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Abstract— This paper is concerned with the problem of
identifying a discrete-time dynamical system model for a gene
regulatory network with unknown topology using time series
gene expression data. The topology of such a network can be
characterized by a set of regulation hypotheses, one for each
gene. In our earlier work, we formulated a convex optimization
method to select the regulation hypotheses (and hence the
network topology). In this paper, we further optimize the
dynamics of the inferred network. Specifically, for a given
topology, we minimize the `2 distance between the experimental
data and the model prediction. We illustrate the performance
of our algorithm by identifying models for gene networks with
known topology.

Keywords: gene network identification, monotone functions,
optimization.

I. I NTRODUCTION

Gene regulatory network identiÞcation is one of the main
challenges in systems biology and is related to the problem of
identifying how a group of genes interact based on their ex-
pression activities [1], [2]. As gene regulatory networks play
a fundamental role in the regulation of biological processes,
gene network identiÞcation (also termedreverse engineering)
is a crucial step in understanding these processes.

IdentiÞcation of Gene Regulatory Networks (GRNs) is a
difÞcult problem for the following main reasons:

¥ The size of the network can be very large.
¥ The measurements are noisy.
¥ Although it is possible to have a large quantity of

data (genome-wide) for each snapshot, the number of
snapshots is typically small. This is because obtaining
a large number of snapshots is highly impractical, due
to logistical and cost considerations.

¥ The dynamics of the GRNs are highly nonlinear.

There are several families of methods for identiÞcation of
GRNs from gene expression data. For a detailed overview,
we refer the reader to the review paper by Bansalet al. [3].
Within the systems and control community, identiÞcation of
GRNs is usually done by modeling networks as dynamical
systems [4]. This is also the approach reported in this paper.

For certain model structures (e.g. linear systems), with the
availability of gene expression measurements, the network
can in principle be reconstructed by inverting the data.
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However, as the measurements are noisy, the reconstructed
network tends to be populated with spurious interconnections
(i.e. false positives). This concern motivates sparse identiÞ-
cation that aims at getting a network model with as few
connections as possible without losing the Þtness to the data
[1], [5], [6]. IdentiÞcation of GRNs in general and sparse
identiÞcation of GRNs in particular are quite active research
areas. For example, de Jonget al. developed a method
for identiÞcation of GRNs using the structure of piecewise
afÞne dynamical systems [7], [8]. Papachristodoulouet al.

developed a model for identiÞcation of sparse networks
using Hill functions to describe the dynamics of gene-gene
interactions [9]. Earlier work by one of the authors of the
current paper aimed at identifying sparse networks based on
genetic perturbation data, assuming that the dynamics can be
described (locally) as a linear system [10], [11], [12]. Recent
work by Yuanet al. [13], [14] investigated handling sparsity
by using Akaike information criterion. A different approach
was taken by Chang and Tomlin [15], where compressive
sensing is used to identify a sparse linear model.

The method reported in this paper is an extension of
our earlier work in [16], [17], which has been applied to
modeling the regulation of the Toll-like receptor signaling
pathway [18], [19]. In short, given a set of expression activity
data, we consider the question whether the data could have
come from a given network topology, where the interaction
dynamics can be represented ascontinuous nonnegative
monotonic functions (in short, CNM functions). Requiring
monotonicity is in line with the fact that most, if not all,
known mathematical models for gene regulation use mono-
tonic functions. In [16], [17], we proved that this question
is equivalent to the feasibility of a Linear Program involving
the expression activity data. Our method is essentially based
on model invalidation, rather than model identiÞcation. A
nice feature of our method is that the regulator sets of the
genes in the network can be computed in parallel.

Using monotonicity as criterion for invalidating regulation
hypothesis has also been pursued by others in the Þeld. For
example, the work by Porrecaet al. [20] proposed a two-
staged process in identifying a continuous-time differential
equation model for GRNs. In the Þrst stage, network topolo-
gies that are inconsistent with the data are rejected. This
Þrst stage is also based on the monotonicity argument. In
a more recent work, Angeli and Sontag [21] exploited the
monotonicity argument to reject regulation hypotheses based
on the sign pattern of the expression dataÕs temporal gradient.

