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= Large chronic disease epidemics worldwide
= Health systems challenge
= Key role of data to manage care and inform policy




= HIV is a manageable chronic disease
= 37M people with HIV globally; 7M in South Africa

= Lifetime daily antiretroviral therapy (ART)
= Near-normal life expectancy
= Treatment-as-prevention

= New and ambitious paradigm: ‘treat all’ to end AIDS
= South Africa moved to ‘treat all’ in Sept 2016




A major challenge
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Currently, no dataset provides a system-wide,
longitudinal perspective on the HIV care cascade




National Health Laboratory Service (NHLS) is the sole
provider for South Africa’s national HIV program

Longstanding BU-HE?2RO-NHLS collaboration
~40 million CD4, VL results, 2004 — May 2015
>300 million lab tests results in full database
High quality data; continuously-updated; system-wide

No unique patient ID...




Can we build a National HIV Cohort
from routine laboratory data?




Collaboration between:

National Health Laboratory Services, South Africa

Health Economics and Epidemiology Research Office,
University of Witwatersrand, South Africa

Boston University

« Departments of Global Health and Epidemiology

« Research Computing Services, Shared Computing Cluster
 Hariri Institute for Computing and Computational Science
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Linkage Results




= 38.5 million lab test results (through 2015q1)

= 18.7 million exact matches on first name, last
name, date of birth, gender, and facility

= 9.2 million unique patients identified through
probabilistic matching techniques

= “NHLS National Patient Cohort”




Cohort Profile

= 9.2 million people have ever sought care for HIV.
About 40% of these are single CD4 counts. Many
who test positive never return to care.

= 3.1 million patients were on ART and virologically
monitored during 2013-2014. Compares to 3 million
reported to be on ART by NDOH.




Can South Africa “treat all”?

Preliminary findings




Patients are presenting for HIV care
earlier in infection than ever before
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But many still present quite late
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Heterogeneity by gender and district

Median CD4 Counts at Presentation, 2014




“Treat all” will increase ART uptake
among patients with CD4>500
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But many patients do not start ART
despite being eligible
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S labs in the 3 months after first
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Retention on ART is higher than
previously thought

Retained within national ART programme
Retained at initiating clinic
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Can South Africa “treat all”’?

Perhaps, but further efforts are needed

« TJo increase early diagnosis and linkage, particularly
among men and in some districts

« To increase ART uptake among those offered therapy




What’s next?




Building a “digital population health” ecosystem from
routine laboratory data

Additional Patient Linkage Methods development Security & Ethics
e Tier.net * Graph-based record linkage * Data platform security, access
* Vital statistics * Analytical approaches that * Big Data bioethics
* Other clinical cohorts account for uncertainty
\

Population Impact Evaluation
* Facility catchment areas

Novel Linkage of Routine * Linkage to external datasets

Integrate into Clinical Care e P : :
opulation health impact

« Develop systems to B Laboratory D.ata for >« Spillover effects

integrate mtc? pa'tlent care Complete Public Sector * Behavioral responses
* Inform chronic disease care Health System * Data to fit simulation models

/

Clinical Epidemiology Continuous Quality Improvement Rapid Response Policy Evaluation
* Describe treatment cascades * Measure quality of care * Needs assessments

for different chronic diseases * Use data to intervene to * Inform clinical guidelines
* Integrated cohort improve quality of care * Evaluation of policy changes

from patient to population



Extramural support
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Database to Evaluate the HIV treatment Rollout in South Africa
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= NIH R01 (Bor/Fox) — Big Data Methods for Real-Time Evaluation
of “Treat All" in the Largest HIV Program in the World
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and Retention in Adult HIV Care in South Africa: a National View

= NIH DP2 (Bor) — Building a ‘Digital Population Health’
Ecosystem From Routine Laboratory Data

= NIH R21 (Jenkins) — Identifying TB transmission hot-spots from
routinely-collected laboratory data
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