Maria (Masha) Kamenetska, PhD

Phone: 617-358-3334; Email: mkamenet@bu.edu; Address: 8 St Mary's St, Boston, MA 02215; sites.bu.edu/mklab/

Education	
2/2015-3/2017	Yale University, New Haven, CT
	Postdoctoral Associate in Chemistry
	Advisor: Ziad Ganim (Chemistry); Application of optical tweezers to spectroscopy
1/2012-1/2015	Yale University, New Haven, CT
	NSF Postdoctoral Fellow in Physics and Molecular Biophysics & Biochemistry
	Advisors: Simon Mochrie (Applied Physics) & Lynne Regan (Molecular Biophysics & Biochemistry); Nucleosome unwinding dynamics with optical tweezers
9/2006-2/2012	Columbia University, New York, NY
	Ph. D. with distinction (Applied Physics)
	Advisor: Latha Venkataraman (Applied Physics, Chemistry); Single molecule junction conductance and binding geometry
9/2001-6/2005	Massachusetts Institute of Technology, Cambridge, MA
	B.S. in Physics, Concentration in Political Science Advisor: Poter Fisher (Physics): Modeling the effect of dark matter distribution on cosmic rays
Form I compared	Advisor: Peter Fisher (Physics); Modeling the effect of dark matter distribution on cosmic rays
7/2017-present	Assistant Professor of Chemistry
7/2017-present	Assistant Professor of Physics
	Assistant Professor of Material Science and Engineering, Boston University, Boston, MA
Honors & Awards	
2022	NSF CAREER Award
2021	Scialog: Chemical Machinery of the Cell Team Awardee, Research Corporation for Scientific Advancement (RCSA) & Gordon and Betty Moore Foundation
2019-2021	Scialog: Chemical Machinery of the Cell Fellow, RCSA & Gordon and Betty Moore Foundation
2018	Young Investigator Program Award (YIP), Air Force Office of Scientific Research
2018	Patricia McLellan Leavitt Research Fund Recipient, College of Arts and Science, BU
2014	Scientific Teaching Fellow, Yale University, Center for Teaching and Learning
2013	Postdoctoral Scholar Travel Fund Award, Yale University, School of Arts and Science
2012	Robert Simon Memorial Prize for Best PhD , Department of Applied Physics, Columbia University
2011	National Science Foundation Postdoctoral Fellowship in Biology
2011	Burroughs Welcome Fund Collaborative Research Travel Grant
2010	APS Ovshinsky Student Award, American Physical Society Division of Materials Physics,
2009	American Physical Society March 2010 Meeting Brookhaven National Lab NSLS/CFN Poster Session Winner
2005	MIT Peter J. Eloranta Summer Undergraduate Research Fellowship
2005	MIT Laya and Jerome B. Wiesner Student Award
2003	with Edya and sciolife by wiconer stadent Award

