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Optimizing Regulation Functions in Gene Network Identification

Guilhem Richard, A. Agung Julius, and Calin Belta

Abstract—This paper is concerned with the problem of
identifying a discrete-time dynamical system model for a gene
regulatory network with unknown topology using time series
gene expression data. The topology of such a network can be
characterized by a set of regulation hypotheses, one for each
gene. In our earlier work, we formulated a convex optimization
method to select the regulation hypotheses (and hence the
network topology). In this paper, we further optimize the
dynamics of the inferred network. Specifically, for a given
topology, we minimize the ¢, distance between the experimental
data and the model prediction. We illustrate the performance
of our algorithm by identifying models for gene networks with
known topology.

Keywords: gene network identification, monotone functions,
optimization.

I. INTRODUCTION

However, as the measurements are noisy, the reconstructed
network tends to be populated with spurious interconnections
(i.e. false positives). This concern motivates sparse identib-
cation that aims at getting a network model with as few
connections as possible without losing the btness to the data
[1], [5], [6]. Identibcation of GRNs in general and sparse
identibcation of GRNs in particular are quite active research
areas. For example, de Jorg al. developed a method
for identibcation of GRNs using the structure of piecewise
afbne dynamical systems [7], [8]. Papachristodoutoul.
developed a model for identibcation of sparse networks
using Hill functions to describe the dynamics of gene-gene
interactions [9]. Earlier work by one of the authors of the
current paper aimed at identifying sparse networks based on
genetic perturbation data, assuming that the dynamics can be

Gene regulatory network identiPcation is one of the maigescribed (locally) as a linear system [10], [11], [12]. Recent
challenges in systems biology and is related to the problem @fork by Yuaner al. [13], [14] investigated handling sparsity
identifying how a group of genes interact based on their eXy using Akaike information criterion. A different approach
pression activities [1], [2]. As gene regulatory networks playvas taken by Chang and Tomlin [15], where compressive
a fundamental role in the regulation of biOlOgical processegensing is used to |dent|fy a sparse linear model.

gene network identibcation (also termederse engineering)
is a crucial step in understanding these processes.

The method reported in this paper is an extension of
our earlier work in [16], [17], which has been applied to

IdentiPcation of Gene Regulatory Networks (GRNSs) is @nodeling the regulation of the Toll-like receptor signaling

difbcult problem for the following main reasons:

¥ The size of the network can be very large.
¥ The measurements are noisy.

pathway [18], [19]. In short, given a set of expression activity
data, we consider the question whether the data could have
come from a given network topology, where the interaction

¥ Although it is possible to have a large quantity ofdynamics can be represented @mtinuous nonnegative
data (genome-wide) for each snapshot, the number ofonotonic functions (in short, CNM functions). Requiring
snapshots is typically small. This is because obtainingnonotonicity is in line with the fact that most, if not all,
a large number of snapshots is highly impractical, duknown mathematical models for gene regulation use mono-

to logistical and cost considerations.
¥ The dynamics of the GRNs are highly nonlinear.

tonic functions. In [16], [17], we proved that this question
is equivalent to the feasibility of a Linear Program involving

There are several families of methods for identibcation dhe expression activity data. Our method is essentially based
GRNs from gene expression data. For a detailed overvie® model invalidation, rather than model identibcation. A

we refer the reader to the review paper by Barsall. [3].

nice feature of our method is that the regulator sets of the

Within the systems and control community, identibcation 0§€nes in the network can be computed in parallel.

GRNS is usually done by modeling networks as dynamical USing monotonicity as criterion for invalidating regulation
For certain model structures.¢. linear systems), with the €xample, the work by Porreca al. [20] proposed a two--

availability of gene expression measurements, the netwofka9ed process in identifying a continuous-time differential

can in principle be reconstructed by inverting the datefduation model for GRNSs. In the brst stage, network topolo-

gies that are inconsistent with the data are rejected. This

This work was partially supported at Boston University by the NSF undePrst stage is also based on the monotonicity argument. In
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that aim at optimizing the regulation functions obtained after Given a regulation hypothesiR; = (GiR‘“,GiR! ), we
the topology identibcation. Specibcally, we seek to minimizdenote:

