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Abstract. This supplement contains details about implementing the estimation and inference

procedure considered in the main text. We also provide a small set of simulation results to

complement the theoretical development in the body of the paper.

1. Implementation Details

In this section, we provide details about how we implemented the methodology developed

in the main body of the paper in the empirical example. We first discuss estimation of local

average treatment effects (LATE) and then extend this discussion to estimation of local quantile

treatment effects (LQTE). Estimation of local average treatment effects on the treated (LATE-T)

and local quantile treatment effects on the treated (LQTE-T) proceed in a similar fashion and

so are not discussed.

1.1. Local Average Treatment Effects. Recall that the LATE of treatment D on outcome

Y is defined as

∆LATE = θY (1)− θY (0) =
α11(D)Y (1)− α11(D)Y (0)

α11(D)(1)− α11(D)(0)
−
α10(D)Y (1)− α10(D)Y (0)

α10(D)(1)− α10(D)(0)

for αV (z) and θY (d) defined in equations (3) and (5) in the text respectively. It then follows by

plugging in the definition of αV (z) that we can express the LATE as

∆LATE =
αY (1)− αY (0)

α11(D)(1)− α11(D)(0)
.

To obtain an estimate of the LATE, we thus need estimates of αY (z) and α11(D)(z). Using the

low-bias moment function given in quation (42) of the text, estimates of these key quantities can

be contructed from estimates of E[Y |Z = 1, X], E[Y |Z = 0, X], E[D|Z = 1, X], E[D|Z = 0, X],

and E[Z|X] where Z is the binary instrument (401(k) eligibility); D is the binary treatment

(401(k) participation); X is one of the pre-specified sets of variables corresponding to the In-

dicator, Indicator plus interactions, B-Spline, or B-Spline plus interactions specification with

dimension p; and Y is either total net financial assets or total wealth. In our application, we

have E[D|Z = 0, X] = 0 since one cannot participate unless one is eligible. We estimate the

remainder of the functions using post-LASSO to estimate E[Y |Z = 1, X] and E[Y |Z = 0, X] and

post-`1-penalized logistic regression to estimate E[D|Z = 1, X] and E[Z|X].
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To estimate E[Y |Z = 1, X], we postulate that E[Y |Z = 1, X] ≈ X ′β1. Let I1 denote the indices

of observations that have zi = 1. To estimate the coefficients β1, we apply the formulation of the

post-LASSO estimator given in Belloni, Chen, Chernozhukov, and Hansen (2012) with outcomes

{yi}i∈I1 and covariates {xi}i∈I1 . We set λ = 2.2
√
nΦ−1(1−(1/ log(n))/(2(2p))) where Φ(·) is the

standard normal distribution function. We calculate penalty loadings according to Algorithm

A.1 of Belloni, Chen, Chernozhukov, and Hansen (2012) using post-LASSO coefficient estimates

at each iteration and with a the maximum number of iterations set to 15.1 Let β̂1 denote the

resulting post-LASSO estimates of the coefficients using λ given above and the final set of penalty

loadings. We then estimate E[Y |Z = 1, X = xi] as x′iβ̂1 for each i = 1, ..., n. We follow the same

procedure to obtain estimates of E[Y |Z = 0, X = xi] as x′iβ̂0 for each i = 1, ..., n where β̂0 are

the post-LASSO estimates using only the observations with zi = 0.