Federal and Private Grants Awarded

PI or co-PI	te Grants Awaraea Over \$1.5 million total received
2023	Arrakis Therapeutics: Determining thermodynamic properties of RNA structures in complex with small molecule binders; \$39,630, 6 months; single PI
2023	NSF INTERN supplement: supporting a graduate student's industry internship, \$51,995; single PI
2022	NSF CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits; \$650,000, 5 years; single PI
2022	American Physical Society CUWiP grant: Hosting the Conference for Undergraduate Women in Physics at Boston University in January 2023, \$17,500, 1 year, co-PI
2021	Scialog 2021: Chemical Machinery of the Cell Award: The Butterfly Effect in Cellular Phase Separation: from Molecular Interactions to Emergent Behavior; \$55,000, 1 year; PI
2021	NSF Material Research Instrumentation (MRI) : Acquisition of a Universal Optical Tweezer Platform to Probe Nanoscale Structure and Function of Single Polymers Using Force and Optical Spectroscopy; \$255,850; PI with several co-PIs
2018	Young Investigator Program Award (YIP), Air Force Office of Scientific Research, Natural Materials Program; \$450,000, 3 years; single PI
Before BU 2012	NSF Postdoctoral Fellowship; \$120,000, 2 years; single PI
Core Faculty 2023	\$2,999,999 NSF Research Traineeship, NRT-URoL: A Convergent Training Program on Biological Control; \$2,999,999; core participant
Teaching	
Fall 2022-23	Instructor for CH 109, Advanced General Chemistry with Quantitative Analysis lab (110 undergraduates), Department of Chemistry
Spring 2022-23	Instructor for PY 571, Introduction to Biological Physics (~10 students), Department of Physics; designed new course curriculum with lab components on single molecule biophysics for advanced undergraduate/beginning graduate level
Fall 2021	Instructor for CH 111/CH 181, Intensive General Chemistry with Quantitative Analysis lab (50 undergraduates), Department of Chemistry
Fall 2018-20	Instructor for CH 651 Molecular Quantum Mechanics I (10 graduate students), Department of Chemistry
Fall 2017, Spring 2018-21	Instructor for PY 313 Modern Physics, for engineering majors at the mid-undergraduate level (20-60 undergraduates), Department of Physics
Trainees	
PhD granted (3)	
2018-2024	Brent Lawson, PhD in Physics, May 2024
2019-2023 2018-2023	Xiaoyun Pan, PhD in Chemistry, December 2023 Hannah Skipper, PhD in Chemistry, September 2023 (co-advised with Linda Doerrer)
PhD candidates (7)	Daniel Jackson, Chemistry (2017-present, expected graduation May 2024); Brian Dawes, Physics (2018-present; Favian Liu, Chemistry (2021-present); Zelin Miao, Material Science & Engineering (2021-present); Sigifredo Luna, Chemistry (2022-present); Alona Maslennykov, Chemistry, (2023-present); Prateek Khatkar, Physics (2023-present)

Masters (2)

2022-2024 Hanil Chung, expected MS in Chemistry, May 2024

2017-2019 Xiaoyun Pan, MS in Material Science & Engineering, May 2019

<u>Undergraduate</u>

(14)

Ahmad Hatim Hamdan, BS in Chemistry 2018; **Andrea Rustad,** BS in Chemistry 2019; **Hiba**

Pediyakal, BS in Chemistry 2019; Connor Uzzo, BS in Electrical Engineering 2019; Lige Jiang BS in Chemistry with Honors 2021; Kate Matthews, Physics REU 2021; Vera Degtiareva, BS in Physics 2022; Alexander Krasnansky, BS in Physics 2022; Faisal Halabeya, BS in Physics 2022; Maitreya Rose, BS in Physics 2023; Darya Chaharom, Physics class of 2024; Hanil Chung, Chemistry class of 2024; Payton Harvill, Physics class of 2026; Martin Chujfi, Chemistry & Physics class of 2024

High School &

Interns (3) Nicholas Mill

Nicholas Miller, 2017-2019; Amber Chow, summer 2019; Vi Pham, summer 2018

PhD defense committee

Ran Cheng, Han Zang, Melissa Burrows, Hikari Kitadai, Matthew Rotondaro, Sandy Zhang, Abigail Rendos (Chair), Qianyun Zhang (Chair), Carmen Gott, Stephanie Beach-Molony (Chair),

Katherine Hansen (2nd reader), Min Xi, Ariel Hyre, Parth Shah, Clover Su (2nd reader)

Student awards -PhD candidates

2023 **Zelin Miao, MSE:** BUnano Fellowship

2021 Hannah Skipper, Chemistry (co-advised): DOE Office of Science Graduate Student Research

(SCGSR) award

2021 **Jiin So, Physics:** BUnano Fellowship, (left the program)

2019 Hannah Skipper, Chemistry (co-advised): BUnano Fellowship

2019 Brian Dawes, Physics: student invitee to symposia of the Center for the Physics of Biological

Function, Princeton, NJ

2018 **Daniel Jackson, Chemistry:** BUnano Fellowship

-Undergraduate

Hanil Chung, selected as student presenter to attend the 9th Annual Optical Science Winter