The focus is this paper is the optimal identiÞcation of
the network model after its topology is found using the
approach reported in [16], [17]. We propose two procedures
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that aim at optimizing the regulation functions obtained after
the topology identiÞcation. SpeciÞcally, we seek to minimize
the ! 2 distance between experimental and predicted time-
series expression data. The Þrst method reÞnes the domains
of the regulation functions, while the second technique uses
a gradient descent method to explore the space of regulation
functions. Both methods diminish the error of the network
model and allow for better prediction of gene dynamics.

II. N OTATIONS AND PRELIMINARY RESULTS

In the following, we introduce some mathematical nota-
tions that we shall use in the subsequent discussion. These
notations are similar to those in [17], but repeated here to
make this paper self-contained.

Assume that the GRN we are working with consists ofG
genes. We propose a discrete-time model for the dynamics
of the gene expression in the form:

xi [k + 1] ! xi [k] = ! " i xi [k] + f i (xi
1[k], á á á, xi

K i
[k]), (1)

for all i " { 1, á á á, G} , where xi denotes the expression
activity of Genei , " i # 0 is the decay parameter of Gene
i (degradation component),f i is the regulation function of
Genei (production component), and(xi

1, á á á, xi
K i

) are the
expression activities of the regulators of Genei . To simplify
the discussion, we abuse the notation and deÞne the regulator
set of Genei as GR

i ! { xi
1, á á á, xi

K i
} . We assume that" i ,

the regulator setGR
i , and functionf i are unknown, and have

to be identiÞed from the experimental data.
Suppose that we are provided with a sequence of gene

expression activities for(N + 1) equally spaced time points.
Denote the expression data of Genei at time j asxi,j , 1 $
i $ G, 0 $ j $ N . The (time) differential expression activity
qi,j , 1 $ i $ G, 0 $ j $ N ! 1, is deÞned as

qi,j ! xi,j +1 ! xi,j . (2)

Therefore, for the data to Þt the model, the following relation
must hold:

qi,j = ! " i xi,j + f i (xi
1,j , xi

2,j , . . . , xi
K i ,j ). (3)

As in [16], [17], the following assumption for the regula-
tory function f i is adopted.
CNM Assumption: The function f i (xi

1, xi
2, . . . , xi

K i
) is

continuous, nonnegative and monotonic (CNM) in each
xi

1, . . . , xi
K i

" GR
i .

If f i is monotonically increasing inxi
k , then thek-th

regulator of Genei is considered an activator. Conversely,
when f i is monotonically decreasing inxi

k , the regulator is
considered a repressor of Genei . Thus, the set of regulators
GR

i can be split into two disjoint sets

GR
i = GR +

i %GR !
i , (4)

whereGR +
i andGR !

i are the sets of activators and repressors
of Genei , respectively.
Regulation Hypothesis: A regulation hypothesisR i for
Genei states thatGR

i := GR +
i %GR !

i is the set of regulators
of Genei .

Given a regulation hypothesisR i = ( GR +
i , GR !

i ), we
denote:

¥ the vector of expression activities of all activator genes
at time j asxi

a,j ,
¥ the vector of expression activities of all repressor genes

at time j asxi
r ,j ,

¥ the vector of expression activities of regulator genes at
time j asxi

R ,j ,

The regulation hypothesisR i is equivalent to the existence
of some" i # 0, and a CNM functionf i (&, ' ) that is mono-
tonically increasing in the variables in& and monotonically
decreasing in the variables in' , such that

qi,j = ! " i xi,j + f i (xi
a,j , xi

r ,j ), ( j " { 0, . . . , N ! 1} . (5)

In [17], we showed that the validity of the regulation
hypothesisR i is equivalent to the feasibility of a Linear
Program involvingxi

R ,j for j " { 0, . . . , N ! 1} andxi,j for
j " { 1, . . . , N } .

Definition 1: Given a regulation hypothesisR i =
(GR +

i , GR !
i ), we deÞne the partial ordering) R i * R|GR

i | +
R|GR

i | as

xi
R ,j ) R i xi

R ,n :,

(
xi

a,j $ xi
a,n

xi
r ,j # xi

r ,n
(6)

SR i : = { (j, n ) " { 0, . . . , N ! 1} 2 | xi
R ,j ) R i xi

R ,n } .
In addition to formulating the necessary and sufÞcient

conditions for the validity of the regulation hypothesis, we
also formulated a Linear Quadratic optimization problem to
quantify how far the data are from satisfying the regulation
hypothesisR i . The Frobenius norm of#i (denoted as- #i - F
below) quantiÞes this distance:

min - #i - F subject to (7)

qi,j = ! " i xi,j + öqi,j + #i,j , ( j " { 0, . . . , N ! 1} ,

" i # 0,

öqi,j # 0, ( j " { 0, . . . , N ! 1} ,

öqi,j # öqi,n , ( (j, n ) " SR i ,

with " i , #i,j , andöqi,j , j " { 0, . . . , N ! 1} as the optimization
variables.