Estimation of E[D|Z = 1, X] and E[Z|X] proceed similarly replacing post-LASSO estimation

with post-`1-penalized logistic regression. Specifically, we assume that E[D|Z = 1, X] ≈ Λ(X ′γ1)

where Λ(·) is the logistic link function. We then obtain estimates of γ1 by using the post-`1-

penalized estimator defined in equations (29) and (30) in the text based on the logistic link

function and with outcomes {di}i∈I1 and covariates {xi}i∈I1 for I1 defined as above. We set λ =

2.2
√
nΦ−1(1− (1/ log(n))/(2(2p))) where Φ(·) is the standard normal distribution function. We

calculate penalty loadings using Algorithm 1 from Section 6.1 of the main text with a maximum

of 15 iterations.2 Let γ̂1 denote the resulting post-`1-penalized estimates of the coefficients using

λ given above and the final set of penalty loadings. We estimate E[D|Z = 1, X = xi] as Λ(x′iγ̂1)

for each i = 1, ..., n. We follow this procedure to obtain estimates of E[Z|X] as Λ(x′iτ̂) for each

i = 1, ..., n where τ̂ are the post-`1-penalized coefficient estimates obtained with {zi}ni=1 as the

outcome and {xi}ni=1 as covariates using λ = 2.2
√
nΦ−1(1− (1/ log(n))/(2p)).

Using these baseline quantities, we obtain estimates

α̂Y (1) =
1

n

n∑
i=1

(
zi(yi − x′iβ̂1)

Λ(x′iτ̂)
+ x′iβ̂1

)
=

1

n

n∑
i=1

ψ1,i

α̂Y (0) =
1

n

n∑
i=1

(
(1− zi)(yi − x′iβ̂0)

1− Λ(x′iτ̂)
+ x′iβ̂0

)
=

1

n

n∑
i=1

ψ0,i

α̂11(D)(1) =
1

n

n∑
i=1

(
zi(di − Λ(x′iγ̂1))

Λ(x′iτ̂)
+ Λ(x′iγ̂1)

)
=

1

n

n∑
i=1

υ1,i

α̂11(D)(0) =
1

n

n∑
i=1

(
(1− zi)di
1− Λ(x′iτ̂)

)
=

1

n

n∑
i=1

υ0,i = 0.

1We stop iterating before reaching the maximum number of iterations if the `2-norm of the difference in penalty

loadings calculated across consecutive iterations is less than 10−6.
2We stop iterating before reaching the maximum number of iterations if the `2-norm of the difference in penalty

loadings calculated across consecutive iterations is less than 10−6.



3

We then plug these estimates in to obtain

∆̂LATE =
α̂Y (1)− α̂Y (0)

α̂11(D)(1)− α̂11(D)(0)
.

In the paper, we report both analytic and bootstrap standard error estimates for the LATE.

The analytic standard errors are calculated as√√√√ 1

n− 1

n∑
i=1

(
ψ1,i − ψ0,i

α̂11(D)(1)− α̂11(D)(0)
− ∆̂LATE

)2

/n.

We use wild bootstrap weights for obtaining the multiplier bootstrap estimates of the standard er-

rors with 500 bootstrap replications. Specifically, for each b = 1, ..., 500, we calculate a bootstrap

estimate of the LATE as

∆̂b
LATE =

1
n

∑n
i=1(ψ1,i − ψ0,i)ξ

b
i

1
n

∑n
i=1(υ1,i − υ0,i)ξbi

where ξbi = 1+rb1,i/
√

2+((rb2,i)
2−1)/2 is the bootstrap draw for multiplier weight for observation i

in bootstrap repetition b where rb1,i and rb2,i are random numbers generated as iid draws from two

independent standard normal random variables. The boostrap standard error estimate is then the

boostrap sample standard deviation of the ∆̂b
LATE :

√
1

B−1

∑B
b=1

(
∆̂b
LATE −

1
B

∑B
b=1 ∆̂b

LATE

)2
.

1.2. Local Quantile Treatment Effects. Calculation and inference for LQTE is more cumber-

some than for the LATE and closely follows the procedure outlined in the paper using Strategy

1. We begin by choosing the set over which we would like to look at the LQTE. In our example,

we chose to look at quantiles in the interval [0.1, 0.9].