School & Workshop, University of Arizona, Tucson, AZ in January 2024

2018-2021 Andrea Rustad, Connor Uzzo, Lige Jiang, Maitreya Rose, BU UROP awards

2019 Andrea Rustad, 3rd place poster award winner, *Scientista Symposium 2019*, Boston, MA

Public and Professional service

Review Panels	
2023-2024	Ad hoc grant reviewer, Division of Chemistry, NSF
2022-2023	Panelist on 2 review panels, Division of Chemistry, NSF
2023	Ad hoc grant reviewer, DOE
2020	Ad hoc grant reviewer, Division of Chemistry, NSF
2019	Ad hoc grant reviewer, Air Force Office of Science Research, DOE
2019	Panelist for Graduate Research Fellowship program (GRFP), NSF
<u>Conference</u> 2023-2024 2022-2023	Co-organizer: "Physical Chemistry of Molecular Electronics" symposium, ACS March 2024 Co-chair: Conference for Undergraduate Women in Physics (CUWiP), Boston University, January 2023, through a grant from the American Physical Society (APS)
Peer review 2017-present	Reviewer for: Nature Communications, Nature Chemistry, Nano Letters, Cell-Matter, Journal of American Chemical society (JACS), Journal of Physical Chemistry Letters, Science Advances, Nanoscale, ACS Physical Chemistry AU, Chemical Science, and others

<u>Undergraduate</u>

<u>service</u>

2021-2024 **CUWiP volunteer and panelist**

2021-present Faculty mentor to the *Chemistry and Physics* major students Co-chair of the CUWiP conference at Boston University

2019-2021 Designer and implementer of the Chemistry and Physics undergraduate major, BU

BU service

• CAS Natural Sciences Taskforce member, 2020-2021

• Chemistry Admissions committee (2017-2018), Merit Review committee (x2), Open Search committee

(2022-2023)

Physics Admissions committee (2017-2019), Biophysics Seminar planning (2017-2018), Biophysics

Search committee (2018-2019), Diversity Committee (2021-2024), Condensed Matter

Experimental search (2023-2024), Quantum Initiative member (2023-2024)

• MSE Admissions committee (2017-2018)

• BUnano **BUnano Center review presenter**, May 2023

Other outreach

2023 Chemical Science Reviewer Spotlight

2022 **Storyteller on** *The Story Collider*, Jamaica Plain, Boston MA

2020 Workshop participant, NSF Young Investigator Training, Division of Material Research

2018-2019 Women in Physics (WiP) Faculty Mentor, BU

Publications *undergraduate authors, mentees, †corresponding PI

Since beginning independent career at BU:

- 12. <u>D. Jackson, M. Rose*, M. Kamenetska</u>†; "Tunable Growth of a Single High-Density ZIF Nanoshell on a Gold Nanoparticle Isolated in an Optical Trap" *Nanoscale* **2024**, 16, 2591-2598
- 11. <u>B. Lawson; H. E. Skipper;</u> M. Kamenetska†; "Phenol Is a PH-Activated Linker to Gold: A Single Molecule Conductance Study" *Nanoscale* **2024**, 16, 2022-2029
- 10. X. Pan; K. Matthews*; B. Lawson; M. Kamenetska†; "Single-Molecule Conductance of Intramolecular Hydrogen Bonding in Histamine on Gold," *J. Phys. Chem. Lett.* **2023**, 14 (37), 8327–8333.
- X. Pan; E. Montes; W. Y. Rojas, B.; <u>Lawson, H.</u>; Vazquez†, M. Kamenetska†, "Cooperative π-stacking promotes the formation of dimer molecular junctions with enhanced conductance," *Nano Letters*, 2023, 23 (15), 6937–6943
- 8. <u>H. E. Skipper, B. Lawson, V. Degtiareva*</u>, M. Kamenetska†, "Manipulating Quantum Interference Between σ and π Orbitals in Single Molecule Junctions via Chemical Substitution and Environmental Control", *ACS Nano*, 2023, *17* (16), 16107–16114
- 7. <u>D. Jackson, B. Dawes</u>, M. Kamenetska†, "Simultaneous Force and Dark Field Measurements Reveal Solvent-Dependent Axial Control of Optically Trapped Gold Nanoparticles", *J. Phys. Chem. Lett.*, 2023, 2830–2836
- X. Pan, C. Qian, <u>A. Chow*</u>, L. Wang†, M. Kamenetska†, "Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures" *J. Chem. Phys*, 2022, 157 (23), 234201; featured on the cover
- Lawson, B., Zahl, P., M. S. Hybertsen†, M. Kamenetska†, "Formation and Evolution of Metallocene Single-Molecule Circuits with Direct Gold-π Links". J. Am. Chem. Soc., 2021 144, 6504–6515.
- 4. <u>H. E. Skipper</u>, C. V. May*, A. L. Rheingold, L. H. Doerrer†, M. Kamenetska†, "Hard–Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions" *J. Am. Chem. Soc.*, **2021** 143, 16439–16447
- 3. J. McNeely, N. Miller*, X. Pan, B. Lawson, M. Kamenetska†, "Conductance Rulers for Angstrom-Scale Distance Measurements." *J. Phys. Chem. C*, 2020, 124, 13427–13433

