intractably large when either the total num
with many approaches only keeping the maximum likelihodzker of cells or the maximum number of objects becomes
correspondence or maintaining multiple filters for differenfarge. The former is mitigated by using an adaptive diseretiza
correspondence hypotheses. tion of the environment based on a quadtree data structure
Our approach to the task of estimation is based on finite gdtile the latter is not an issue as we are considering small
statistics (FISST), a rigorous probabilistic framework that naumbers of objects. The positions of these objects are corre
urally suits problems where the dimension of the state spadated: discovering targets in one region of the environment
i.e., the number of objects and detections, is unknown adives down the likelihood of objects being in other regions
possibly time varying. This was developed by M@hlgéiand due to the assumption that the number of targets is small
includes several advantages over traditional methods, nmsnpared with the number of cells. On the other hand, the
notably removing the need to explicitly consider data assoétiD filter allows for tracking a larger number of objects by
tions. The primary tool in this field is the probability hypethemaking the potentially restrictive assumption that their posi
sis density (PHD) filter [11], which tracks the first moment dfons are independent. In addition, it is much more difficult to
the distribution over RFSs of object locations. The PHD filteapture the correlations in object locations with the feature-
has been used to effectively track an unknown numberbaised representations used for the PHD filter, e.g., weighted
moving objects using stationary sensors by Vo et al. [21] quaditicle sets and mixtures of Gaussians.
Vo and Ma [20], among others. Recently, the use of RFSs wda our quadtree representation, cells are initialized to be
adopted in mobile robotics for feature-based mapping krge, and only when the probability of occupancy exceeds
Mullane et al. [13], [14]. Lundquist et al. [10] used this to cre
ate an obstacle map for a vehicle. Our approach differs from
these works in that we do not use the PHD filter. Instead,
run a Bayesian filter over the distribution of RFSs under 1
assumption that the number of objects is small.
Using this estimate of object locations, the robot thg
moves to maximize the immediate information gain, a-stré
egy sometimes callémformation surfing3]. Grocholsky [7] &
and Bourgault et al. [2] use mutual information for obje
tracking and exploration tasks, but they do not use an ai =
lytic computation of the gradient. Hoffmann and Tomlin [SFE &
use mutual information to localize objects, using particle f&
ters to represent object locations and an iterative methook
locally maximize mutual information around the sensq:
position. Julian et al. [9] use the gradient of mutual inferm
tion to drive multiple robots for state estimation tasks. All ¢
these previous works only consider a known number
objects. Ristic and Vo [15] and Ristic et al. [16] consider
problem of localizing an unknown number of objects usings
single robot by maximizing the expected RZnyi divergence

discrete set of actions. Our approach uses the same gracis
of mutual information between the sensor readings a
object positions as [9], moving the sensor footprint to follo®
this gradient direction.

Problem Formulation B A TR R e
The r0b0t~moves about in a bounded, planar envwonmemgure 1. The robot platform used in this article, consisting of:
The robotOs pose within that environment consists of its poga Segway base, 2) object scoop, 3) two Mac Minis, 4) front-
tion and orientation. Although the robot moves about in-corf2cing camera for object detection, 5) horizontal-scanning light

. . . . . .. detection and ranging (LIDAR) for obstacle avoidance, 6) stereo
tinuous space, the environment is discretized into a finite cgjmera for visual odometry, and 7) vertical-scanning LIDAR for
lection of cells for the robot to perform the sensing amnich estimation on uneven terrain.
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Figure 2. A simple 2 # 2 grid example where the shading
indicates the probability that a cell is occupied, with white being
zero and black being one. (a) A cell-refinement procedure where
a large occupied cell is divided into four smaller cells with equal
occupancy probability in each. (b) A grid-merging procedure
where four empty subcells with the same parent cell are merged
to form the parent cell.

some threshold (near one) do we divide the cell into four sub-
cells, as shown in Figure 2. This refinement procedure contin-
ues until cells reach a minimum size, chosen to be near the
standard deviation of the measurement noise, as targets can-
not be located with significantly higher precision even in a
continuous representation of the environment. If a large cell is
divided due to a series of false positive detections, we also
allow the fusion of four empty cells back into the larger parent
cell, as shown in Figure 2. These cell refinement and merging
procedures are done in such a way as to keep the probability of
an object being within the parent cell constant, where the
refinement initializes all subcells to have a uniform probability
of occupancy. See [15] for pseudocode descriptions of these
cell operations.

