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General Approach to Many-Body 
Electronic Structure

•=>partition d.o.f. into 
``correlated subspace’’  (active 
space) and ``background’’

• treat correlated subspace by 
many-body method; treat 
background by mean field 
method

•embed active space into 
background

E
ne

rg
y
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1. background electronic structure (DFT)
2. Active subspace: (atomic-like d-orbitals) 
3. On-site intra-d interactions (c-RPA)
4. Solve active space (DMFT--single-site)
5. Embed (double counting and charge self-
consistency)

DFT+DMFT
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The most important recent 
developments: I

Gabi Kotliar

Antoine Georges

Dynamical Mean 
Field Theory

Enables marriage of 
many-body and real-
materials theory
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DMFT

Parametrize self energy  in terms of small  number N of 
functions of frequency.

parametrization function f determines  ‘flavor’ of DMFT

Physical model: M (typically infinity) orbitals in Hilbert space

Σa
DMFT is self energy of a 0 (space) + 1 (time)d QFT

Σ(k,ω) =
�

a

f(k)a Σa
DMFT(ω) a = 1...N

N->M; recover exact theory.  

?Can we solve the theory with any (useful) N?
?Can we get reasonable results with reasonable N?
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The most important recent 
developments: II

Philipp Werner Emanuel Gull

Continuous-Time 
Quantum Monte 

Carlo

Enables solution of 
DMFT equations in 
realistic contexts

Field started by Rubtsov, 
important contributions from Haule

P. Werner, A Comanac, Luca De Medici, M. Troyer, and A.Millis,  PRL 97, 076405 (2006).
E. Gull,  P. Werner, O. Parcollet and M. Troyer, EPL 82 57003 (2008).
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CT-QMC
CT-QMC: 
``many-body 
adaptive grid” 

t

(Image from From E. Gull)

All methods involve 
manipulating matrices; cost 
~cube of matrix size.
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A model system

H = −
�

ij

ti−jc
†
iσcjσ + U

�

i

ni↑ni↓
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Validation
(cluster) dmft: approximation to many body 
problem: accuracy controlled by parameter N.
Example:

1
Σp(ω)→ Σapprox

p (ω) =
�

a

φa(p)Σa(ω)

φa(p) = 1 if p is in the patch
containing Ka and is 0 otherwise
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Validation
3D Hubbard model, 
n=1 U=8t=2W/3  T=0.4t

N-2/3
Fuchs,  Gull, et al PRL 106 030401 (2011)

E/site
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Particle-hole asymmetric pseudogap in 
2d Hubbard model

Emanuel Gull, Michel Ferrero, Olivier Parcollet, Antoine 
Georges, A J. M, Phys. Rev. B82 155101  (2010).
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Particle-hole asymmetric pseudogap in 
2d Hubbard model
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superconductivity and the pseudogap in 
the 2D Hubbard model

U
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Summary: Hubbard model

The method works for a  model system

--gives physically interesting answers

--theoretically reasonable convergence structure
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Beyond model systems
(DFT+DMFT)

Our recent work

*Xin Wang, M. J. Han, Luca de' Medici, Hyowon Park, C. A. Marianetti and 
Andrew J. Millis, Physical Review B86, 195136 (2012).
*H. T. Dang and AJM Phys. Rev. B87, 155127 (2013), Phys. Rev. B87184434 
(2013)
*H. T. Dang, A. J. Millis and C. Marianetti, arXiv:1309.2995

Introduced by Liechtenstein, Anisimov, Georges, 
Kotliar....

now widely used..
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an application: ferromagnetism in 
vanadate superlattices
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Vanadate quantum well
(LaVO3)n/(SrVO3)m

Luders et al Phys Rev B80 
241102 (2009)  and 
Boulay  et al Phys Rev 
B83 125403 (2011) 

LaVO3: Antiferromagnetic 
Mott insulator (d2)
SrVO3: correlated metal (d1)
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Superlattice: room T ferromagnetism!