- 2. <u>X. Pan, B. Lawson, A. M. Rustad*</u>, M. Kamenetska†, "pH-Activated Single Molecule Conductance and Binding Mechanism of Imidazole on Gold." *Nano Lett.*, **2020**, 20, 4687–4692
- 1. Y. Lin, T. Gao, X. Pan, M. Kamenetska, S. Thon†; "Local Defects in Colloidal Quantum Dot Thin Films Measured via Spatially-Resolved Multi-Modal Optoelectronic Spectroscopy." *Adv. Mater*, 2020, 1906602

With postdoc mentor:

1. Parobek, J. Black, M. Kamenetska, Z. Ganim[†], "Force-Detected Nanoscale Absorption Spectroscopy in Water at Room Temperature Using an Optical Trap." *J. Chem. Phys, 2018,* 148, 144201

In preparation:

- 4. <u>B. Lawson</u>, E. Vidal, M. Haley†, M. Kamenetska†, "Topological insulator phase contributes to extreme anti-ohmic conductance enhancement in graphene-flake molecular junctions", *in preparation*
- 3. <u>H.E. Skipper, B. Lawson</u>, M. Kamenetska†, "Quasi-1D organo-metallic molecular chains assembled in single molecule junctions from metal-cyanide precursors", *in preparation*
- 2. <u>Z. Miao</u>, M. Kamenetska†, "Single-Molecule Conductance and Chain Formations in Triazole-Based Molecular Junctions", *in preparation*
- 1. <u>B. Dawes</u>, M. Kamenetska†, "Autoregressive hidden Markov models accurately capture single molecule folding dynamics in optical tweezer experiments", *in preparation*

Patents in preparation

1. <u>D. Jackson</u>, M. Kamenetska, "3D Printing of Customizable Plasmonic Nanostructures", US patent

Before Boston University:

- 20. J. Black, **M. Kamenetska**, Z. Ganim, "An Optical Tweezer Platform for Single Molecule Force Spectroscopy in Organic Solvents." *Nano Lett*, *17* (*11*) (2017)
- 19. **M. Kamenetska**, J. Widawsky, M. Dell'angela, M. Frei, L. Venkataraman; "Temperature Dependent Conductance of Single Molecule Junctions." *J. Chem. Phys*, 146, 092311, (2017)
- 18. DJ Schlingman, AH Mack, **M Kamenetska**, SGJ Mochrie, L Regan, "Routes to DNA Accessibility: Alternative Pathways to Nucleosome Unwinding." *Biophys J*, 107 (2) 384-392 (2014)
- 17. G. Kladnik, D. Cvetko, A. Batra, M. Dell'Angela, A. Cossaro, **M. Kamenetska**, L.Venkataraman, A. Morgante, "Ultrafast Charge Transfer through Noncovalent Au-N Interactions in Molecular Systems." *J. Phys. Chem. C*, *117*, 16477-16482, (2013)
- 16. AH Mack, DJ Schlingman, **M Kamenetska**, R Collins, L Regan, SGJ Mochrie, "The Molecular Yo-yo Method: Live Jump Detection Improves Throughput of Single-Molecule Force Spectroscopy for Out-of-Equilibrium Transitions." *Rev. Sci. Instrum*, *84*, 085119, (2013)
- SGJ Mochrie, AH Mack, DJ Schlingman, R Collins, **M Kamenetska**, L Regan, "Unwinding and Rewinding the Nucleosome Inner Turn: Force Dependence of the Kinetic Rate Constants." *Phys Rev E, 87 (1), 012710 (2013)*
- 14. H. Vazquez, R. Skouta, S. Schneebeli, **M. Kamenetska**, R. Breslow, L. Venkataraman, MS. Hybertsen, "Probing the conductance superposition law in single-molecule circuits with parallel paths." *Nature Nanotech*, *7*, 663-667, (2012)
- 13. **M. Kamenetska**.; M. Dell' Angela; Widawsky, J.; Kladnik, G.; Verdini, A; Cossaro, A.; Modesti, S.; Cvetko, D.; Morgante, A.; Venkataraman, L., "Structure and Energy Level Alignment of Tetramethyl Benzenediamine on Au(111)." *J. Phys. Chem. C, 111,* 12625-12630, (2011)
- 12. Meisner, J. S[†]; Kamenetska, M.[†]; Krikorian, M.; Sedbrook, D. F.; Steigerwald, M. L; Venkataraman, V.; Nuckolls, C., "Single Molecule Potentiometer." *Nano Letters, 11,* 1575-1579, (2011).