Sensing

The sensor model used for multiobject problems must con-
sider the possibility of missing an object within the footprint
(i.e., a false negative), detecting an object that is not there
(i.e., a false positive or clutter detection), or returning noisy
estimates of true objects. To this end, we use the general
form of the FISST measurement model with Poisson clutter
detections [11] as follows:

P(Z|X:q) =e*"<H K(Z))(H 1 —pa(x;q))

zeZ xeX

pa(x;9)g(zog) | xj59)
X(%:;el;[#o K (zo)) (1 — pa(x;3q)) ) M

where « (2) is the clutter PHD, pa(x;q) is the detection likeli-
hood, g(z;x;q) is the single-object measurement model,
i{L,f ,n}" {01, ,m}isa data association, and q is the
pose of the robot. Note that i (j) = O means that the object is
not detected, i.e., a false negative, and any element of
{1,f ,m} not in the range of i ({1,f ,n}) is a false positive.
Also the pose, g, is shown to emphasize the dependence of
the measurements on the robot’s pose. Intuitively, this func-
tion averages over all possible data associations. This is not
prohibitively large for small numbers of objects N and mea-
surements M where in a single data association, i , each mea-
surement z! Z is either said to originate from a target
x ! X or be due to a false positive. The first two terms in (1)
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Figure 3. (a) The experimental results showing the true (blue
circles) and estimated (red xs) object positions as measured in
the body frame of the robot. This is superimposed on the sensor
footprint and represents approximately 600 data points. (b) The
detection likelihood as a function of the distance to the robot.

represent false positives, the next term represents false nega-
tives, and the final term represents true detections.

In our case, the robot is equipped with a front-facing cam-
era (label 4 from Figure 1) for object detection, which sees a
finite subset of the environment that we call the footprint
Mathematically, the footprint is the set of cell labels that are at
least partially visible by the robot. The system runs a tem-
plate-matching algorithm to detect objects of interest within
the image using shape and color and combines this with the
pitch estimate to calculate the position of the objects relative
to the robot. It then returns a list of cells occupied by objects
with a sufficiently good match.

To determine models for the detection and measurement
likelihoods, we conduct a set of experiments placing objects at
known locations in front of the robot and collecting measure-
ments. The results of this are shown in Figure 3 overlaid on
the sensor footprint. Below this is the detection likelihood
function, pd(Xg0), where Xc represents a continuous domain
position. The single-target measurement model is the posi-
tion of the target corrupted by Guassian noise, g( % ; Xg0Q)
= x+ N (O,R), and the noise covariance R is found from
this training data.

Due to our discrete representation of the environment,
these continuous domain detection and measurement models
must be converted into a discrete form. Since the target loca-
tion is uniform within a cell, we may simply average the
detection model over the cell domain to obtain the detection
likelihood for a cell



#p (X ) ke xzg= ! | pxzglog PXZ9 @

pd(X,Q) =X #dx , X! xZ! z m
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which may be approximated by a finite sum over representative

points within the cell. This same process may be used to fifibrex is the space of all object locatiofisz is the space

the probability of a measurement originating from a target inoh measurementZ, andq is again the pose of the robot.

given cell (of the smallest resolution), where any cell gredtee measurement term within the log is computed through

than three standard deviations from the detection is set to zerarginalization

likelihood. This detection grid is then convolved with a candi

date target cell, a process similar to Gaussian blurring in p(za)= 1 pz;xa)pX). ®)

image processing. This process is shown in FHgidete that XX

this approach requires the small cell measurement model tan our case, we seek to learn the object positions, which are

have finite support, which could be taken as the bounds of thidy indirectly observable through sensor measurements.

environment if the sensor is able to see the entire environmeAnother interpretation of mutual information is the expected
Finally, the clutter is modeled as a Poisson RFS, wheredifference, as measured by the KullbackbLeibler divergence,

number of false positive detections follows a Poisson distrilmetween the current and next estimates of the object positions.

tion with meann = # (2) dz, and the clutter detections areln this light, we wish for the robot to move to the location where

independent and identically distributed from the PHIY). the measurement is expected to change the estimate most.

