Lecture 22. Oligopoly & Monopolistic Competition

Today’s office hours postponed until tomorrow:
Wed, Dec 4, 2:15 to 3:15.

Course Evaluations on Thursday:
Be sure to bring laptop, smartphone, or tablet with browser, so that you can complete your evaluation in class.

Clicker Question
Oligopoly

- An **oligopoly** is a market with a small number of firms, linked by strategic interaction.

- Here, we use game theory to model **duopoly**, a market with only two firms.
 - First we describe **Bertrand duopoly**, in which the firms compete by setting prices.
 - Then we model **Cournot duopoly**, in which the firms compete by setting output quantities.

A Bertrand Duopoly

- Two firms, **Aux (A)** and **Beaux (B)**, each produce French white wine.
 - The two brands are perfect substitutes — no one can tell the difference.
 - Each firm sets a price,….
 - …and then sells the quantity that consumers demand.

- In setting its price, each firm is concerned with the price that its competitor will set.
In a Bertrand duopoly, market demand is assumed to be perfectly inelastic.

- (Total quantity demanded is constant and independent of price.)
- If the firms’ prices are different,
 - consumers buy everything from the low-price firm, …
 - and nothing from the high-price firm.
- If the firms’ prices are the same, consumers buy half their wine from each firm.

Example: A Bertrand Game

Each firm has a constant marginal cost and no fixed cost, and $AC \equiv MC \equiv 10$.

They each set a price: P_A and P_B (their strategies).

- P_A and P_B can be anywhere between 10 and 40.
 - The players would never want to set $P < 10$ [the AC], because they would be sure to lose money.

- If $P_A \neq P_B$, consumers buy
 - 10 units from the low-price firm,
 - and 0 from the high-price firm.

- If $P_A = P_B$, consumers buy
 - 5 from each firm.

The profit of each firm is its payoff.
Bertrand Game Profits

- Profits depend on the strategy profile \(\langle P_A, P_B \rangle \).

- What are the profits, \(Y_A \) and \(Y_B \), for the profile \(\langle 30, 30 \rangle \)?

 - \(A \) and \(B \) are charging the same price, so they split the demand at 5 each.

 - Each firm’s profit on each unit is \(30 - 10 = 20 \), …
 - …so total profits are \(Y_A = 100 \) and \(Y_B = 100 \).

Bertrand Game Price Setting

- Suppose now that \(A \) cuts her price by $1 to create the profile \(\langle 29, 30 \rangle \). What are the profits, \(Y_A \) and \(Y_B \), now?

 - \(A \) is charging a little less than \(B \) is, so \(A \) gets all the demand.

 - \(A \)’s profit on each unit is \(29 - 10 = 19 \), and he sells 10 units for a total profit of \(Y_A = 190 \).

 - \(B \) is charging more than \(A \), so \(B \) has no sales and his profits are \(Y_B = 0 \).

 - \(A \) earns more profits by charging slightly less than \(B \).
Equilibrium of the Bertrand Game

- A strategy profile \(\langle P_A, P_B \rangle \) is a Nash equilibrium if
 - \(P_A \) is \(A \)'s best response to \(P_B \), and
 - \(P_B \) is \(B \)'s best response to \(P_A \).

- \(A \)'s best response to \(B \) is to undercut (charge slightly less than) \(B \),

- ...and \(B \)'s best response to \(A \) is to undercut \(A \).

- This means \(\langle P_A, P_B \rangle \) cannot be an equilibrium if either price can be undercut profitably.
 - Each player would want to deviate and undercut the other one.
 - So the only possible equilibrium is \(P_A = 10 \) and \(P_B = 10 \) (written as \(\langle 10, 10 \rangle \)), because neither player can undercut the other one without losing money.

At the strategy profile \(\langle 10, 10 \rangle \), both firms have 0 profits because \(P = AC \).