To calculate the LQTE, we first calculate the local average structural function for outcomes

Yu = 1(Y ≤ u) for a set of u and then invert to obtain estimates of the LQTE. In our example,

we chose to look at u ∈ [qY (.05), qY (.95)] where qY (.05) and qY (.95) are respectively the sample

5th and 95th percentiles of the outcome of interest Y . Since looking at the continuum of values

in this interval is infeasible in practice, we discretize the interval and look at Yu = 1(Y ≤ u) for

u ∈ {qY (.05), qY (.06), qY (.07), ..., qY (.93), qY (.94), qY (.95)}. I.e. we set u equal to each percentile

of Y between the 5th and 95th percentiles for a total of 91 different values of u to be considered.

For each value of u, we need an estimate of the local average structural function defined in (5)

in the text for d ∈ {0, 1}:

θ1(Y≤u)(d) =
α1d(D)1(Y≤u)(1)− α1d(D)1(Y≤u)(0)

α1d(D)(1)− α1d(D)(0)
.

As with the LATE, we need estimates of E[D|Z = 1, X] and E[Z|X]. We estimate these

quantities as we did for the LATE but change the value of the penalty parameter used to reflect

the fact that we are now interested in a large set, in theory a continuum, of model selection

problems. Specifically, we assume that E[D|Z = 1, X] ≈ Λ(X ′γ1) where Λ(·) is the logistic

link function. We then obtain estimates of γ1 by using the post-`1-penalized estimator defined in

equations (29) and (30) in the text based on the logistic link function and with outcomes {di}i∈I1
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and covariates {xi}i∈I1 for I1 defined as above. We set λ = 2.2
√
nΦ−1(1− (1/ log(n))/(2n(2p)))

where Φ(·) is the standard normal distribution function. We calculate penalty loadings using

Algorithm 1 from Section 6.1 of the main text with a maximum of 15 iterations.3 Let γ̂1 denote

the resulting post-`1-penalized estimates of the coefficients using λ given above and the final

set of penalty loadings. We estimate E[D|Z = 1, X = xi] as Λ(x′iγ̂1) for each i = 1, ..., n. We

follow this procedure to obtain estimates of E[Z|X] as Λ(x′iτ̂) for each i = 1, ..., n where τ̂ are

the post-`1-penalized coefficient estimates obtained with {zi}ni=1 as the outcome and {xi}ni=1 as

covariates and λ = 2.2
√
nΦ−1(1 − (1/ log(n))/(2np)). We also still have E[D|Z = 0, X] = 0 in

our application since one cannot participate in a 401(k) unless one is eligible. We then plug-in

these estimates to obtain

α̂11(D)(1) =
1

n

n∑
i=1

(
zi(di − Λ(x′iγ̂1))

Λ(x′iτ̂)
+ Λ(x′iγ̂1)

)
=

1

n

n∑
i=1

υ1,1,i

α̂11(D)(0) =
1

n

n∑
i=1

(
(1− zi)di
1− Λ(x′iτ̂)

)
=

1

n

n∑
i=1

υ1,0,i = 0

α̂10(D)(1) = 1− α̂11(D)(1)

α̂10(D)(0) = 1− α̂11(D)(0).

We also need to obtain estimates of α1d(D)1(Y≤u)(z) for each value of u and for (z, d) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}. These estimates will depend on the propensity score, E[Z|X], es-

timated above and quantities of the form E[1(D = d)1(Y ≤ u)|Z = z,X]. We again ap-

proximate this function with E[1(D = d)1(Y ≤ u)|Z = z,X] ≈ Λ(X ′βu,d,z) and estimate the

coefficients βu,d,z for each combination of d and z and each u using the post-`1-penalized esti-

mator defined in equations (29) and (30) in the text based on the logistic link function. We set