the !, distance between experimental and predicted time- y the vector of expression activities of all activator genes
series expression data. The Prst method rebnes the domains at timej asxl,,

of the regulation functions, while the second technique usesy the vector of expression activities of all repressor genes
a gradient descent method to explore the space of regulation gt timej asx! Iy
functions. Both methods diminish the error of the network y the vector of expression activities of regulator genes at

model and allow for better prediction of gene dynamics. timej asxk 0

1. NOTATIONS AND PRELIMINARY RESULTS The regulation hypothesR; is equivalent to the existence

In the following, we introduce some mathematical nota9f some”; # 0, and a CNM functiorf (&, ") that is mono-

tions that we shall use in the subsequent discussion. Thet§glca”y. increasing In the variables Band monotonically
. L . ecreasing in the variables in such that
notations are similar to those in [17], but repeated here to
make this paper self-contained. . ' ' G; =!"ixij +fi(xh;.x;), (" {0,...,N! 1}. (5)
Assume that the GRN we are working with consist<Gof o .
genes. We propose a discrete-time model for the dynamics/n [17], we showed that the validity of the regulation

of the gene expression in the form: hypothesisR; is equivalent to the feasibility of a Linear
_ o Program involvingxg ; forj " {0,...,N ! 1} andx;; for
Xilk + 1] xi[k] =1 "ixi[k] + fi(xq[k], aadxic, kD, (1) j - {1,...,N}.

for all i " {1,44aG}, wherex; denotes the expression Dfﬁ””ég” 1: Given a regulation hypothisiS?liGRlz
activity of Genei, "; # 0 is the decay parameter of Gene((ii;_R ,Gi"" ), we dePne the partial orderingr, * RI®i!+
i (degradation component); is the regulation function of R as

Genei (production component), angky, 444xj ) are the ' ' X $ xi
expression activities of the regulators of Gén@o simplify XRj ) Ri XRn b Xlaj u Xia'" (6)
the discussion, we abuse the notation and debne the regulator r rn
; R | i 44 Ay . . " i i
set of Gene asGi* ! {x},aaaxy }. We assume thdt;, Sr.i={(n)" {0,...,N ! 1}2|X'R,j ) Ry Xk}

R i .
the regulator seB;", and functionf; are unknown, and have |, aqdition to formulating the necessary and sufbcient

to be identibed from the expe_riment_al data. conditions for the validity of the regulation hypothesis, we
Suppose that we are provided with a sequence of gengs, tormylated a Linear Quadratic optimization problem to
expression activities fofN +1) equally spaced time points. qguantify how far the data are from satisfying the regulation

Denote the expression data of Gdnat timej asx;; ,1$ hypothesisR; . The Frobenius norm % (denoted as# -
i$ G,0% | $ N.The (time) differential expression activity below) quantibes this distance: F

G;,1$i$G,0$j$N! 1 is debned as

min -# - subject to 7
q,j | Xi,j +1 ! Xi,j . (2) - ,',: ) .. - | ( )
_ _ gj =!"ixij +&; +#;, (" {0,....N1 1},
Therefore, for the data to bt the model, the following relation "H# 0
t hold: ’
must ho o | 4 #0, (j"{0,...,N! 1},
G = "ixiy Ffi(Xy L Xa e Xk ) 3) 4 # Gn, (G,n)" Sr,,
As in [16], [17], the following assumption for the regula-ip ., #;,andg; ,j " {0,...,N! 1} as the optimization
tory functionf; is adopted. o _ variables. '
CNM  Assumption: The function f;(xy,x3, ..., Xy ,) is The following statement, which follows immediately from
c?ntmuoius," nognegatlve and monotonic (CNM) in eackhe results in [17], summarizes the relationship between
A STRRRFP RN C i _ -# - and the validity of the regulation hypotheds.
If f; is monotonically increasing irx;, then thek-th Theorem 1: -#-- = 0 if and only if the regulation

regulator of Gene is considered an activator. ConverselyhypothesisR; is valid.
whenf; is monotonically decreasing im‘k, the regulator is Because of measurement noise and/or unmodelled external
considered a repressor of Genérhus, the set of regulators variables in the network, in practicet - - > 0. A regulation
GR can be split into two disjoint sets hypothesisR; is accepted if #- is small enough, or if it

