Lecture 15: Income and Substitution Effects, Producer Cost

Clicker Question
The Coase Theorem says....
The Income and Substitution Effects of a Price Change on Demand

- When the price of a good changes, consumers experience two effects.

- **Substitution Effect:** The good whose price has changed may now seem like a better (or worse) buy in comparison with other goods.
 This changes the quantity demanded.

- **Income Effect:** The price change may make the consumer feel richer (or poorer) than before.
 This also changes the quantity demanded.

Example: You were planning to buy an *iPhone*. But you see that the price of the iPhone has risen by 40 percent. You say to yourself:

- *“What a rip-off! I can get something just as good for less money.”* That’s the *substitution effect*. You would rather spend your money on a Huawei Mate 9 (an Android phone).

- *“I can’t afford that.”* That’s the *income effect*. You will make-do with a less expensive device.
The Direction of the Income and Substitution Effects

■ When you are buying a normal good, the income and substitution effects work in the same direction.

- Example: You eat lots of Fish.
- If the price of fish increases, you want to buy less fish and more of other things (substitution effect).
- But you also feel poorer, so you want to buy less fish for that reason as well (income effect).

■ When you are buying an inferior good, the income and substitution effects work in opposite directions.

- Example: Potatoes.
- When the price of potatoes goes up, you want to buy less potatoes and more meat (substitution effect).
- But you also feel poorer, so now you cannot afford meat, and you buy more potatoes and less meat (income effect).
- When the income effect is stronger than the substitution effect the good is called a Giffen good,…
- …but there is no proof that Giffen goods exist in the real world.
Clicker Survey

Imagine that you are working 15 hours per week....

[All answers will be marked as correct.]

Selling a Normal Good

- **Work** is *leisure time* sold to someone else.

Your situation:

- You are working* part-time in a supermarket in order to pay for fancy clothes.

 *selling your leisure time

- But if you were richer, you would want to keep more leisure time for yourself and work fewer hours.

Note: *Leisure is a normal good—you want and can afford more leisure when you are richer.*
One day, the manager tells you: “My friend, you are a good worker, so I’m going to double your wage.”

The price of leisure is now higher. Why?

- You would like to work more hours, because you can substitute more fancy clothes for each hour of leisure.
- But you would also like to work fewer hours, because you are richer than before and can afford to consume more leisure time yourself.

When you are selling a normal good (leisure), the two effects work in opposite directions,…

…and the income effect may be stronger than the substitution effect.

Income Taxes and Work Hours

Do people want to work more when income-tax rates are reduced? What do you think?

- If income-tax rates fall, your take-home pay from work rises.
- This is effectively an increase in your wage rate.

The substitution effect would make people want to work more *(substitute goods for leisure)*.

But the income effect would make people want to work less *(they are richer and can afford more leisure)*.
So which is stronger: the substitution effect (work more) or the income effect (work less)?

The data suggest that for men, the two effects are about equal.

It isn’t true that men will work more if income taxes are reduced.

But for women, the substitution effect is stronger than the income effect,…

Women do tend to work more when tax rates fall.

Profit Maximization

- **Revenue (R)**: Income of a firm from sales and other sources (before costs are deducted).

- **Profit (π)**: Benefits received by a firm’s owners after all costs are paid. \[\text{Profit} = \text{Revenue} - \text{Cost} \]

In most economic models, we assume that the firm’s goal is to *maximize profit*.

Firm owners are rational and self-interested.
“It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own interest.” —*Adam Smith*

Economic Profit vs. Accounting Profit

- **Profit (as defined by economists):**
 - *Revenue – All Costs* [including owners’ opportunity costs of operating the firm]

- **Accounting Profit:**
 - *Revenue – Explicit Costs*
 - [as measured by actual expenditures, which specifically excludes owners’ opportunity costs]
 - Accountants must use only those quantities that can be observed and verified by outsiders.

- Almost all published profit data use accounting profits. *But we use economic profits, because economic profits are more important for decision-making.*
Fixed Costs and Marginal Cost

- The **fixed cost (FC)** is the cost that must be paid to allow any production to take place. It does not depend on the quantity produced.

- A **marginal cost (MC)** is an opportunity cost of producing a particular unit.
 - **MC** is normally different for each unit produced.
 - **Example:** The **MC** of producing the 89th chair is likely to be different from the **MC** of producing the 226th chair.