Without any prior knowledge, the most natural choice is to

setl (2) to be uniform within the sensor footprint and zeraComputational Considerations

outside, as no detections can occur outside the footprint. One drawback of using mutual information is that it is compu

tationally expensive: if one were to sum up all possible mea

Multiobject Estimation surement and object location RFSs, the computation would be

In the scenario under consideration, the robot only needspmhibitively slow to use for real-time localization of objects. To

estimate the locations of targets as we assume that the rolihtssend, we define a coarse sensor model based on the detec

well localized, i.e., the uncertainty in the pose estimate frtiom likelihood that returns a single binary reading, and so the

the wheel and visual odometry is small compared with timegration overZ is reduced to a sum of two terms: either the

uncertainty in sensing. As the robot moves about the enviranbot sees at least one object within the footprint or it sees

ment and collects measurements, a Bayesian filter keeps tnatiing. This coarse model can be thought of as the probability

of its current belief about the state of the environment. Théreturning a good measurement. Therefore, maximizing this

formulation of such a filter is standard should lead to faster localization of the objects, a concept we
p(Z;X:0)p(X) have used in other work [4], [5]. This differs from the approach
P(X:2) =7 0(Z: X p(X)’ (2) by Ristic and Vo [15], who use the full sensor model but sample
Xt X ren

from it to achieve computational tractability.

requiring only the measurement model (1) and a prior belief, Deriving this binary model is straightforward as the only
which in general is initialized to the uniform distribution. ~ way to get no detections in the footprint is to not have any

However, there are several quantities of interest that fatse positive readings and to not see any objects within the
may extract from this distribution over RFSs. In particular, vieotprint. In other words,
can find the probability that a given cell is occupied by adding o0
the probability of all RFS realizations that contain that cell ~ P(Z]|= Q;Xig)= €". é’(l' R Q) (©)
label; we can find out whether the cell is empty by taking the X'
complement. This idea can be easily extended to find *-~
probability over larger subsets of the environment by simj
adding all RFS realizations that differ only outside the regi
of interest. Another quantity that may be of interest is tt " =
number of objects within the environment. The distributiot
over object number may be calculated by adding the pro

bility of all RFS realizations containing a particular number X g (zbx,) g (zbx)
cells. Then, using the distribution, we can extract statist __
such as the mean and variance of the estimate. Figure 4. A simple large cell, with uniform probability of

the object being in each subcell, is convolved with the small
) cell measurement model. The resulting array can then
Information-Based Control be converted to the large cell model by simply taking the
Mutual information is a concept defined by Shannon [18] thagm of the likelihood in each of the subcells. The relative sizes

- f each cell are to scale, and the shading corresponds to the
attempts to quamlfy the amount that can be learned ab(ﬁHflihood, with values outside the displayed cells being

one random variable by observing another and is defined agnplicitly zero.
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center follows this gradient direction, effectively directing the
sensor field of view toward regions of high uncertainty.

In the event that the estimate has nearly converged within
the footprint of the sensor, the mutual information and its
gradient will be near zero, so the local, greedy controller may
get stuck. Longer time-horizon path planning is the best way
to prevent this. However, even with the reductions in-com
plexity, mutual information is prohibitively expensive for such
i searches. Instead, when mutual information is below some

o 2 4 6 8 10 12 threshold,x, % 1, the robot drives toward the cell with the
x (m) highest entropy in the probability of occupancy, i.e., with
Figure 5. The experimental results showing the true and prob_ab_ili_ty closest tp 0.5. The i_ntuition here is that,_ b_egause
estimated object positions as measured in the body frame of the maximizing mutual Informatlon is equivalent to maXImlzmg
robot. The angular bias appears to be independent of the true the expected reduction in entropy due to a sensor reading,
Positiflréwhilggrf(;rﬂiﬁggi iefrf]ic;ifci;nsﬂmz”eesrggééhaet ?hbée)c(tf q'gcrﬁd driving toward the cell with the highest uncertainty will still
filrt1e)f Thisnig overlaid on the ginary de)t/ecti%n model, where darker lead to_the _des're‘?' behavior. Note t_hat this ch0|ce _|gn_ores
shading indicates a higher probability of a measurement. uncertainty in sensing and only considers marginal distribu
tions of P(X) over individual cells, so while it is sufficient to
Then, the probability of at least one detection is simply therturb the robot away from local extrema in the greedy con
additive complement of this. troller, it will not perform as well for local searches.