- But 10 is a best response to 10 because neither player can earn positive profits by deviating.
- Therefore, \(\langle 10, 10 \rangle \) is an equilibrium—the only equilibrium.

In a Bertrand game, a small number of firms producing the same product compete by setting prices.

The equilibrium of the price-setting game is like the equilibrium of perfect competition:

- \(P = MC \)
- Social surplus is maximized.
- Economic profits are 0.
Clicker Question

A Cournot Duopoly

- Two French firms *L’Eau* and *N’Eau* produce spring water.
 - The two brands are perfect substitutes — no one can tell the difference.
 - Each firm decides how much to produce,…
 - …and then sells at the price set by the market.
 - At the market price, the quantity demanded on the market demand curve will equal the total quantity supplied by the two firms.

- In setting their quantities, each firm must consider how much the other firm is producing.
Example: A Cournot Game

- The market demand curve for mineral water is \(Q_D = 120 - P \).

- Each firm sets its own production.
 - *L’Eau* selects \(q_L \) (*L’Eau*’s strategy).
 - *N’Eau* selects \(q_N \) (*N’Eau*’s strategy).

- The total quantity supplied in the market is \(Q_S \equiv q_L + q_N \).

- For the strategy profile \((q_L, q_N) \), what price \(P \) causes the quantity demanded \(Q_D \) to equal the quantity supplied \(Q_S \)?
 - \(Q_S = Q_D \)
 - \(q_L + q_N = 120 - P \)
 - Solving the above for \(P \) yields: \(P = 120 - (q_L + q_N) \).

- Spring water comes out of the ground, and we assume it costs nothing to produce, so \(AC \equiv MC \equiv 0 \).

Suppose *N’Eau*’s strategy is to produce quantity \(q_N \).

- What is *L’Eau*’s profit-maximizing (best) response?
 - *L’Eau* cannot control \(q_N \), so his demand curve and marginal revenue curve begin at \(q_N \).
 - *MR* crosses *MC* halfway between \(q_N \) and \(120 \), …
 - so *L’Eau*’s best response to \(q_N \) is \(\hat{q}_L = \frac{1}{2}(120 - q_N) \).
 - Likewise, *N’Eau*’s best response to \(q_L \) must be \(\hat{q}_N = \frac{1}{2}(120 - q_L) \).

If \(D \) is a straight line, the slope of MR is twice the slope of \(D \).
Equilibrium of the Cournot Game

- How can we find the equilibrium of the Cournot game?
- If \((q_L^*, q_N^*) \) is an equilibrium, then \(q_L^* \) must be a best response to \(q_N^* \) and vice versa.
- The best-response equations must be satisfied:
 \[
 q_L^* = \frac{1}{2} (120 - q_N^*) \\
 q_N^* = \frac{1}{2} (120 - q_L^*)
 \]
- By substitution,
 \[
 q_N^* = \frac{1}{2} (120 - \frac{1}{2} (120 - q_N^*)) \\
 3q_N^* = 120 \\
 4q_N^* = 2(120 - \frac{1}{2} (120 - q_N^*)) \\
 q_N^* = 40 \\
 4q_N^* = 240 - 120 + q_N^* \\
 q_L^* = \frac{1}{2} (120 - 40) = 40
 \]
Cournot Equilibrium Properties

- Is the Cournot equilibrium efficient?
 - We know that the total quantity supplied is $Q^*_S = q^*_L + q^*_N = 40 + 40 = 80$.
 - But 80 is only 2/3 of the efficient level of output, which is 120.
 - Cournot equilibrium is NOT efficient!

- $P^* = 120 - Q^*_S = 120 - 80 = 40 > AC, MC$.

We can now show
- producer surplus,
- consumer surplus,
- and deadweight loss.