The following statement, which follows immediately from
the results in [17], summarizes the relationship between
- #i - F and the validity of the regulation hypothesisR i .

Theorem 1: - #i - F = 0 if and only if the regulation
hypothesisR i is valid.

Because of measurement noise and/or unmodelled external
variables in the network, in practice,- #i - F > 0. A regulation
hypothesisR i is accepted if- #i - F is small enough, or if it
is the smallest among competing hypotheses.

III. PROBLEM FORMULATION

Once a regulation hypothesisR i is accepted with- #i - F
small enough, we showed in [17] that the regulation function
f i can be constructed by interpolating the solutionöqi,j from
the optimization problem given in (7). There is not a unique
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way to do this, and in [17] we presented an multi-afÞne
interpolation technique for this purpose.

In this paper, we want to exploit the non-uniqueness of
the interpolation. That is, we formulate a cost criterion that
aims to Þt the model prediction and the experimental time-
series data, and optimize this cost criterion while we Þnd
the regulation function. We propose two methods that aim
at Þne tuning an initial model of the regulation function.
Both methodologies diminish our cost criterion and yield an
optimized model that predicts more accurate gene dynamics.

Suppose that we form a candidate network by proposing
the regulation hypothesesR 1, . . . , R G . That is, we deÞne the
(graph of the) network by specifying the regulators for each
gene. Following the reasoning for individual genes above,
this set of hypotheses is valid if and only if there exist:
(C1) A regulation functionF = ( f 1, f 2, . . . , f G ) that is
continuous, non-negative, and monotonic in the sense that is
required by the regulation hypothesis. That is if the regulation
hypotheses state that thek-th regulator is an activator of Gene
i , thenf i is monotonically increasing w.r.t.xi

k , etc.
(C2) Some non-negative" 1, . . . , " G , such that for alli "
{ 1, . . . , G} and j " { 0, . . . , N ! 1}

qi,j ! xi,j +1 ! xi,j = ! " i xi,j + f i (x1,j , . . . , xG,j ) . (8)

If F and " 1, . . . , " G , are given, we can deÞne an error
quantity that measures the! 2 distance between the ex-
perimental gene expression time series data and the gene
expression time series generated by the model as follows:

#2
! (F, " 1, . . . , " G ) !

GX

i =1

N +1X

j =0

(xi,j ! öxi,j )2 , (9)

where the model predictionöxi,j is deÞned recursively as
follows.

öxi, 0 = xi, 0, (10a)

öxi,j +1 = öxi,j ! " i öxi,j + f i (öx1,j , . . . , öxG,j ) , (10b)

for all i " { 1, . . . , G} , andj " { 0, . . . , N ! 1} .
The problem of Þnding the regulatory functions that best

Þt the time series data in the! 2 sense, given the regulation
hypothesesR 1, . . . , R G , can then be formulated as follows:

min #2
! (F, " 1, . . . , " G ) subject to (11)

F conforms withR 1, . . . , R G ,

" 1, . . . , " G # 0,

with F, " 1, . . . , " G as the optimization variables. By Òcon-
forming with R 1, . . . , R G Ó we mean thatF is continuous,
nonnegative, and has the monotonicity property as dictated
by R 1, . . . , R G .

Remark 2: Notice that the optimization ÒvariableÓF as-
sumes its value in a function space. Also, we can observe
that the feasible set in (11) is a cone, which is a convex set.

Remark 3: Note that (11) differs from (7) in the sense that
(11) uses the modelrecursively to propagate the prediction
from the initial state. If we were to replace (10b) with

öxi,j +1 = xi,j ! " i xi,j + f i (x1,j , . . . , xG,j ) , (12)

then (11) would be equivalent to (7).
The following analog of Theorem 1 can be stated.
Theorem 4: #2

! (F, " 1, . . . , " G ) = 0 if and only if the
regulation hypothesesR 1, . . . , R G are valid.