GiR _ GiR+ %GiR! , @) is the smallest among competing hypotheses.
whereGR* andGR' are the sets of activators and repressors I1l. PROBLEM FORMULATION
of Genei, respectively. Once a regulation hypothesi; is accepted with-#-
Regulation Hypothesis: A regulation hypothesiR; for small enough, we showed in [17] that the regulation function
Genei states thaGR = GiR+ %GiR! is the set of regulators f; can be constructed by interpolating the solut@pn from
of Genei. the optimization problem given in (7). There is not a unique
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way to do this, and in [17] we presented an multi-afbnéhen (11) would be equivalent to (7).

interpolation technique for this purpose. The following analog of Theorem 1 can be stated.
In this paper, we want to exploit the non-uniqueness of Theorem 4: #(F,"1,...,"c) = 0 if and only if the
the interpolation. That is, we formulate a cost criterion thategulation hypotheseR4,...,R¢g are valid.

aims to bt the model prediction and the experimental time- Although the feasible set in (11) is convex, the cost func-
series data, and optimize this cost criterion while we Pngon is generally not, making (11) a non-convex optimization
the regulation function. We propose two methods that airproblem in general. In the next section we present techniques
at pne tuning an initial model of the regulation functionthat we developed to approximate the solution of (11).

Both methodologies diminish our cost criterion and yield an

optimized model that predicts more accurate gene dynamics. V. OPTIMIZATION OF REGULATORY FUNCTIONS

Suppose that we form a candidate network by proposing |, orger to bnd the best regulation functiénthat mini-
the regulation hypothes&,, . .. Re. That is, we debne the mizest2(F," 1,...," s) in (11), we optimized the generation
(graph of the) network by specifying the regulators for each e ingividual CNM functiond; that composé . If Gene
gene. Following the reasoning for individual genes above,pagi | regulators, then its regulation function is modeled
this set of hypotheses is valid if and only if there exist: o o piecewise multi-afPne functidn : R . R. We

C1h A regulation functionF = (fl,fg,...,fe) that is debne a ngdG in the RX space, whose vertices map

continuous, non-negative, and monotonic in the sense thattbs the boundaries of the domains of the afbne pieces of
required by the regulation hypothesis. That is if the regulation

h h hat tketh | i ) : f! (Fig. 1). We assign aegulation value t0 each vertex,
hypotheses state that tketh regulator is an activator of Gene ¢ e honding to the values of the regulation function at these
i, thenf; is monotonically increasing w.r.x} , etc.

; . b that £ li specibc locations iRK . Optimizingf; translates to Pnding
(C2) Some ngr_l-?egatlvél, S such that for all the best sets of vertices and regulation values suchfthat
{1....G}andj " {0,....N'1 1} accurately predicts the experimental data. Our optimization

Gj ! Xijer !Xy =X+ fi(Xey,.Xej ). (8) procedures start from an initial regulation function obtained
., ., ) by solving problem (7) for the chosen set of regulatory genes.
If Fand"4,...,"g, are given, we can debne an eIMoThe vertices ofG are given by the elements ()f('kj N

quantity that measures thk, distance between the ex-¢q Ki}, andj " {0,...,N! 1} (Fig. 1). From the
perimental gene expression time series data and the gg(&  yertice . dat

) ) | i vertices inG, N are debned by the experimental time
expression time series generated by the model as fO||OWSZpOintS_ We denote this set &. The value associated with

G N+1 ) each vertex inVe is given by the optimization variabldg;
#(F,"1,...,"c)! Z Z (xij ' %), (9) from problem (7), such that:
i=1 j=0 ) ) ) B
filxy; X5, Xk, ;)L 4, (13)

where the model predictiom;; is dePned recursively as

follows. wherej " {0,...,N! 1}. We denote th&l X/ ! N remaining

(10a) vertices of G as V;. The value assigned to each vertex

in V; is constrained such thdf must remain continuous,

non-negative, and monotonic. The non-uniqueness of this

foralli" {1,...,G}, andj " {O,...,N ! 1}. assignment gives rise to a family of regulation functions that
The problem of bnding the regulatory functions that begtonform with R;. Our goal is to Pnd a CNM functiof

bt the time series data in tHe sense, given the regulation that satispes the regulation hypothdsjsand that minimizes

hypothese®R 1, ...,Rg, can then be formulated as follows: #(F," 1,...," ¢). We propose two optimization procedures
that aim at identifying such a function.