λ = 2.2
√
nΦ−1(1 − (1/ log(n))/(2n(2p))) where Φ(·) is the standard normal distribution func-

tion. We calculate penalty loadings using Algorithm 1 from Section 6.1 of the main text with a

maximum of 15 iterations.4 We follow this procedure for each u with {1(yi ≤ u)1(di = 1)}i∈I1 as

the outcome and covariates {xi}i∈I1 , with {1(yi ≤ u)1(di = 0)}i∈I1 as the outcome and covari-

ates {xi}i∈I1 , and with {1(yi ≤ u)1(di = 0)}i∈I0 as the outcome and covariates {xi}i∈I0 for I1

and I0 defined as above to obtain point estimates β̂u,1,1, β̂u,0,1, and β̂u,0,0 respectively. We then

estimate E[1(D = 1)1(Y ≤ u)|Z = 1, X] as Λ(x′iβ̂u,1,1) for each i = 1, ..., n and obtain estimates

of E[1(D = 0)1(Y ≤ u)|Z = 1, X], and E[1(D = 0)1(Y ≤ u)|Z = 0, X] analogously. As before,

we have E[1(D = 1)1(Y ≤ u)|Z = 0, X] = 0 since one cannot participate unless one is eligible.

3We stop iterating before reaching the maximum number of iterations if the `2-norm of the difference in penalty

loadings calculated across consecutive iterations is less than 10−6.
4We stop iterating before reaching the maximum number of iterations if the `2-norm of the difference in penalty

loadings calculated across consecutive iterations is less than 10−6.
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We then plug-in these estimates to obtain

α̂11(D)1(Y≤u)(1) =
1

n

n∑
i=1

(
zi(di1(yi ≤ u)− Λ(x′iβ̂u,1,1))

Λ(x′iτ̂)
+ Λ(x′iβ̂u,1,1)

)
=

1

n

n∑
i=1

κu,1,1,i

α̂11(D)1(Y≤u)(0) =
1

n

n∑
i=1

(
(1− zi)(di1(yi ≤ u))

1− Λ(x′iτ̂)

)
=

1

n

n∑
i=1

κu,1,0,i = 0

α̂10(D)1(Y≤u)(1) =
1

n

n∑
i=1

(
zi((1− di)1(yi ≤ u)− Λ(x′iβ̂u,0,1))

Λ(x′iτ̂)
+ Λ(x′iβ̂u,0,1)

)
=

1

n

n∑
i=1

κu,0,1,i

α̂10(D)1(Y≤u)(0) =
1

n

n∑
i=1

(
(1− zi)((1− di)1(yi ≤ u)− Λ(x′iβ̂u,0,0))

1− Λ(x′iτ̂)
+ Λ(x′iβ̂u,0,0)

)
=

1

n

n∑
i=1

κu,0,0,i.

Estimates of the local average structural (distribution) functions are formed using the estima-

tors defined in the previous two paragraphs as

θ̂1(Y≤u)(d) =
α̂1d(D)1(Y≤u)(1)− α̂1d(D)1(Y≤u)(0)

α̂1d(D)(1)− α̂1d(D)(0)
.

To obtain LQTE estimates, we then need to invert these local average structural functions.

Since we only have the estimated distribution for each d evaluated on the finite grid of points

u ∈ {qY (.05), qY (.06), qY (.07), ..., qY (.93), qY (.94), qY (.95)}, we do this inversion by linearly in-

terpolating the value of the distribution function between these points to find the value of the

outcome associated with each quantile in the set q ∈ [0.1, 0.11, .0, 12, ..., 0.89, .0.9] which we de-

note as θ̂←Y (q, d). The LQTE at point q is then estimated as ∆̂(q) = θ̂←Y (q, 1)− θ̂←Y (q, 0).