Although the feasible set in (11) is convex, the cost func-
tion is generally not, making (11) a non-convex optimization
problem in general. In the next section we present techniques
that we developed to approximate the solution of (11).

IV. OPTIMIZATION OF REGULATORY FUNCTIONS

In order to Þnd the best regulation functionF that mini-
mizes#2

! (F, " 1, . . . , " G ) in (11), we optimized the generation
of the individual CNM functionsf i that composeF . If Gene
i hasK i regulators, then its regulation function is modeled
as a piecewise multi-afÞne functionf i : RK i . R. We
deÞne a gridGi in the RK i space, whose vertices map
to the boundaries of the domains of the afÞne pieces of
f i (Fig. 1). We assign aregulation value to each vertex,
corresponding to the values of the regulation function at these
speciÞc locations inRK i . Optimizingf i translates to Þnding
the best sets of vertices and regulation values such thatf i

accurately predicts the experimental data. Our optimization
procedures start from an initial regulation function obtained
by solving problem (7) for the chosen set of regulatory genes.
The vertices ofGi are given by the elements of{ xi

k,j } , k "
{ 1, . . . , K i } , and j " { 0, . . . , N ! 1} (Fig. 1). From the
N K i vertices inGi , N are deÞned by the experimental time
points. We denote this set asVe. The value associated with
each vertex inVe is given by the optimization variablesöqi,j

from problem (7), such that:

f i (xi
1,j , xi

2,j , . . . , xi
K i ,j ) ! öqi,j , (13)

wherej " { 0, . . . , N ! 1} . We denote theN K i ! N remaining
vertices of Gi as Vf . The value assigned to each vertex
in Vf is constrained such thatf i must remain continuous,
non-negative, and monotonic. The non-uniqueness of this
assignment gives rise to a family of regulation functions that
conform with R i . Our goal is to Þnd a CNM functionf i

that satisÞes the regulation hypothesisR i and that minimizes
#2

! (F, " 1, . . . , " G ). We propose two optimization procedures
that aim at identifying such a function.

The Þrst method focuses on increasing the number of
vertices by reÞning the gridGi . New vertices are identiÞed
while simulating expression time-series from the gene model.
The second method concentrates on the regulation values
associated with the vertices inVf . Values are assigned by
performing a stochastic gradient descent method.

A. Domain Extension

The regulation values associated with the vertices inGi are
used to estimate the value of the regulation function for the
remaining points inRK i . A simple improvement to the model
consists in increasing the number of vertices to obtain a Þner
grid. ReÞningGi allows f i to be more sensitive to variations
in the expression of the regulatory genes, but comes at the
expense of increasing the state space of the gene model.
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Fig. 1: Schematic representations of the gridGi . For sim-
plicity, we show the case where Genei has two regulators
genes (xi

1 andxi
2) andN + 1 = 5 . The top Þgure represents

the gridGi before any optimization procedure. Vertices inVe

andVf are shown with black and white circles, respectively.
The bottom Þgure shows the same grid after the Domain
Extension procedure. New verticesVr , shown in gray, are
identiÞed by following Alg. 1. This procedure allows to
reÞne the gridGi and to deÞne a new CNM functionf i

that is more sensitive to the expression levels ofxi
1 andxi

2.

An initial gene modelF is constructed from the list of
verticesVe deÞned by each regulation hypothesis. Predicting
expression time-series with this model will give rise to
simulated expression levelsöxi,j that do not exactly match
experimental values, since- #i - F > 0 in practice. Better
predictions can be obtained by identifying the value of
the regulation function that minimizes the distance between
simulated and experimental expressions at each iterationj
of the prediction. This translates to deÞning a new vertex
Vr on the grid Gi , such that its coordinate is deÞned by
öxi

1,j , . . . , öxi
K i ,j . The regulation value associated with this

vertex is found by solving the following problem:

min(xi,j +1 ! öxi,j +1 )2 subject to (14)

f i conforms withR i ,

öxi,j +1 = öxi,j ! " i öxi,j + f i (öxi
1,j , . . . , öxi

K i ,j ),

with f i (öxi
1,j , . . . , öxi

K i ,j ) as the optimization variable. Note
that by Òf i conforms with R i Ó we mean that the choice
of f i (öxi

1,j , . . . , öxi
K i ,j ) must not violate the properties of

regulation functions. This choice is thus constrained by the

Algorithm 1 DOMAIN EXTENSION

Input: Gene network withG genes, regulation function
F composed of individual functionsf i , i " { 1, . . . G} .
Gene expression time series withN + 1 time points.