For the controller, we use a different detection model than
that used in the estimation as the piecewise-linear modellast Results
Figure 3 has a piecewise-constant gradient that always padiiis platform considered in this article, shown in Figure 1, is a
directly backwards. The controller detection model, shown diifferential drive robot built on a Segway platform with a maxi
Figure 5, is a truncated Gaussian in polar coordinates. Titmism speed of 4.4 m/s but limited to 0.55 m/s for our trials. It is
functional form was chosen for two primary reasons: 1) iteéguipped with a single front-facing camera, which detects objects
differentiable everywhere except on the edge of the footpristng shape and color matching. There is also a pair of stereo
and 2) it pushes the robot to center the camera (i.e., the peskeras for visual odometry, a vertical-scanning light detection
in the model) on regions of high uncertainty. and ranging (LIDAR) for pitch estimation to correct distance

We can also reduce the effective number of possible objeeasurements, wheel encoders for odometry, and a horizontal
RFSs by exploiting the fact that sensors have a finite footpsegnning LIDAR for obstacle detection. Onboard processing is
as this means that robots cannot distinguish between RE&se using two Mac Mini computers running Ubuntu and the
that differ only outside the footprint. Thus, we can preconRobot Operating System [1], each with 2.0-GHz Intel core i7
pute the distribution over possible RFSs within the footprirgrocessors and 4 GB of RAM, mounted to the robot chassis.
as this will be, in general, much smaller than the total numighile the platform is outfitted with an extensive sensor suite, the
of RFSs within the environment. This reduced set is then ugedt-facing color camera yields the best performance for object

y (m)
B WONRFRORN®A

to compute mutual information. detection since the black-and-white stereo cameras are not as
reliable and the LIDAR cannot detect small objects on the
Gradient Controller ground. For more information on the platform, see [6].

In (4), we have used the definition of conditional probability to To test the performance of our proposed algorithm, we
write the expression using the binary sensor mp@2l; X;q) conduct a series of field tests on the robot. In general, visual
and filter estimatgp(X) . Recall that the sensor model implicsensors can be very noisy, returning false positives due to
itly depends on the position of the robot due to the finite- foadther objects in the environment (e.g., if using shape-detec
print, directionality of the sensor, and nonuniform detectiotion to locate a ball, the wheel of a car is a potential false posi
likelihood. Thus, taking the gradient with respect to a vegtortive) and false negatives due to variable lighting conditions
and occlusions. To take this into account, we set the expected
21(X,Z;q) _ /] 2p(Z; X;0) (X0 p(Z ;X;0) clutter rate ton = 0.06 and the probability of a false negative
AV 2v P 9 p(Zza) (7)) toP.= 0.06 based on empirically observed performance. In
the binary sensor model (6), the peak is located 7 m directly
yields a meaningful result and moves the robot in the directionfront of the robot and standard deviations 2 m in the radial
of maximum local information gain, following that for a fixedlirection and 0.5 rad in the angular direction. The sensor has
distance. See [17] for a derivation of (7). The vegtoguld be a 10-m range and a 40;j field of view.
taken to be the robotOs pgsbut a more natural choice for our
problem is the location of the camera center projected onto theperimental Results
ground plane, i.e., the peak of the binary sensor model-in Hige environment used for field tests with the robot, shown in
ure!l5. The robot then moves in such a way that the camé&igure 6(a), is the simplest example of a nontrivial topology in
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Figure 6. The sample results from the experimental data. (a) A
typical path taken by the robot, starting from the center of the
annulus, is indicated by the solid line, and the final position of
the robot and its sensor footprint are indicated by the dashed
line. The true object location is indicated by the red diamond,
and clutter objects are indicated by green circles. The shaded
cells correspond to the nonzero prior probability of the cell

Figure 7. The sample results from the experimental data. (a) A
typical path taken by the robot, starting from the center of the
annulus, is indicated by the solid line. The true object locations
are indicated by the red diamonds. Shaded cells correspond to
the nonzero prior probability of the cell containing an object.
(b) The time history of the entropy of the distribution of object
locations over ten representative runs.

containing an object. (b) The time history of the entropy of the
distribution of object locations over 12 representative runs.

