DFT+DMFT and its Discontents: towards a first-principles theory of correlated electron materials

A. J. Millis

Department of Physics, Columbia University

Support: US-DOE-ER-046169 US-ARO-56032-PH US-NSF-DMR-1006282

ICAM/BU 2013

Copyright A. J. Millis 2013

Hyowon Park, Andrew J. Millis, and Chris
A. Marianetti, PRL 109, 156402 (2012)
E. Gull, O. Parcollet and A. J. Millis, PRL
110 216406 (2013)
H. T. Dang, A. J. Millis and C. Marianetti, arXiv:1309.2995

Collaborators

C. Marianetti (Columbia)

Hung The Dang (Columbia->Aachen)

> Ara Go (Columbia)

*Hyowon Park (Columbia)

M-J. Han (CU->ANL->KAIST) X. Wang (CU->U-Md) L. deMedici (ESPCI)

Department of Physics Columbia University

General Approach to Many-Body Electronic Structure

•=>partition d.o.f. into ``correlated subspace'' (active space) and ``background''

• treat correlated subspace by many-body method; treat background by mean field method

•embed active space into background

DFT+DMFT

 background electronic structure (DFT)
 Active subspace: (atomic-like d-orbitals)
 On-site intra-d interactions (c-RPA)
 Solve active space (DMFT--single-site)
 Embed (double counting and charge selfconsistency)

The most important recent developments: I

Gabi Kotliar

Dynamical Mean Field Theory

Enables marriage of many-body and realmaterials theory

Antoine Georges

Department of Physics Columbia University

DMFT

Physical model: M (typically infinity) orbitals in Hilbert space

Parametrize self energy in terms of small number N of functions of frequency.

$$\begin{split} \boldsymbol{\Sigma}(\mathbf{k},\omega) &= \sum \mathbf{f}(\mathbf{k})_{\mathbf{a}} \ \boldsymbol{\Sigma}_{\mathbf{DMFT}}^{\mathbf{a}}(\omega) \qquad \mathbf{a} = 1...\mathbf{N} \\ \boldsymbol{\Sigma}_{\mathbf{DMFT}}^{\mathbf{a}} \text{ is self energy of a 0 (space)} &+ 1 \text{ (time)d QFT} \\ \textbf{parametrization function f determines 'flavor' of DMFT} \\ \underline{\mathbf{N->M; recover exact theory.}} \end{split}$$

?Can we solve the theory with any (useful) N?

?Can we get reasonable results with reasonable N?

Department of Physics Columbia University

The most important recent developments: II

Philipp Werner

Continuous-Time Quantum Monte Carlo

Enables solution of DMFT equations in realistic contexts

Emanuel Gull

Field started by Rubtsov, important contributions from Haule

P. Werner, A Comanac, Luca De Medici, M. Troyer, and A.Millis, PRL 97, 076405 (2006).E. Gull, P. Werner, O. Parcollet and M. Troyer, EPL 82 57003 (2008).

Department of Physics Columbia University

CT-QMC: "many-body adaptive grid"

All methods involve manipulating matrices; cost ~cube of matrix size.

Copyright A. J. Millis 2013

- For the same problem: problem size reduced by ~30.
- Corresponds to time speedup of factor 30³ = 27'000 or ~25 years of Moore's law

(Image from From E. Gull)

A model system

 $\mathbf{H} = -\sum_{i,i} t_{i-j} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$

Validation

(cluster) dmft: approximation to many body problem: accuracy controlled by parameter N. Example:

Department of Physics Columbia University

Validation

3D Hubbard model, n=1 U=8t=2W/3 T=0.4t

Particle-hole asymmetric pseudogap in 2d Hubbard model

Particle-hole asymmetric pseudogap in 2d Hubbard model

Mott gap and Pseudogap vs cluster size

Copyright A. J. Millis 2013

superconductivity and the pseudogap in the 2D Hubbard model

E. Gull, O. Parcollet and A. J. Millis, PRL 110 216406 (2013)

Department of Physics Columbia University

Summary: Hubbard model

The method works for a model system

--gives physically interesting answers

--theoretically reasonable convergence structure

Beyond model systems (DFT+DMFT)

Introduced by Liechtenstein, Anisimov, Georges, Kotliar....

now widely used..