(LaVO3)n/(SrVO3)1

Luders et al Phys Rev B80 241102 (2009) 
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Theoretical Questions are clear

(1) The design rule question: can theory reliably 
identify the circumstances under which a material 
will exhibit a new phase (magnetic, 
superconducting, insulating...) or an optimized 
version of an existing phase

(0) The modelling question: can theory reliably 
obtain the values of physical quantities--gaps, 
transition temperatures, charge transfers......

Experimental situation complicated
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Design Rules

*Qualitative: identify important features/trends

*Quantitative: predict Tc or at least sign of Tc
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Qualitative Design Rules:
limitations of reasoning by analogy

High-Tc copper-oxide 
superconductivity

*One band
*Proximity to Mott phase
*S=1/2

High-Tc iron-pnictide 
superconductivity

*Several bands
*Proximity to metallic SDW
*`Hunds metal’ (local spin S>1/2)

  Theory needed, even for qualitative trends
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*Theory needed
*Density functional band theory (at least in 
its present implementation) inadequate
*Complete solution of all-electron correlation 
problem is impossible

=> need to 
(1) Identify subset of orbitals to be correlated
(2) Solve correlation problem 
(3) Embed solution in wider electronic structure. 
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DFT+DMFT La/SrVO3

Ferromagnetism favored by large tilts, distance 
from AF Mott insulator 

Key feature: rotations of 
VO3 octahedron

Bulk La/SrVO3
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DFT+DMFT La/SrVO3

Ferromagnetism favored by large tilts, distance 
from AF Mott insulator 

Key feature: rotations of 
VO3 octahedron

Bulk La/SrVO3

In LVO/SVO solid solutions, 
doping away from Mott 
insulator also moves tilt 
angle in wrong way!

What about superlattices?
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DFT+DMFT La/SrVO3

Ferromagnetism favored by large tilts, distance 
from AF Mott insulator 

Key feature: rotations of 
VO3 octahedron

Bulk La/SrVO3 In a superlattice, 
carrier concentration 
and tilt may be 
independently 
controlled
=>
? move into magnetic 
regime?
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DFT+DMFT La/SrVO3

!!Superlattice moves tilts in the wrong way!!

Key feature: rotations of 
VO3 octahedron

Bulk La/SrVO3 Superlattice
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DFT+DMFT La/SrVO3

!!Superlattice moves tilts in the wrong way!!

Key feature: rotations of 
VO3 octahedron

Bulk La/SrVO3 Superlattice
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Unsatisfactory aspect of theory
many moving parts

=>
?are we doing the right thing?
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1. background electronic structure (DFT)
2. Active subspace: (atomic-like d-orbitals) 
3. On-site intra-d interactions (c-RPA)
4. Solve active space (DMFT--single-site)
5. Embed (double counting and charge self-
consistency)

DFT+DMFT
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the loop

VKohn−Sham(r)ρ(r) G0(r, r�;ω)

Σ̂ = |d > Σ(ω) < d|
�
G0(r, r�;ω)−1 − Σ̂(ω)

�−1
G(r, r�;ω) =

ρ(r) =
�

dω

π
f(ω)G(r, r;ω)

Double counting shift

DMFT

Charge self consistency

Onsite U, J pre-computed
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We tried this out
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We tried this out

Material Expt Th
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We tried this out

Material Expt Th

SrVO3



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I M



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I M

La2CuO4



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I M

La2CuO4 I



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I M

La2CuO4 I M



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

We tried this out

Material Expt Th

SrVO3 M M

LaTiO3 I M

LaVO3 I M

La2CuO4 I M

?What went wrong?
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Possibilities

•Wrongly chosen active space (need to 
treat more than just on-site d-d 
interactions dynamically)

•Wrong embedding (double counting)

•Wrong approximation (need more than 
single-site DMFT)