¥i 0 = X, 0,
ﬁi’j +1 = ('Xi’j (I ibi,j + fi (ﬁlyj s ,K')GJ ), (10b)

min#(F,"1,...," ) subject to (11) The Prst method focuses on increasing the number of
F conforms withRy,...,Rg, vertices by rebning the gri. New vertices are identibed
", "g# 0, while simulating expression time-series from the gene model.

, L , R The second method concentrates on the regulation values
with F,"1,...," ¢ as the optimization variables. By Oconyggqciated with the vertices M . Values are assigned by
forming with Ry, ..., RO we mean thdt is continuous, herforming a stochastic gradient descent method.
nonnegative, and has the monotonicity property as dictated
by R1,...,Rg. A. Domain Extension

Remark 2: Notice that the optimization OvariablEGas- . . . . .
. . . The regulation values associated with the vertices iare
sumes its value in a function space. Also, we can observe

that the feasible set in (11) is a cone, which is a convex s%{e.sriii;?nesug?r?tt:i:gﬁivapl\u;n?f Iglﬁnrergo%g:;r;:?:f;g%?c;;he
Remark 3: Note that (11) differs from (7) in the sense that 9p : P P

(11) uses the modakecursively to propagate the prediction consists in increasing the number of vertices to obtain a bner
from the initial state. If we were to replace (10b) with grid. RebningG allowsf; to be more sensitive to variations
in the expression of the regulatory genes, but comes at the

Kij+1 = Xij ! "ixij + fi(Xej, .00 %G ), (12) expense of increasing the state space of the gene model.
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:E% Algorithm 1 DOMAIN EXTENSION

T 0 O ® O Input: Gene network withG genes, regulation function
F composed of individual functions;,i " {1,...G}.
I ° o OO Gene expression time series with+ 1 time points.

Output: Gene network with updated regulation functibn
1. forj =0toN! 1do

o Qe Qo Q@ 2. for all genei " {1,...G} do
| O ® O O 3 if ] =0 then
4: ®i o= Xio
: * 7 5 else
! 6 Solve problem (14) to bPnd the best value for
fi(®y, .. 8, ;)
. 7 Rebne gridg with the solution of problem (14)
5 8: Bijep =0 1oty + F(E .8

| O O O O O ‘O O o endl,]ifl 1) 18] I( 1,1 K“])
00000000 10:  end for
| ® O O 0O-0O0000 11: end for o
| O-O-O-O0-0-00-@ 13: Assign new values to thfe ver.tlcli]es‘;/]ra _ A
| O-O-O0-O0-O-00-0O 14: Genergte a new CNM functiof; that satispes the
r OO @ O-OO0O00 properties ofG
r O OO OSSO OZONO) 15: end for

L - 16: return F

1

Fig. 1: Schematic representations of the géd For sim-
plicity, we show the case where Genéas two regulators previous verticed/; and the ones iVe.
genes X} andx)) andN +1 =5 . The top bgure represents Our rePnement method is summarized in Alg. 1. BrieRy,
the gridG before any optimization procedure. VerticesMpn  we start the model predictions by initializing gene expression
andV; are shown with black and white circles, respectivelylevels with the experimental values. For each gemee solve
The bottom Pgure shows the same grid after the Domajproblem (14) at each time st¢p The solution dePnes a new
Extension procedure. New vertic&, shown in gray, are vertexV, and a regulation value used to reP@e We then
identiped by following Alg. 1. This procedure allows toupdate gene expressions and proceed to the next iteration.
rebPne the gridG and to debne a new CNM functioh  We assign at the end of the procedure values to each vertices
that is more sensitive to the expression levelsipfandx,. V; and construct a new CNM functioh that satisbes the
regulation hypothesiR;.

