Exploring the Limits of Epitaxy to further Materials by Design

Darrell G. Schlom

Department of Materials Science and Engineering Cornell University

Kavli Institute at Cornell for Nanoscale Science

Sandwich Maker

Outline

- What can be synthesized
 - Ruddlesden Popper $(A_{n+1}B_nO_{3n+1})$ with *n* up to 10
 - Aurivillius $(Bi_2O_2(A_{n-1}B_nO_{3n+1}))$ with *n* up to 8
 - Superlattices
 - Strain Game with $\varepsilon_{11} \approx \varepsilon_{22}$ up to 6%
 - Epitaxial Stabilization
 - in situ ARPES
- Challenges

MBE ≈ Atomic Spray Painting

Ruddlesden-Popper $A_{n+1}B_nO_{3n+1}$ with $n \le 10$

n = 10 has 104 atoms in unit cell

C.H. Lee, N.J. Podraza, Y. Zhu, R.F. Berger, S. Shen, M. Sestak, R.W. Collins, L.F. Kourkoutis, J.A. Mundy, H.Q. Wang, Q. Mao, X.X. Xi, L.J. Brillson, J.B. Neaton, D.A. Muller, and D.G. Schlom, *Applied Physics Letters* **102** (2013) 122901.

n = 8 Aurivillius Phase $[Bi_4Ti_3O_{12} - (SrTiO_3)_5]$

Applied Physics Letters **100** (2012) 223109.

(SrRuO₃)₁ / (SrTiO₃)₅ Superlattice ADF-STEM STEM-EELS

Scanning Transmission Electron Microscopy

nature de la contraction de la

Oxide interfaces for the many

TUMOUR IMMUNOTHERAPY A double attack

С

SEMICONDUCTING POLYMERS One trap fits all

MECHANICAL PROPERTIES The role of quantum effects

/InO₃]3

Mn

E.J. Monkman, C. Adamo, J.A. Mundy, D.E. Shai, J.W. Harter, D. Shen, B. Burganov, D.A. Muller, D.G. Schlom, and K.M. Shen, Nature Materials **11**, 855-859 (2012)

Carolina Adamo Julia Mundy, Muller Group

XRD of $(BaTiO_3)_n / (SrTiO_3)_m$ Superlattices

A. Soukiassian, W. Tian, V. Vaithyanathan, J.H. Haeni, L.Q. Chen, X.X. Xi, D.G. Schlom, D.A. Tenne, H.P. Sun, X.Q. Pan, K.J. Choi, C.B. Eom, Y.L. Li, Q.X. Jia, C. Constantin, R.M. Feenstra, M. Bernhagen, P. Reiche, and R. Uecker, *Journal of Materials Research* 23 (2008) 1417-1432.

Strained (001) Perovskite Films

$\varepsilon_{11} \approx \varepsilon_{11} \leq 3\%$ typical max to date 6.6% in BiFeO₃

R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.-H. Yang, A. Kumar, C.H. Wang, A.
Melville, C. Adamo, G. Sheng, Y.-H. Chu, J.F.
Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q.
Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh, *Science* **326** (2009) 977-980.

MBE + ARPES

Angle-Resolved Photoemission Spectroscopy (Kyle Shen)

ARPES of LaNiO₃: e_g Fermi Surface

Giant Quasiparticle Mass Renormalization

- What can be done
- Challenges
 - Substrates (isostructural, high perfection, desired lattice constant, desired octahedral rotations, ...)
 - Substrate Termination
 - Details of Growth Richer than Simple Cartoon
 - Point Defects (including defect complexes)

Commercial Perovskite Substrates

Pyrochlore Substrates

Collaboration with University of Augsburg (Jochen Mannhart's Group), Leibniz Institute for Crystal Growth (Reinhard Uecker's Group) and Johns Hopkins University (Tyrel McQueen's Group)

Surface Termination Recipes

• (100) and (111) SrTiO₃

G. Koster, B.L. Kropman, G.J.H.M. Rijnders, D.H.A. Blank, H. Rogalla, "Quasi-Ideal Strontium Titanate Crystal Surfaces through Formation of Strontium Hydroxide," *Applied Physics Letters* **73** (1998) 2920-2922.

• (110) $REScO_3$

J.E. Kleibeuker, G. Koster, W. Siemons, D. Dubbink, B. Kuiper, J.L. Blok, C-H. Yang, J. Ravichandran, R. Ramesh, J.E. ten Elshof, D.H.A. Blank, and G. Rijnders, "Atomically Defined Rare-Earth Scandate Crystal Surfaces," *Advanced Materials* **20** (2010) 3490-3496.

(100)_p and (111)_p LaAlO₃ J.L. Blok, X. Wan, G. Koster, D.H.A. Blank, and G. Rijnders, "Epitaxial Oxide Growth on Polar (111) Surfaces," *Applied Physics Letters* 99 (2011) 151917.

Terminated vs. Unterminated SrTiO₃

Terminated vs. Unterminated DyScO₃

Terminated vs. Unterminated GdScO₃

BF-STEM of $n = 2, 3, 6 (SrO)(SrTiO_3)_n$

In each case, the first SrO fault is missing – independent of *n*!

≥ 1 SrO Layer Yields RHEED Half-Order

Unstable double SrO layer

[110] Azimuth

3 layers of SrO is needed in forming double Sr layer [110] Azimuth

Oxide MBE + ARPES Team