Output: Gene network with updated regulation functionF
1: for j = 0 to N ! 1 do
2: for all genei " { 1, . . . G} do
3: if j = 0 then
4: öxi, 0 = xi, 0

5: else
6: Solve problem (14) to Þnd the best value for

f i (öxi
1,j , . . . , öxi

K i ,j )
7: ReÞne gridGi with the solution of problem (14)
8: öxi,j +1 = öxi,j ! " i öxi,j + f i (öxi

1,j , . . . , öxi
K i ,j )

9: end if
10: end for
11: end for
12: for all genei " { 1, . . . G} do
13: Assign new values to the vertices inVf

14: Generate a new CNM functionf i that satisÞes the
properties ofGi

15: end for
16: return F

previous verticesVr and the ones inVe.
Our reÞnement method is summarized in Alg. 1. Brießy,

we start the model predictions by initializing gene expression
levels with the experimental values. For each genei , we solve
problem (14) at each time stepj . The solution deÞnes a new
vertexVr and a regulation value used to reÞneGi . We then
update gene expressions and proceed to the next iteration.
We assign at the end of the procedure values to each vertices
Vf and construct a new CNM functionf i that satisÞes the
regulation hypothesisR i .

B. Gradient Descent

Our second optimization method focuses on the regulation
values associated with the vertices inVf . Our goal is to
assign regulation values that will minimize the error of
the model#2

! (F, " 1, . . . , " G ). This is done by following a
gradient descent procedure.

Gradient descent methods are used to Þnd the local minima
of a function by following the negative of its gradient. Since
we cannot easily estimate the gradient ofF , we randomly
explore the space of all piecewise multi-afÞne functions that
satisfy the regulation hypothesesR 1, . . . , R G . Random steps
are taken in this space if they decrease#2

! (F, " 1, . . . , " G ).
Our gradient descent method is described in Alg. 2.

Brießy, each iteration of the algorithm starts by creating
a temporary regulation functionF " from the original func-
tion F . Each individual regulation functionf "

i (á) of F " is
modiÞed by changing the regulation value of a random
number of vertices inVf . The altered functionF " is saved
if these adjustments reduce#2

! (F, " 1, . . . , " G ). Additionally,
the number of vertices whose value is changed decreases
with each iteration. This allows for ÒbigÓ jumps at the
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Algorithm 2 GRADIENT DESCENTOPTIMIZATION

Input: Gene network with regulation functionF com-
posed of individual functionsf i , i " { 1, . . . G} . Desired
error #2,max

! . Gene expression time series withN + 1
time points.

Output: Gene network with optimized regulation function
F

1: while #2
! (F, " 1, . . . , " G ) > #2,max

! do
2: F " = F
3: for all f "

i in F ", i " { 1, . . . G} do
4: Modify the value of random number of vertices in

Vf . f " must conform withR i

5: end for
6: if #2

! (F, " 1, . . . , " G ) > #2
! (F ", " 1, . . . , " G ) then

7: F = F "

8: end if
9: end while

10: return F

beginning of the optimization and more reÞned steps towards
the end of the procedure. The algorithm terminates once the
error reaches a speciÞed threshold or converges.

V. A PPLICATION

We applied our optimization techniques to several models
of gene networks with known topology. The topologies
were retrieved from the Transcriptional Regulatory Element
Database (http://rulai.cshl.edu/TRED) [22], which contains
gene networks for several families of transcription factors.
We selected the AP1, NF$B, STAT, and p53 transcription
factor families in mouse from this database. These tran-
scription factors have all been associated with pathways
of the immune system. The gene expression time series
used throughout our application comes from a study by
Amit et al. [23]. This work followed gene expression levels
of mouse immune cells for Þve different conditions. Each
condition corresponded to the triggering of immune sig-
naling pathways by different agonists: PAM3CSK4 (PAM),
polyinosine-polycytidylic acid [poly(I:C)], lipopolysaccha-
ride (LPS), gardiquimod, and CpG. Each condition contained
two replicates measured over nine time points. We used
the Þrst replicate of the LPS condition for identifying the
topology of the different networks along with initial regu-
lation functionsF . The second replicate of this condition
was used throughout the optimization procedures. This set
of expression can be seen as identical to the Þrst one with
the addition of some noise.