An initial gene modelF is constructed from the list of B. Gradient Descent
verticesVe debned by each regulation hypothesis. Predicting Our second optimization method focuses on the regulation
expression time-series with this model will give rise tovalues associated with the vertices V. Our goal is to
simulated expression levels; that do not exactly match assign regulation values that will minimize the error of
experimental values, since-. > 0 in practice. Better the model#(F,"1,...,"g). This is done by following a
predictions can be obtained by identifying the value ofradient descent procedure.
the regulation function that minimizes the distance between Gradient descent methods are used to Pnd the local minima
simulated and experimental expressions at each iterationof @ function by following the negative of its gradient. Since
of the prediction. This translates to debning a new verte¥€ cannot easily estimate the gradientfof we randomly
V, on the gridG, such that its coordinate is debned byexplore the space of all piecewise multi-afbne functions that

B, ,...,® ;. The regulation value associated with thisSatisfy the regulation hypothesBs, ..., Rq. Random steps
vertex is found by solving the following problem: are taken in this space if they decredgéF,"1,...." ).
Our gradient descent method is described in Alg. 2.

min(xij +1 ! %jj +1)? subject to (14) BrieRy, each iteration of the algorithm starts by creating
f; conforms withR;, a temporary regulation functiof~ from the original func-
e i " tion F. Each individual regulation functiof,(§ of F" is
Bjan =0 1 iy T B ), modiped by changing the regulation value of a random

with f;(&};,..., 0 ;) as the optimization variable. Note number of vertices inv; . The altered functiorF" is saved

that by @ conforms withR;O we mean that the choiceif these adjustments redu¢®(F," 1,...," g). Additionally,

of fi(ﬁilyj ,...,)Z‘)‘Ki'j) must not violate the properties of the number of vertices whose value is changed decreases

regulation functions. This choice is thus constrained by theith each iteration. This allows for ObigO jumps at the

?A@



Algorithm 2 GRADIENT DESCENTOPTIMIZATION TABLE I: Error of the gene models after the different opti-
mization procedures. DE: Domain Extension. GD: Gradient
Descent. The Gradient Descent was performed 10 times
(averages! and standard deviatiod$are shown in the table).

Input: Gene network with regulation functioR com-
posed of individual function$;,i " {1,...G}. Desired
error # ™ Gene expression time series with + 1

time points. : - . . €2(F, M1 Ac) after optimization
Output: Gene network with optimized regulation function Networks |—groe [ DE G[ GD W 79)
F APL | 108.39 ] 5455| 8459/3.35
1: while #2(F,"1,...,"g) > #f’max do NFKB | 96.65 | 76.22 81.75/1.99
2 E'= F p53 106.49 | 61.15 63.8274.76
3 forallf inF'i" {1,...G} do STAT | 202.94| 89.96 | 165.4974.86
4 Modify the value of random number of vertices in
V; . f" must conform withR;
5. end for
6. if#(F,"1,....,"c)>#(F","1,...,"¢) then present in the TRED database. This discrepancy may be due
7: F=F ' to the limit of regulatory genes we set. Genes in the AP1,
8: end if NF$B, STAT, and p53 networks had up to eight regulators
9: end while listed in the database. Increasing the maximum number of
10: return F regulator genes is however computationally prohibitive, as

each possible combination of regulatory genes is tested.

We proceeded to optimizé by following the techniques
beginning of the optimization and more rePned steps towar@escribed in Sec. IV. We performed each methiod, Do-
the end of the procedure. The algorithm terminates once thgain Extension and Gradient Descent, separately using the
error reaches a specibed threshold or converges. second replicate of the LPS condition. We compared each
V. APPLICATION model (before and_ after optlmlzatlor_1) to the experlmenta_l
) L . ene levels found in the second replicate. Each of the opti-
We applied our optimization techniques to several mOde‘g%ization procedure decreased the e#(F," 1,...," g) of
of gene networks with known topology. The topologiesye gifferent models (Table I). We performed our Gradient

were retrieved from the Transcriptional Regulatory Elemenbegcent method 10 times to determine if the Pnal errors were
Database (http://rulai.cshl.edu/TRED) [22], which containgqnsistent. None of these optimizations was able to decrease
gene networks for several families of transcription factorsya error bellow the specibed threshoid % = 5). Each