U-Shaped Marginal Cost and Producer Surplus

- Suppose **FC = 0** for lamp production. If the **MC** curve is U-shaped, a firm may have to accept negative surplus before it can create positive surplus.
- Suppose **P = $8**.
 - How many lamps would you produce?
 - What is your total cost?
 - Your **PS**?
 - Your net **PS**?
 - Would you produce 7 or shut down?
 - What if **P = $4**?
 - Would you produce 5?
 - Would the **MC** curve determine supply (as before)?

Suppose **FC = 0** for lamp production. If the **MC** curve is U-shaped, a firm may have to accept negative surplus before it can create positive surplus.

Marginal Cost and Producer Surplus

Suppose **P = $8**.
 - How many lamps would you produce?
 - What is your total cost?
 - Your **PS**?
 - Your net **PS**?
 - Would you produce 7 or shut down?
 - What if **P = $4**?
 - Would you produce 5?
 - Would the **MC** curve determine supply (as before)?
Fixed Costs

Fixed costs are costs that must be paid to allow any production to take place.

They do not rise with the level of output.

In the previous analysis, we assumed that fixed costs were absent.

In what follows, we will allow for the possibility of fixed costs.

What costs must the publisher of a textbook pay before they produce copy #1?

- The book must be written,
- graphics designed,
-

These pre-production costs are an example of **fixed costs**.

If they are paid, the book can be printed.

Same idea if they put it on the internet.
Other examples of fixed costs:
- the cost of lighting & heating in a factory
- the cost of obtaining a liquor license for a restaurant
- ….

Fixed costs can be one-time costs or repeated in each production period.

Within a production period, fixed costs do not vary with changes in the quantity produced.

Clicker Question
Which of the following is a fixed cost… ?
Variable Cost

- The cost incurred as output increases is called **variable cost (VC)**.

- The variable cost of a printed textbook include:
 - the cost of paper in the books,
 - the cost of printing, but **NOT** the cost of writing or editing.

- Total variable cost can be calculated as the sum of the marginal costs of the units produced.

\[
\text{Total Cost} = \text{Fixed Cost} + \text{Variable Cost}
\]

\[\text{TC} = FC + VC\]

- If the fixed cost is 20, what is the Total Cost of producing 7 units?
Profit, Producer Surplus and Cost

- **Profit = Revenue – Total Cost**
 \[\pi = R - TC = R - FC - VC \]

- **Producer Surplus = Revenue – Variable Cost**
 \[PS = R - VC \]

- **Profit = Producer Surplus – Fixed Cost**
 \[\pi = PS - FC \]

Short Run vs. Long Run

- Firms may be unable to change the quantities of some inputs during the current time period.
 - The size of the store.
 - The number of checkout lanes.

- The period of time in which those input quantities cannot be changed is called the *short run*.

- After enough time passes, those quantities can be changed.
Sunk Costs

- A cost is useful for making decisions only if the cost can be avoided.

Example: Michael buys a book for $150, but then he decides that it isn’t worth reading. He can’t return it.

- He says: “I could sell it to a friend for $40, but I’d lose $110 on the sale.”
- In fact, he’d earn...

- Costs that cannot be avoided are called *sunk costs*.

- *Sunk costs* should not be included in the opportunity cost of an activity...

- ...because sunk costs do not represent sacrifices caused by performing the activity.

In the Short Run, Fixed Costs are Often Sunk

- Sometimes firms pay (or are obligated to pay) fixed costs for a future period.

 Example: A grocery store has paid rent on its premises for 6 months in advance.

 Example:
For decision-making purposes, a firm should not treat payments already made (or obligated) as opportunity costs.

Most fixed costs are periodic (e.g. electric bills).
- They may be already paid (or sunk) temporarily,…
- but when the cost must be paid again, it has become avoidable (no longer sunk),…
- and it should be treated as an opportunity cost.

Example: You examine your accounts after the electricity bill has been paid.…
- You decided to keep your business open in the short run, …
- because without deducting the already-paid (sunk) electricity bill, the firm is operating at a profit.
- But when the next electricity bill arrives,…
- …you decide to close down before you have to pay it.
- When you include the cost of future electricity bills, you see that your firm is not profitable in the long run.
Clicker Question

Suppose the MC of unit 1 is 12,

End of File