•Wrong treatment of  “background” 
electrons  
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Our view now

•Pseudo cubic materials: the problem is 
with the underlying band structure

•Cuprates: need to fix underlying band 
structure and go beyond single-site DMFT

Crucial Importance of p-d energy splitting
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SrVO3: an instructive example
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SrVO3: an instructive example
Cubic, moderately correlated metal
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SrVO3: an instructive example
Cubic, moderately correlated metal

DFT+DMFT  TRIQS Code
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SrVO3: an instructive example
Cubic, moderately correlated metal

process keeps 
relative separation 
of p and d bands 
independent of U--
and slightly smaller 
than band theory 
value

Without charge self 
consistency, p-bands 
stay at DFT position

DFT+DMFT  TRIQS Code
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The Zaanen-Sawatzky-Allen phase 
diagram (integer band filling)

εd − εp

U
Charge 
transfer 
Insulator

Mott 
Insulator

Metal
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εd − εp

U
Charge 
transfer 
Insulator

Mott 
Insulator

Metal

Calculation says that increasing U moves you 
more or less vertically in the ZSA phase diagram. 
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εd − εp

U
Charge 
transfer 
Insulator

Mott 
Insulator

Metal

Calculation says that increasing U moves you 
more or less vertically in the ZSA phase diagram. 

If the material starts with too small a p-
d energy splitting, it remains in the 
metallic regime as U increases
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Would like to explore all of ZSa phase 
diagram

Fully charge self consistent calculation explores 
only one line. 

?how to generalize?
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d-occupancy:
* Intuitive notion: e.g. La3+Ti3+O32- =>Ti d1 (Nd=1)

*Theoretically needed (if you want to put correlations 
on d-orbital you need to know what this orbital is and 
how much it is occupied)

*definition:
In terms of exact Green function G(r, r

�
;ω)

and predefined d-wave function φd

Nd =
�

a,σ

�
dω

π
f(ω)

�
d3rd3r

�
Im

�
(φa

d(r))∗ Gσ(r, r
�
,ω)φa

d(r
�
)
�
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Notes

*d occupancy depends on how orbital is defined (as 
does the entire edifice of DFT+DMFT)

We have found: all reasonable definitions give 
consistent answers 
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SrVO3:

lower panels: ad-hoc 
double counting 
correction chosen to 
keep Nd at value 
found in fully charge 
self consistent 
calculation.

DFT+DMFT  TRIQS Code
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SrVO3:

lower panels: ad-hoc 
double counting 
correction chosen to 
keep Nd at value 
found in fully charge 
self consistent 
calculation.

Spectra are identical. 

DFT+DMFT  TRIQS Code
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SrVO3:

lower panels: ad-hoc 
double counting 
correction chosen to 
keep Nd at value 
found in fully charge 
self consistent 
calculation.

Spectra are identical. 

DFT+DMFT  TRIQS Code

=>dont need to bother with charge self consistency; plot 
results in terms of Nd
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Metal-insulator phase diagrams
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Metal-insulator phase diagrams
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Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in 
agreement with experiment. Compute oxygen bands.
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Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in 
agreement with experiment. Compute oxygen bands. 
Relatively narrow U-range consistent with expt
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Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in 
agreement with experiment. Compute oxygen bands. 
Relatively narrow U-range consistent with expt

U~5-6eV is found in C-RPA calculations
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Possibilities

•Wrongly chosen active space (need to 
treat more than just on-site d-d 
interactions dynamically)

•Wrong embedding (double counting)

•Wrong approximation (need more than 
single-site DMFT)

•Wrong treatment of  “background” 
electrons  
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Summary: titanates/vanadates

Single-site DMFT is acceptable first-order 
approximation to electronic structure **IF 
oxygen bands are suitably positioned**

Fully charge self consistent DFT+DMFT 
places oxygen bands higher than DFT and 
thus too high relative to experiment.

