Wentworth Institute of Technology Engineering Physics I, Fall 2015

Instructor: Dr. Marissa Vogt

Problem Set #7

Due: <u>before</u> 4:30 p.m. in my mailbox in Ira Allen 316 *or* turned in at the beginning of lab, Monday, October 26, 2015

Remember to write down the names of any classmates you worked with.

Problem 1 (36 points)

I roll a ball of mass 2 kg up a ramp starting from the ground with an initial velocity of 5 m/s. The ramp makes an angle $\theta = 30^{\circ}$ with respect to the horizontal.

- a) Using conservation of mechanical energy, what is the maximum distance the ball will travel along the ramp if there is no friction?
- b) What is the maximum distance the ball will travel if the coefficient of kinetic friction μ_k = 0.2?
- c) How much work does friction do on the ball?

Problem 2 (40 points)

A block with mass 2 kg is released on a ramp, with no initial velocity. It travels a distance of 4 m along the ramp, which is inclined 53.1° with respect to the horizontal, before it encounters a spring with spring constant k = 120 N/m.

- a) If there is no friction, what is the block's speed when it hits the spring?
- b) If there is no friction, what is the maximum compression of the spring?
- c) If the coefficient of kinetic friction is μ_k = 0.2, what is the maximum compression of the spring?

Problem 3 (34 points)

A half pipe is a U-shaped structure used in gravity sports like skateboarding or snowboarding like the figure shown at left.

- a) Assuming there is no friction: if a 70 kg snowboarder enters the half pipe from the top left at a height of 3 m, what will her speed be at the bottom? Will she be able to exit the half pipe at the right? Why or why not?
- b) In the case that there is kinetic friction, the snowboarder enters the half pipe from the top left and slides through the bottom but only reaches a height of 2.7 m on the right side. How much energy is lost to friction?