Our recent work

*Xin Wang, M. J. Han, Luca de' Medici, Hyowon Park, C. A. Marianetti and Andrew J. Millis, Physical Review B86, 195136 (2012).
*H. T. Dang and AJM Phys. Rev. B87, 155127 (2013), Phys. Rev. B87184434 (2013)

*H. T. Dang, A. J. Millis and C. Marianetti, arXiv:1309.2995

Department of Physics Columbia University

an application: ferromagnetism in vanadate superlattices

Vanadate quantum well

 $(LaVO_3)_n/(SrVO_3)_m$

LaVO₃: Antiferromagnetic Mott insulator (d²) SrVO₃: correlated metal (d¹)

Luders et al Phys Rev B80 241102 (2009) and Boulay et al Phys Rev B83 125403 (2011)

Department of Physics Columbia University

Superlattice: room T ferromagnetism!

Luders et al Phys Rev B80 241102 (2009)

Experimental situation complicated

Theoretical Questions are clear

(1) The design rule question: can theory reliably identify the circumstances under which a material will exhibit a new phase (magnetic, superconducting, insulating...) or an optimized version of an existing phase

(0) The modelling question: can theory reliably obtain the values of physical quantities--gaps, transition temperatures, charge transfers.....

Department of Physics Columbia University

Design Rules

***Qualitative: identify important features/trends**

*Quantitative: predict T_c or at least sign of T_c

Qualitative Design Rules: limitations of reasoning by analogy

High-T_c copper-oxide superconductivity

*One band *Proximity to Mott phase *S=1/2

High-T_c iron-pnictide superconductivity

*Several bands *Proximity to metallic SDW *`Hunds metal' (local spin S>1/2)

Theory needed, even for qualitative trends

Department of Physics Columbia University

*Theory needed *Density functional band theory (at least in its present implementation) inadequate *Complete solution of all-electron correlation problem is impossible

=> need to
(1) Identify subset of orbitals to be correlated
(2) Solve correlation problem
(3) Embed solution in wider electronic structure.

Bulk La/SrVO₃

Ferromagnetism favored by large tilts, distance from AF Mott insulator

Copyright A. J. Millis 2013

Bulk La/SrVO₃

In LVO/SVO solid solutions, doping away from Mott insulator also moves tilt angle in wrong way!

What about superlattices?

Ferromagnetism favored by large tilts, distance from AF Mott insulator

Copyright A. J. Millis 2013

Bulk La/SrVO₃

In a superlattice, carrier concentration and tilt may be independently controlled => ? move into magnetic regime?

Ferromagnetism favored by large tilts, distance from AF Mott insulator

Copyright A. J. Millis 2013

!!Superlattice moves tilts in the wrong way!!

Department of Physics Columbia University

!!Superlattice moves tilts in the wrong way!!

Department of Physics Columbia University

Unsatisfactory aspect of theory many moving parts =>

?are we doing the right thing?

DFT+DMFT

 background electronic structure (DFT)
 Active subspace: (atomic-like d-orbitals)
 On-site intra-d interactions (c-RPA)
 Solve active space (DMFT--single-site)
 Embed (double counting and charge selfconsistency)