the prior belief. In this scenario, the robot begins at the ceriferten runs, the robot correctly located the object within the
of the environment and searches for targets in an annutgecision of the grid. Initially, the entropy decreases slowly as
region surrounding it, where the shaded cells have nonzére robot sweeps out some of the area. The sudden drop is due
probability of occupancy in the prior. We tested two separatethe fact that the number of objects is limited to one; this
cases: 1) where there is a single object in the environment@ases the distribution to rapidly converge when multiple
the robot believes that there are either zero or one target witthiections are made in the same cell as that means that the
the environment and 2) where there are two targets (red ddgect cannot be in any of the other cells. The variation in time
bone toys) and the robot believes there are up to four. In theconvergence is due to the random placement of the object,
second case, there were also multiple false targets (dog toyatiofshort times corresponding to the object being placed
varying color and shape) placed within the environment.  nearer the initial footprint of the robot. The robot failed to

localize the object after a full sweep of the environment in two
Single Object runs due to failures in the perception system, which are likely
We performed 12 trials with random initial positioning of thelue to adverse lighting conditions. The system was able to
object. Since the total number of RFSs is small (the numbeecbver in one such instance, shown by the dark blue line in
cells plus the empty set), we elected to use a fixed grid Wwitiure 6(b), nearly converging to the incorrect cell before
1-m resolution. To see the progression of information gain, theing switching to the correct cell, causing the large spike in
resulting time history of the entropies is shown in Figure 6(lentropy near the end of the trial.

JUNE 2014 t IEEEROBOTICS &UWTOMATIDI MAGAZNE t 51



Two Objects [2] F. Bourgault,A. A. Makarenko,S. B.Williams, B. Grocholsky, and. F.
In this case, the robot began with a coarse grid of 5-m celisant-Whyte, (hformation based adaptive robotic exploratiGninProc.
with a minimum resolution of 0.625 m. The trials tookEEE Int. Conf. Intelligent Robots Sys{@®62 pp.54(645

noticeably longer to complete as the robot must sweep out@hB. A.CortezH. G.Tanner,,R. Lumia, andC. T.Abdallah, Dformation surf
entire area to determine that there are no targets present'§f°" adiation map buildingint. J. Robot. Automvol. 26, nol, pp.4812 2011

the cells that are unexplored. This is a result of the maximfii - Dames and. Kumar, Gooperative multi-target localization with noisy
sensor$) inProc. Int. Conf. Robotics Automatidhay2013 pp.187P1883

number of possible targets (four) being grea’;er than the tr%eP. DamesM. Schwagery. Kumar, andD. Rus, & decentralized control
number of targets (tWO) It also means that in this Scena'h icy for adaptive information gathering in hazardous environménis,

we do not expect to see the sudden drop in entropy at the R’ |e£e conf. Decision Contic 2012 0p.280F2813

of a trial as we did with a single object. The time evolution@fa. pasb. Thakur,J. Keller,S. Kuthirummal, Z. Kira, andM. Pivtoraiko,

the entropy is shown in Figure 7(b), where the units are giv@mMASTIF: Robotic mobile autonomous system for threat interrogation and
in bits times square meters to take the variable cell size unject fetctO irProc. SPIE Electronic Imagiagl3 pp.86620@866200-9
account as a big cell contains a larger amount of the t¢taB. Grocholsky, Bformation-theoretic control of multiple sensor plat
uncertainty in an environment than a small cell with the sarfaemsO Ph.D. dissertation, Dept. Aerospace, Mechatron. Mech. Eng., Univ.
probability of occupancy. The initial true and clutter objeétydney. Australi€002 )

locations were random, in some cases with true objects witfflrf- M- Hoffmann andC. J.Tomlin, Gobile sensor network control using
one meter of each other. In the ten trials, the robot onIy failr&#ual information methods and particle filte®8EEE Trans. Autom. Contr.