=>?need better background electronic 
structure?
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Cuprates: beyond single-site dmft 
Ara Go. (New CI-based ``impurity solver’’)

U
 [

eV
]

∆ [eV]

Nd=1 
Nd=4 

 8

 12

 16

 20

 24

 2  4  6  8  10  12  14  16

(a)

nd

Insulator
Metal

Marginal
Coexistence

1.1 1.2 1.3 1.4 1.5 1.6

! "

(b)



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

U
 [

eV
]

∆ [eV]

Nd=1 
Nd=4 

 8

 12

 16

 20

 24

 2  4  6  8  10  12  14  16

(a)

nd

Insulator
Metal

Marginal
Coexistence

1.1 1.2 1.3 1.4 1.5 1.6

! "

(b)

Gap

 0

 1

 2

 3

 4

 5

 6

 7

 8

1.1 1.2 1.3 1.4 1.5 1.6

∆
ρ
 [

eV
]

nd

Nd=1, U=8.0eV
Nd=4, U=8.0eV
Nd=1, U=9.6eV
Nd=4, U=9.6eV
Nd=1, U=19.2eV
Nd=4, U=19.2eV



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

Resolves old problem in optics

Xin Wang
2011

Ara Go: 2013
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Summary: cuprates

4-site DMFT is acceptable first-order 
approximation to electronic structure **IF 
oxygen bands are suitably positioned**

Long-standing problem with optics resolved
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Very recent success:
energetics of nontrivial phases
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metal-insulator transition in 
rare-earth nickel oxides

Metal-insulator transition occurs along  with 
2 sublattice Ni-O breathing distortion

J A Alonso et al PRL 82 3871  (1999) 

Wrongly interpreted as charge order
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DFT+DMFT  using observed structure 
of  insulating phase

Hyowon Park, Andrew J. Millis, and Chris A. 
Marianetti, PRL 109, 156402 (2012) 

N1=8.24 N2=8.22

Find: insulator but 
no charge order

Site selective Mott transition
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Can now compute energies
and pressure-volume phase diagrams

Hyowon Park, Andrew J. Millis, and Chris A. 
Marianetti, to appear
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Conclusion

Conclusion: need  underlying electronic structure that 
gets the oxygen energies right.  DFt puts O states too 
close to the fermi level
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1. background electronic structure 
1.1. beyond DFT method

2. Active subspace: ?atomic-like d-orbitals? 
3. ?On-site intra-d interactions?
4. Solve active space (?DMFT?)

4.1. if only on-site interactions
4.2. is single-site approx ok?

5. Embed 

Prospects: DFT+DMFT
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Cuprates



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

Cuprates
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U-Nd phase diagram
DFT+DMFT: treat only  Cu-d x2-y2 orbital 
dynamically
Non-self-consistent

I

M
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U-Nd phase diagram
DFT+DMFT: treat only  Cu-d x2-y2 orbital 
dynamically
Non-self-consistent

I

M

band theory
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U-Nd phase diagram
DFT+DMFT: treat only  Cu-d x2-y2 orbital 
dynamically
Non-self-consistent

I

M

band theory

‘distance’ from band 
theory Nd to metal-
insulator phase 
boundary  ~0.25el/Cu
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U-Nd phase diagram
DFT+DMFT: treat  Cu-d x2-y2 orbital dynamically
Non-self-consistent

VASP/MLWF
Wein2K/Projector

I

M
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More detailed look
Treat x2-y2 
dynamically, all 
other d with 
Hartree-Fock J=0 
vs  J=0.7eV

vs 

treat all 5 d 
dynamically (only 
Ising terms) J=0 vs 
J=0.7eV



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2013 

What is band theory Nd?
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What is band theory Nd?

VASP/Wannier

Wein2K/projector
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What about full charge self-consistency

Wein2K/projector
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Metal-insulator phase diagrams

?How to position the materials?