Efficiency with Many Cournot Competitors

- If the market demand curve is a downward-sloping straight line, and MC is constant, then
 - a monopoly would produce $1/2$ of the efficient (competitive) level of output.
 - 2 Cournot competitors would produce a total of $2/3$ of the efficient (competitive) level of output.
 - 3 Cournot competitors would produce a total of $3/4$ of the efficient (competitive) level of output.
 - 99 Cournot competitors would produce a total of $99/100$ of the efficient (competitive) level of output.

Conclusion: A very large number of Cournot competitors behave like perfect competitors and are almost efficient.
Does Bertrand or Cournot Make Sense?

- Bertrand competition?
 - In equilibrium, all firms charge AC, so each firm earns 0 profits.
 - So firms would be no worse off by raising their prices, just in case the other firms do the same.
 - Maybe all firms will coordinate on a price above MC.
 - But there might be a tendency to cut prices afterwards.

- Cournot competition?
 - If the price is greater than AC, why doesn’t one firm cut its price and take the whole market away from other firms?
 - Perhaps there is fear of starting a price war.
 - Or maybe after the firms set their quantities, they don’t have the capacity produce more…
 - …so cutting prices would be useless.

The Nash-Equilibrium Concept

- In equilibrium, after finding out what the other players have done, each player is happy with the strategy that she chose.
 - If there are regrets, then the strategy profile is not an equilibrium.

- We can think about a Nash equilibrium like this:
 - Each player chooses a best response to what she believes will be the strategies of the other players.
 - And her beliefs about the strategies of other players turn out to be correct.
Using Nash Equilibrium to Predict

- A problem with the Nash-equilibrium concept is that the formation of beliefs about the strategies of other players is not explained.
 - In particular, it isn’t always clear why beliefs about the strategies of other players ought to be correct.
 - If players have incorrect beliefs, there’s no reason that they would choose Nash-equilibrium strategies,…
 - …although if players choose strategies that yield a Nash equilibrium, they would be likely to stay there.
 - (Accurate beliefs are easy to form if each player has a strictly dominant strategy, but that isn’t a common situation.)

- In the next lecture we will introduce a new equilibrium concept in which beliefs are less important,…

- …because the new concept applies to situations in which players have more information about the strategies of others.
Monopolistic Competition

- Monopolistic competition describes a market in which firms produce differentiated products.

- These products are substitutes in consumption, but not perfect substitutes.

Example: Thai restaurants in Brookline.

- In the short run, monopolistically competitive firms behave like monopolies.
 - Instead of producing all units with marginal cost less than price (as in perfect competition),
 - they produce only those units with marginal cost less than marginal revenue (as a monopoly does).

- But in the long run, monopolistic competition has free entry, much like perfect competition.
 - Firms enter the market when economic profits are available,
 - and exit when they are faced with losses.
 - In long-run equilibrium, firms receive zero economic profits.

- Because there are a large number of very small firms, each firm has little effect on the market. Therefore, monopolistic competitors do not interact strategically.
In the short run, a monopolistic competitor
- produces until \(MR = MC \),
- sets price at the demand curve,
- and if price exceeds average cost, the firm receives monopoly profits.

But if firms have **positive** profits,…

then, in the long run, more firms will enter and take market share from existing firms.

As entry occurs,
- *demand* and *MR* shift left, because each firm is getting a smaller share of the market.

Suppose the firm sets output \(q_M \) when demand is tangent to the *AC* curve…
- At output \(q_M \), \(MR = MC \),
- \(p_M = AC_M \)
- and profits are zero.

This is the long-run equilibrium because no more firms will enter.

In the long-run equilibrium of monopolistic competition,
- firms produce at an average cost greater than the minimum average cost,
- because there are too many firms,
- each producing at an inefficiently low level.
Examples: Monopolistic Competition

Lawyers
- Too many places in law schools
- High priced legal services
- Too many lawyers with not enough clients
- Many lawyers take other jobs.

Beauty shops: hair, nails
- Too many beauty shops
- Many specialize in manicures and pedicures.
- Not enough customers most of the time

Clicker Question
End of File