the loop

Onsite U, J pre-computed

Material	Expt	Th
----------	------	----

Material	Expt	Th
SrVO ₃		

Material	Expt	Th
SrVO ₃	Μ	

Material	Expt	Th
SrVO ₃	M	Μ

Material	Expt	Th
SrVO ₃	M	M
LaTiO ₃		

Material	Expt	Th
SrVO ₃	M	Μ
LaTiO ₃	Ι	

Material	Expt	Th
SrVO ₃	M	Μ
LaTiO ₃	Ι	Μ

Material	Expt	Th
SrVO ₃	M	Μ
LaTiO ₃	Ι	Μ
LaVO ₃		

Material	Expt	Th
SrVO ₃	M	Μ
LaTiO ₃	Ι	Μ
LaVO ₃	Ι	

Material	Expt	Th
SrVO ₃	M	Μ
LaTiO ₃	Ι	Μ
LaVO ₃	Ι	Μ

Material	Expt	Th
SrVO ₃	M	M
LaTiO ₃	Ι	M
LaVO ₃	Ι	Μ
La ₂ CuO ₄		

Material	Expt	Th
SrVO ₃	Μ	Μ
LaTiO ₃	Ι	M
LaVO ₃	Ι	Μ
La ₂ CuO ₄	Ι	

Material	Expt	Th
SrVO ₃	Μ	Μ
LaTiO ₃	Ι	Μ
LaVO ₃	Ι	Μ
La ₂ CuO ₄	Ι	Μ

Material	Expt	Th
SrVO ₃	M	M
LaTiO ₃	Ι	M
LaVO ₃	Ι	Μ
La ₂ CuO ₄	Ι	Μ

?What went wrong?

Department of Physics Columbia University

Possibilities

•Wrongly chosen active space (need to treat more than just on-site d-d interactions dynamically)

•Wrong embedding (double counting)

•Wrong approximation (need more than single-site DMFT)

•Wrong treatment of "background" electrons

Department of Physics Columbia University

Our view now

•Pseudo cubic materials: the problem is with the underlying band structure

•Cuprates: need to fix underlying band structure and go beyond single-site DMFT

Crucial Importance of p-d energy splitting

Department of Physics Columbia University

SrVO₃: an instructive example

SrVO₃: an instructive example Cubic, moderately correlated metal

SrVO₃: an instructive example

Cubic, moderately correlated metal

DFT+DMFT TRIQS Code

SrVO₃: an instructive example

Cubic, moderately correlated metal

process keeps relative separation of p and d bands independent of U--and slightly smaller than band theory value

Without charge self consistency, p-bands stay at DFT position

Department of Physics Columbia University

The Zaanen-Sawatzky-Allen phase diagram (integer band filling)

Ŵ

Department of Physics Columbia University

Calculation says that increasing U moves you more or less vertically in the ZSA phase diagram.

Calculation says that increasing U moves you more or less vertically in the ZSA phase diagram.

If the material starts with too small a pd energy splitting, it remains in the metallic regime as U increases Copyright A. J. Millis 2013

Department of Physics Columbia University

Would like to explore all of ZSa phase diagram

Fully charge self consistent calculation explores only one line.

?how to generalize?

d-occupancy:

* Intuitive notion: e.g. $La^{3+}Ti^{3+}O_3^{2-} =>Ti d^1 (N_d=1)$

*Theoretically needed (if you want to put correlations on d-orbital you need to know what this orbital is and how much it is occupied)

*definition:

In terms of exact Green function $\mathbf{G}(\mathbf{r}, \mathbf{r}'; \omega)$ and predefined d-wave function $\phi_{\mathbf{d}}$

$$\mathbf{N_d} = \sum_{\mathbf{a},\sigma} \int \frac{\mathbf{d}\omega}{\pi} \mathbf{f}(\omega) \int \mathbf{d^3rd^3r'} \ \mathbf{Im} \left[\left(\phi_{\mathbf{d}}^{\mathbf{a}}(\mathbf{r}) \right)^* \mathbf{G}_{\sigma}(\mathbf{r},\mathbf{r'},\omega) \phi_{\mathbf{d}}^{\mathbf{a}}(\mathbf{r'}) \right]$$

Department of Physics Columbia University

Notes

*d occupancy depends on how orbital is defined (as does the entire edifice of DFT+DMFT)

We have found: all reasonable definitions give consistent answers

SrVO₃:

DFT+DMFT TRIQS Code

lower panels: ad-hoc double counting correction chosen to keep N_d at value found in fully charge self consistent calculation.