We Þrst re-identify the topology of the different networks
starting from the list of genes present in each of them. We
solved problem (7) for each gene using the Þrst replicate of
the LPS condition and allowed each gene to be regulated by
up to four regulatory genes. The error- #i - F of the accepted
regulation hypotheses did not exceed10! 9. We obtained
an initial regulation functionF as a by-product of this
topology identiÞcation procedure. The regulation hypotheses
we identiÞed were slightly different from the topologies

TABLE I: Error of the gene models after the different opti-
mization procedures. DE: Domain Extension. GD: Gradient
Descent. The Gradient Descent was performed 10 times
(averagesµ and standard deviations%are shown in the table).

Networks ε2
! (F, λ1, . . . , λG ) after optimization
None DE GD (µ / σ)

AP1 108.39 54.55 84.59 / 3.35
NFκB 96.65 76.22 81.75 / 1.99
p53 106.49 61.15 63.82 / 4.76

STAT 202.94 89.96 165.49 / 4.86

present in the TRED database. This discrepancy may be due
to the limit of regulatory genes we set. Genes in the AP1,
NF$B, STAT, and p53 networks had up to eight regulators
listed in the database. Increasing the maximum number of
regulator genes is however computationally prohibitive, as
each possible combination of regulatory genes is tested.

We proceeded to optimizeF by following the techniques
described in Sec. IV. We performed each method,i.e. Do-
main Extension and Gradient Descent, separately using the
second replicate of the LPS condition. We compared each
model (before and after optimization) to the experimental
gene levels found in the second replicate. Each of the opti-
mization procedure decreased the error#2

! (F, " 1, . . . , " G ) of
the different models (Table I). We performed our Gradient
Descent method 10 times to determine if the Þnal errors were
consistent. None of these optimizations was able to decrease
the error bellow the speciÞed threshold (#2,max

! = 5 ). Each
procedure ended after the error did not change for 200
iterations (after/ 400 iterations on average).

We present the gene expression time series of three genes
from the p53 network (Ing4, Foxo3a, and Hnrpab) in Fig. 2.
Each plot displays the expression levels found in the second
replicate of the LPS condition and the ones obtained before
and after each optimization technique. The models obtained
before optimization performed poorly in predicting correct
expression levels. The Domain Extension method was able
to correct the regulation functions of Foxo3a and Hnrpab
such that the gene dynamics matched between predicted and
experimental time series. This method was however unable
to correct the trajectory of Ing4. The dynamics of Ing was
best corrected using the Gradient Descent optimization.

The Domain Extension method was better at decreasing
the error of each model than the Gradient Descent, since
this method estimates the best modiÞcations to apply tof i

to decrease the error. In comparison, the Gradient Descent
method searches the entire space of piecewise multi-afÞne
functions that conform with all the regulation hypotheses.
As the number of regulatory genes increases, the bigger
this space becomes. However, the latter method has the
advantage of not modifying the size of the original domain
X i . Assigning a value for the vertices inVf for each f i

becomes computationally very expensive as the number of
regulator genes increases.
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Fig. 2: Validation of predicted gene expression time series. The expression levels of three genes from the p53 network
are displayed: Ing4, Foxo3a, and Hnrpab. Experimental time series (Exp.) are shown, along with the predicted expressions
from the models obtained before optimization (None) and after the Domain Extension (DE) and Gradient Descent (GD)
optimization techniques.

VI. CONCLUSION

In this paper, we presented methods that allow to generate
an optimal gene network model after identifying the network
topology. Our optimization procedures are based on identi-
fying the best set of regulation functions, such that the! 2

distance between predicted and experimental gene levels is
minimized. Our Þrst procedure reÞnes the domains of the
regulation functions and allows them to be more sensitive to
the expression levels of regulatory genes. The second method
explores the space of regulation functions and update the
function parameters to decrease the error of the predicted
gene dynamics. We applied both methods on networks with
know topology and showed that the error of the models
decreased after each optimization.
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