 † Both authors contributed equally
- 11. Schneebeli, S.T.; **Kamenetska, M**.; Cheng, Z.; Skouta, R.; Friesner, R.A.; Venkataraman, L.; Breslow, R, "Single Molecule Conductance through multiple π - π stacked benzene rings determined with direct electrode to benzene ring connections." *JACS*, 133 (7) 2136-2139 (2011).
- 10. Fatemi, V.*; **Kamenetska, M.**; Neaton, J. B.; Venkataraman, L.; "Environmental Control of Molecular Scale Transport." *Nano Lett. 11* (5), 1988-1992, (2011)

- 9. Schneebeli, S.; **Kamenetska, M**.; Foss, F.; Vazquez, H.; Skouta, R.; Hybertsen, M.; Venkataraman, L.; Breslow, R. "The Electrical Properties of Biphenylenes." *Organic Lett, 12,* (18), 4114-4117 (2010)
- 8. **Kamenetska, M.**; Quek, S. Y.; Whalley, A. C.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Nuckolls, C.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. "Conductance and Geometry of Pyridine-Linked Single-Molecule Junctions." *JACS*, *132*, (19), 6817-6821, (2010).
- 7. Dell'Angela, M.; Kladnik, G.; Cossaro, A.; Verdini, A.; **Kamenetska, M.**; Tamblyn, I.; Quek, S. Y.; Neaton, J. B.; Cvetko, D.; Morgante, A.; Venkataraman, L, "Relating Energy Level Alignment and Amine-Linked Molecular Junction Conductance." *Nano Lett, 10*, (7), 2470-2474 (2010).
- 6. Widawsky, J. R.; **Kamenetska, M.**; Klare, J.; Nuckolls, C.; Steigerwald, M. L.; Hybertsen, M. S.; Venkataraman, L., "Measurement of Voltage-Dependent Electronic Trnsport Across Amine-Linked Single-Molecular-Wire Junctions." *Nanotechnology*, 20, (43) (2009).
- 5. **Kamenetska, M.**; Koentopp, M.; Whalley, A.; Park, Y. S.; Steigerwald, M.; Nuckolls, C.; Hybertsen, M.; Venkataraman, L. "Formation and Evolution of Single-Molecule Junctions." *Phys. Rev. Lett, 102*, (12), 126803 (2009).
- 4. Park, Y.S.; Widawsky, J.R.; **Kamenetska, M.**; Steigerwald, M.L.; Hybertsen, M.S.; Nuckolls, C.; Venkataraman, L, "Frustrated Rotations in Single Molecule Junctions." *J. Am. Chem. Soc, 131*, 10820-10821 (2009).
- 3. Quek, S. Y.; **Kamenetska, M.**; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. "Mechanically Controlled Binary Conductance Switching in Single Molecule Junctions." *Nature Nanotech*, 4, (4), 230-234 (2009).
- 2. Park, Y. S.; Whalley, A.; **Kamenetska, M.**; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L., "Contact Chemistry and Single-Molecule Conductance: A Comparison of Phosphines, Methyl Sulfides, and Amines, *J. Am. Chem. Soc, 129*, (51), 15768-15769 (2007)
- 1. Evans, D. A.; Lee, J. C.; **Kamenetska, M.**; Gallagher, S. C.; Kraft, R. P; Hardcastle, M. J; Weaver, K.A., "Probing Unification with *Chandra* HETGS and *XMM-Newton* EPIC and RGS Spectroscopy of the Narrow Emission Line Galaxy NGC 2110." *Astrophysical Journal*, 653 (2), 1121-1128 (2006).