We selected the AP1, NiB, STAT, and pS3 transcription procedure ended after the error did not change for 200

factor families in mouse from this database. These trafa ations (after 400 iterations on average).

scription factors have all been associated with pathways . i
of the immune system. The gene expression time series Ve present the gene expression time series of three genes

used throughout our application comes from a study b{fom the pS3 network (Ing4, Foxo3a, and Hnrpab) in Fig. 2.

Amit et al. [23]. This work followed gene expression levelsEach plot displays the expression levels found in the second
of mouse immune cells for bve different conditions. Eacﬁeplicate of the LPS condition and the ones obtained before

condition corresponded to the triggering of immune sig‘-"md after each optimization technique. The models obtained

naling pathways by different agonists; PAM3CSK4 (PAM),before qptimization performeq poorly in predicting correct
polyinosine-polycytidylic acid [poly(l:C)], lipopolysaccha- expression levels. The Domain Extension method was able

ride (LPS), gardiquimod, and CpG. Each condition containet® correct the regulation functions of Foxo3a and Hnrpab
two replicates measured over nine time points. We usefch that the gene dynamics matched between predicted and

the brst replicate of the LPS condition for identifying the€Xperimental time series. This method was however unable

topology of the different networks along with initial regu-t© correct the trajectory of Ing4. The dynamics of Ing was
lation functionsF. The second replicate of this condition P&St corrected using the Gradient Descent optimization.

was used throughout the optimization procedures. This setThe Domain Extension method was better at decreasing
of expression can be seen as identical to the brst one witle error of each model than the Gradient Descent, since
the addition of some noise. this method estimates the best modibcations to apply to

We brst re-identify the topology of the different networksto decrease the error. In comparison, the Gradient Descent
starting from the list of genes present in each of them. Wmethod searches the entire space of piecewise multi-afbne
solved problem (7) for each gene using the brst replicate @inctions that conform with all the regulation hypotheses.
the LPS condition and allowed each gene to be regulated s the number of regulatory genes increases, the bigger
up to four regulatory genes. The erra% - - of the accepted this space becomes. However, the latter method has the
regulation hypotheses did not exce&@ °. We obtained advantage of not modifying the size of the original domain
an initial regulation functionF as a by-product of this X'. Assigning a value for the vertices vk for eachf;
topology identibcation procedure. The regulation hypotheseégcomes computationally very expensive as the number of
we identiped were slightly different from the topologiesregulator genes increases.

?2A>



Ing4 Foxo3a Hnrpab
8 11.6
— EXP.
= = =None 11.4
7 . DE
’ .
S |\& @b S 112 S
86 > 2 2
] - o o
& Ay g 11 g
] N n] w
5 -~
S 10.8
~
~
~ ~
4 5
5 10 15 5 10 15 5 10 15

Time Time Time

Fig. 2: Validation of predicted gene expression time series. The expression levels of three genes from the p53 netwo

are displayed: Ing4, Foxo3a, and Hnrpab. Experimental time series (Exp.) are shown, along with the predicted expressio
from the models obtained before optimization (None) and after the Domain Extension (DE) and Gradient Descent (GD

optimization techniques.

In

an optimal gene network model after identifying the network
topology. Our optimization procedures are based on identi*

VI. CONCLUSION [8]

this paper, we presented methods that allow to generate

fying the best set of regulation functions, such that the [10]
distance between predicted and experimental gene levels is

mini

mized. Our brst procedure rebnes the domains of the,

regulation functions and allows them to be more sensitive to
the expression levels of regulatory genes. The second method

expl

ores the space of regulation functions and update tl[ulez]

function parameters to decrease the error of the predicted
gene dynamics. We applied both methods on networks with3]
know topology and showed that the error of the models

decreased after each optimization.
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