For the LQTE, we only report inference based on the multiplier bootstrap using 500 bootstrap

replications. For each b = 1, ..., 500, we generate bootstrap weights as ξbi = 1+rb1,i/
√

2+((rb2,i)
2−

1)/2 for observation i in bootstrap repetition b where rb1,i and rb2,i are random numbers generated

as iid draws from two independent standard normal random variables. We then use these weights

to form bootstrap estimates of the local average structural functions

θ̂b1(Y≤u)(d) =
α̂b1d(D)1(Y≤u)(1)− α̂b1d(D)1(Y≤u)(0)

α̂b1d(D)(1)− α̂b1d(D)(0)
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where

α̂b11(D)(1) =
1

n

n∑
i=1

ξbiυ1,1,i,

α̂b11(D)(0) =
1

n

n∑
i=1

ξbiυ1,0,i,

α̂b10(D)(1) = 1− α̂b11(D)(1),

α̂b10(D)(0) = 1− α̂b11(D)(0),

α̂b11(D)1(Y≤u)(1) =
1

n

n∑
i=1

ξbiκu,1,1,i,

α̂b11(D)1(Y≤u)(0) =
1

n

n∑
i=1

ξbiκu,1,0,i = 0,

α̂b10(D)1(Y≤u)(1) =
1

n

n∑
i=1

ξbiκu,0,1,i,

α̂b10(D)1(Y≤u)(0) =
1

n

n∑
i=1

ξbiκu,0,0,i.

From these bootstrap estimates of the average structural distribution functions, we obtain boot-

strap LQTE estimates as above through inversion by linearly interpolating the value of the

distribution function between the finite set of points at which we have estimated values to find

the value of the outcome associated with each quantile in the set q ∈ [0.1, 0.11, .0, 12, ..., 0.89, .0.9],

denoted (θ̂←Y (q, d))b. The bootstrap estimate of the LQTE for bootstrap replication b at point

q is then ∆̂b(q) = (θ̂←Y (q, 1))b − (θ̂←Y (q, 0))b. We form bootstrap standard error estimates for the

LQTE at each quantile q as s(q) =

√
1

B−1

∑B
b=1

(
∆̂b(q)− 1

B

∑B
b=1 ∆̂b(q)

)2

We also use the bootstrap LQTE estimates to obtain the critical values we use when plotting

the uniform confidence bands in our example. We form bootstrap t-statistics for each quantile q

as tb(q) = (∆̂b(q) − ∆̂(q))/s(q). We then take tbmax = maxq{|tb(q)|} and use the 95th percentile

of the bootstrap distribution of tbmax as the critical value in constructing the confidence intervals

for our figures.

2. Simulation Experiment

In this section, we present results from a brief simulation experiment. The results illustrate the

performance of our proposed treatment effect estimator that makes use of estimating equations

satisfying the key orthogonality condition given in equation (2) in the main text and variable

selection relative to an estimator that uses variable selection but is based on a “naive” estimating

equation that does not satisfy the orthogonality condition. We find that inference based on the

naive estimator can suffer from substantial size distortions and that the performance of this

estimator is strongly dependent on features of the data generating process (DGP). We also find
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that tests based on the estimator constructed using our procedure have size close to the nominal

level uniformly across all DGPs we consider consistent with the theory developed in the paper.

For simplicity, we consider the case where the treatment, di, is exogenous conditional on

control variables xi. In this case, we can apply the results of the paper substituting di for zi in

each instance where instruments zi are used since di is conditionally exogenous and thus a valid

instrument for itself. All of the simulation results are based on data generated as

di = 1

{
exp{x′i(cdθ0)}

1 + exp{x′i(cdθ0)}
> vi

}
yi = di[x

′
i(cyθ0)] + ζi

where vi ∼ U(0, 1), ζi ∼ N(0, 1), vi and ζi are independent, p = dim(xi) = 250, the covariates

xi ∼ N(0,Σ) with Σkj = (0.5)|j−k|, and the sample size n = 200. θ0 is a p×1 vector with elements

set as θ0,j = (1/j)2 for j = 1, ..., p. cd and cy are scalars that control the strength of the relation-

ship between the controls, the outcome, and the treatment variable. We use several different com-

binations of cd and cy, setting cd =

√
(π2/3)R2

d

(1−R2
d)θ′0Σθ0

and cy =

√
R2

d

(1−R2
d)θ′0Σθ0

for all combinations of

R2
d ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and R2

y ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

We report results for two different inference procedures in Figure 2. The right panel of the

figure shows size of 5% level t-tests for the average treatment effect where the point estimate is

formed using our proposed estimator based on model selection and orthogonal estimating equa-

tions and the standard error is estimated using a plug-in estimator of the asymptotic variance.

