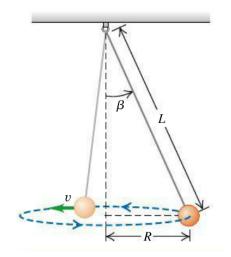
Engineering Physics I - Fall 2015

Quiz 5 - October 15, 2015

Name: SOLUTIONS

1. What are the two types of friction? (Circle the right answers from the choices below)

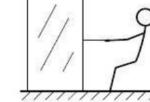

Gravitational Static Tension Kinetic Contact Normal

2. True or False The constant $g = 9.81 \text{ m/s}^2$ is a force.

The constant g is the <u>acceleration</u> due to gravity and is not a force. It should not be included in a free body diagram. (The weight, mg, should be included in a free body diagram where appropriate.)

3. What is the net force on the ball shown in the figure? (The ball is hanging on a string and is spinning around at a constant speed. Gravity is acting on the ball.)

mg ma_c zero (N) T (tension in rope)



The net force is due to the centripetal acceleration, which is the acceleration that keeps the ball moving in a circle rather than in a straight line. The acceleration is pointed toward the center of the circle.

- 4. I apply a force of magnitude F=10 N to an object that is initially at rest on a horizontal surface, and it remains at rest.
 - a) What is the magnitude of the friction force?

 μ_s mg μ_k mg zero (N) **F (10 N)**

Because the object does not move the static friction force must balance the force I apply, so both have a magnitude of 10 N.

b) Do you have enough information to calculate $\mu_{\text{s}}?$

Yes N

To calculate μ_s you would need to know the <u>maximum</u> force I must apply before the object starts to move (to overcome static friction). The force of static friction can have any value between 0 and $\mu_s N$ (where N is the normal force). If you know the object's mass (or the normal force) you can place a lower bound on μ_s but you cannot calculate μ_s unless you know what force is needed to overcome the static friction.