to detect one of the 20 total targets, and this failure was dug s> - Pp.3247 Jan2010

dd h in the liahti diti q T é‘, - J.Julian,M. Angermann M. Schwager, and. Rus, scalable informa
a sudden change In the lighting conditions outdoors. theoretic approach to distributed robot coordinatidrinProc. IEEE/RSJ

results of a typical run are shown in Figure 7(a), where the: Intelligent Robots Syste2@d1 pp.518 5194

left-most target was not perfectly localized (the cell to tig c. LundquistL. Hammarstrand, ané. Gustafsson,Rdad intensity based
right has a nonzero probability of occupancy) due to thepping using radar measurements with a probability hypothesis density fil
object being located on the cell boundary. However, over theIEEE Trans. Signal Processirg. 59, no4, pp.139P1408 2010

course of these experimental runs (14910), the robot [11] R. Mahler, Statistical Multisource-Multitarget Information Fusid¥or-
experienced insignificant drift in the position estimate. Thigod MA:Artech Housg2007 )
may become an issue for much larger environments WhBRER- Mahler, ®lultitarget bayes filtering via first-order multitarget momeats,
the robot is in use for longer periods of time. The robot al§&F Trans- Aerosp. Electron. Syst. 39, no4, pp. 11521178 2003

never localized a clutter object despite several isolated fafsg Mullane.B. Vo, M. D. Adams, and. Ba-Tuong, Orandom-finite-set
o . approach to Bayesian SLANEEE Trans. Robotol. 27, n@2, pp.26&282 2011
positive detections.

[14] J.Mullane,B. N.Vo, M. D. Adams, and. T.Vo, ®andom finite sets for
. robot mapping and slar®, inSpringer Tracts in Advanced RobotReslin,
Conclusions Germany Springer-Verlag2011

In this article, we proposed a method to drive a robgg)s. Ristic ands. N.Vo, Gensor control for multi-object state-space estima
equipped with a visual sensor to localize an unknown-nugan using random finite seAutomatica vol. 46, noll, pp.181H1818 2010
ber of objects in an environment by following the gradient pé] B. Ristic,B. N.Vo, andD. Clark, @ note on the reward function for PHD
mutual information between the object locations and tHers with sensor contrd)IEEE Trans. Aerosp. Electron. Sysfl. 47, no2,
probability of detection. The number and locations of objedis 152P15292011 )

are modeled using RFESs over an adaptive discretizatiofbf!- SchwageR.Damesp. Rus, and/. Kumar, & multi-robot (;ontrol policy
the environment, allowing for arbitrarily fine reso|uti0|,]for informatign gathering in the presence of unknown hazé&xdsProc. Int.
while keeping the computations tractable. A recursive Baygd"P- Robotics Researig. 2011

. ) 2 ~ . . . C. E.Shannon,Omathematical theory of communicati@hCM SIGMOBILE
ian filter maintains the robotOs belief of object locations. B Comput, Commun. Renol, 5, nol, pp.3655 2001

comple>_(|ty IS fF”ther r_ed”?ed by no_tmg that real Senscﬁﬁ] S.Thrun,W. Burgard, and. Fox,Probabilistic Robotic€ambridge MA:
have a limited field of view in the environment. Thus, SeNs@ press2005

measurements will be conditionally independent of objegig|s. N.vo andw. K. Ma, The Gaussian mixture probability hypothesisden
that are not visible. Finally, the experimental results illustraig fitterOEEE Trans. Signal Processir. 54, noL1, pp.409B4104 2006

the performance of our proposed algorithm by reliably-fingb1] B. N.Vo, S.Singh, andA. Doucet, Sequential Monte Carlo methods for
ing the true object locations. It should also be possiblentatitarget filtering with random finite seG|EEE Trans. Aerosp. Electron.
include multiple robots by combining the techniques frorfiyst.vol. 41, no. 4, pa22412452005

this article with those from [4] and [3]. Philip Dames, University of Pennsylvania, Philadelphia,
United States. E-mail: pdames@seas.upenn.edu.

Dinesh Thakur, University of Pennsylvania, Philadelphia,
Binited States. E-mail: tdinesh@seas.upenn.edu.

Mac SchwagerBoston University, Massachusetts, United
References States. E-mail: schwager@bu.edu.

[1] (2013 Mar.). Robot Operating System. [Online]. Available: http:/www.rosvijay Kumar, University of Pennsylvania, Philadelphia, United
org/wiki/ States. E-mail: kumar@seas.upenn.edu. e

Acknowledgments
We would like to thank SRI International Sarnoff for th
object detection and visual odometry work.

52 1 IEEE ROBOTICS & AUTOMATION MAGAZINBUNE2014