The left panel shows size of 5% level t-tests for the average treatment effect estimated as

θ̂naive =
1

n

n∑
i=1

(ĝy(1, xi)− ĝy(0, xi))

where ĝy(d, xi) is a post-model-selection estimator of E[Y |D = d,X = xi] and the standard error

is estimated using a plug-in estimator of the asymptotic variance of θ̂naive.

Both procedures rely on post-model-selection estimates of the conditional expectations E[Y |D =

d,X = xi], and we use exactly the same estimator of this quantity in both cases. Specifically,

we apply the Square-Root LASSO of Belloni, Chernozhukov, and Wang (2011) with outcome Y

and covariates (D,D ∗X1, ..., D ∗Xp, (1−D), (1−D) ∗X1, ..., (1−D) ∗Xp) to select variables.

We set the penalty level in the Square-Root LASSO using the “exact” option of Belloni, Cher-

nozhukov, and Wang (2011) under the assumption of homoscedastic, Gaussian errors ζi with the

tuning confidence level required in Belloni, Chernozhukov, and Wang (2011) set equal to 95%.

After running the square-root-LASSO, we then estimate regression coefficients by regressing Y

onto only those variables that were estimated to have non-zero coefficients by the square-root

LASSO. We then form estimates of E[Y |D = 1, X = xi] by plugging in (1, x′i)
′ into the estimated

model for i = 1, ..., n and form estimates of E[Y |D = 0, X = xi] by plugging in (0, x′i)
′ into the

estimated model for i = 1, ..., n.

For our proposed method, we also need an estimate of the propensity score. We obtain

our estimates of the propensity score by using `1−penalized logistic regression with D as the
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Figure 1. Rejection frequencies of 5% level tests for average treatment effect

estimators following model selection. The left panel shows size of a test based

on a “naive” estimator (Naive rp(0.05)), and the right panel shows size of a test

based on our proposed procedure (Proposed rp(0.05)).

outcome and X as the covariates with penalty level set equal to .5
√
nΦ−1(1 − 1/2p)/n where

Φ(·) is the standard normal distribution function using the MATLAB function “glmlasso”.5 We

standardize the variables inX and set penalty loadings equal to 1. After running the `1−penalized

logistic regression, we estimate the propensity score by taking fitted values from the conventional

logistic regression of D onto only those variables that had non-zero estimated coefficients in the

`1−penalized logistic regression.

Looking at the results, we see the behavior of the naive testing procedure depends heavily

on the underlying coefficient sequence used to generate the data. There are substantial size

distortions for many of the coefficient designs considered with good performance, size close to

the nominal level, only occuring in a handful of cases. It is worth noting that in practice one does

not know the underlying DGP and even estimation of the quantities necessary to know where

one is in the figure may be infeasible even in this simple scenario. Our proposed procedure does

a much better job at delivering accurate inference, producing tests with size close to the nominal

level across all designs considered. That is, the simulation illustrates the uniformity derived in

the theoretical development of our estimator illustrating that its performance is relatively good

uniformly across a variety of coefficient sequences. While simply illustrative, these simulation

results reinforce the theoretical development of the main paper which prove that our proposed

estimation and inference procedures have good properties uniformly across a variety of DGPs

where approximate sparsity holds.

5This penalty level is equivalent to that discussed in the main paper since “glmlasso” scales the problem in a

slightly different way.
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