SrVO₃:

DFT+DMFT TRIQS Code

lower panels: ad-hoc double counting correction chosen to keep N_d at value found in fully charge self consistent calculation.

Spectra are identical.

Department of Physics Columbia University

SrVO₃:

DFT+DMFT TRIQS Code

lower panels: ad-hoc double counting correction chosen to keep N_d at value found in fully charge self consistent calculation.

Spectra are identical.

=>dont need to bother with charge self consistency; plot results in terms of N_d Department of Physics

Copyright A. J. Millis 2013

Department of Physics Columbia University

Metal-insulator phase diagrams

Metal-insulator phase diagrams

Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in agreement with experiment. Compute oxygen bands.

Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in agreement with experiment. Compute oxygen bands. **Relatively narrow U-range consistent with expt**

Titanates/Vanadates

For each U, adjust Nd so theory gives insulating gap in agreement with experiment. Compute oxygen bands. **Relatively narrow U-range consistent with expt**

U~5-6eV is found in C-RPA calculations

Department of Physics Columbia University

Possibilities

•Wrongly chosen active space (need to treat more than just on-site d-d interactions dynamically)

•Wrong embedding (double counting)

•Wrong approximation (need more than single-site DMFT)

•Wrong treatment of "background" electrons

Department of Physics Columbia University

Summary: titanates/vanadates

Single-site DMFT is acceptable first-order approximation to electronic structure **IF oxygen bands are suitably positioned**

Fully charge self consistent DFT+DMFT places oxygen bands higher than DFT and thus too high relative to experiment.

=>?need better background electronic structure?

Department of Physics Columbia University

Cuprates: beyond single-site dmft Ara Go. (New CI-based ``impurity solver'')

Department of Physics Columbia University

Gap

Resolves old problem in optics

Xin Wang 2011 Ara Go: 2013

Summary: cuprates

4-site DMFT is acceptable first-order approximation to electronic structure **IF oxygen bands are suitably positioned**

Long-standing problem with optics resolved

Very recent success: energetics of nontrivial phases

metal-insulator transition in rare-earth nickel oxides

J A Alonso et al PRL 82 3871 (1999)

Metal-insulator transition occurs along with 2 sublattice Ni-O breathing distortion

Wrongly interpreted as charge order

DFT+DMFT using observed structure of insulating phase

Find: insulator but no charge order

 $N_1 = 8.24 N_2 = 8.22$

Hyowon Park, Andrew J. Millis, and Chris A. Marianetti, PRL 109, 156402 (2012)

Department of Physics Columbia University

Can now compute energies and pressure-volume phase diagrams

Hyowon Park, Andrew J. Millis, and Chris A. Marianetti, to appear

Conclusion: need underlying electronic structure that gets the oxygen energies right. DFt puts O states too close to the fermi level

Department of Physics Columbia University

Prospects: DFT+DMFT

- 1. background electronic structure
 - **1.1. beyond DFT method**
- 2. Active subspace: ?atomic-like d-orbitals?
- 3. ?On-site intra-d interactions?
- 4. Solve active space (?DMFT?)
 - 4.1. if only on-site interactions
 - 4.2. is single-site approx ok?
- 5. Embed

Cuprates

Cuprates

Department of Physics

Columbia University

DFT+DMFT: treat only Cu-d x²-y² orbital dynamically

Department of Physics

Columbia University

DFT+DMFT: treat only Cu-d x²-y² orbital dynamically

DFT+DMFT: treat only Cu-d x²-y² orbital dynamically

DFT+DMFT: treat Cu-d x²-y² orbital dynamically Non-self-consistent

More detailed look

Treat x2-y2 dynamically, all other d with Hartree-Fock J=0 vs J=0.7eV

VS

treat all 5 d dynamically (only Ising terms) J=0 vs J=0.7eV Department of Physics Columbia University

What is band theory N_d?

Department of Physics Columbia University

What is band theory N_d?

What about full charge self-consistency

Metal-insulator phase diagrams

?How to position the materials?

Department of Physics Columbia University