Invited Conference Presentations

	,
2024	American Chemical Society (ACS) National Meeting, March 2024 "Physical Chemistry of
	Molecular Electronics" symposium
2023	Telluride Workshop "Quantum Transport in Nanoscale Molecular Systems" Telluride, CO
2023	Weizmann Institute Conference "Quantum transport in atomic and molecular
	conductors", Rehovot, Israel
2023	Material Research Society (MRS) Spring 2023 meeting, "From molecules to molecular
	devices" symposium, San Francisco CA
2021	International Chemical Congress of Pacific Basin Societies, "Molecular Electronics"
	symposium, virtual
2021	IEEE 16th Nanotechnology Materials and Devices Conferences (NMDC)
2021	American Chemical Society (ACS) National Meeting, "The Chemistry of Molecular
	Electronics" symposium
2020	(Bio)Molecular Electronics Colloquium, Virtual Format
2019	Molecular Electro-Opto-Spintronics (SPICE) Workshop, Mainz, Germany
2018	Gordon Research Conference, Single-Molecule Approaches to Biology
2018	Gordon Research Conference Keynote Speaker, Physics Research and Education
	Conference

Invited Colloquia and Seminars

2024	Rowland Institute Seminar, Harvard University
2024	Chemistry Colloquium, Columbia University
2024	MIT.nano Seminar, Massachusetts Institute of Technology
2024	Physical Chemistry Colloquium, University of California Irvine
2024	Chemistry Colloquium, University of Minnesota

Maria (N	Janu Janu	aı
2024	Physical Chemistry Seminar, University of San Diego	
2023	Chemistry Colloquium, Johns Hopkins University	
2023	Physical Chemistry Seminar, University of Toronto, Canada	
2022	Inorganic Chemistry Seminar, Department of Chemistry, University of Southern California	а
2022	Organic Chemistry Seminar, Department of Chemistry, University of California Riverside	
2022	Carnegie Mellon, Center for Nucleic Acids Science & Technology Colloquium	
2021	Center for Quantum Research and Technology, Department of Physics, The University of Oklahoma	
2021	Department of Physics, Tufts University	
2021	Department of Chemistry, Physical Chemistry Seminar, Rutgers University	
2020	20th Annual Sukant Tripathy Memorial Symposium, UMass Lowell	
2019	'Squishy Physics' Seminar Series, Harvard University, School of Engineering	
2019	UMass Dartmouth, Department of Chemistry	
2019	Photonics Forum, Boston University	
2019	University of Vermont, Department of Physics	
2018	Boston University, Division of Material Science and Engineering Seminar	
2017	Boston University, Department of Physics	
2017	Boston University, Departments of Chemistry and Physics	
2014	Williams College, Department of Physics	
2009	Leiden University, Leiden Institute of Physics, van der Molen Lab	
2009	Columbia University, NSF National Science and Engineering Center	
Student C	Conference Presentations	
2024	Brent Lawson, oral presentation, MRS Spring Meeting	
2023	Hannah Skipper, poster presentation, MRS Spring Meeting	
2023	Xiaoyun Pan, poster presentation, MRS Spring Meeting	
2022	Brian Dawes, oral presentation, APS March Meeting	
2022	Daniel Jackson, poster presentation, GRC, Noble Metal Nanoparticles	
2022	Daniel Jackson, oral presentation, ACS Spring Meeting	
2021	Brent Lawson, oral presentation, ACS Spring Meeting	
2021	Hannah Skipper, oral presentation, ACS Spring Meeting	
2021	Xiaoyun Pan, oral presentation, ACS Spring Meeting	
2019	Brent Lawson, oral presentation, APS March Meeting	
2018	Daniel Jackson, oral presentation, ACS Fall Meeting	
2018	Nicholas Miller, oral presentation, APS March Meeting	