
Data-driven Verification of Synthetic Gene Networks

Ebru Aydin Gol, Douglas Densmore, and Calin Belta

Abstract— Automatic design of synthetic gene networks with
specific functions is an emerging field in synthetic biology.
Quantitative evaluation of gene network designs is a missing
feature of the existing automatic design tools. In this work, we
address this issue and present a framework to probabilistically
analyze the dynamic behavior of a gene network against
specifications given in a rich and high level language. Given
a gene network built from primitive DNA parts, and given
experimental data for the parts, the tool proposed here allows
for the automatic construction of a stochastic model of the
gene network and in silico probabilistic verification against a
rich specification.

I. INTRODUCTION
Synthetic biology’s mandate is to forward engineer living

systems using engineering principles. DNA parts are encap-
sulated, composed to realize novel functionality, and intro-
duced into “host organisms” that carry out that functionality.
These techniques have been recently used for a wide variety
of applications [1]–[4]. Such engineered organisms can be
coupled with mechanical and electronic systems to create a
whole new class of cyber-physical systems not yet explored
[5]. However, these systems will be extremely complex and
current experimental methods are ad-hoc at best. Bio-design
automation frameworks are emerging [6]–[9], which generate
synthetic gene networks from specifications, assign these
networks discrete DNA segments, and physically assemble
these circuits. What is notably absent from these workflows
is a verification stage which quantitatively evaluates these
designs against their specification.

In [10], we used Linear Temporal Logic (LTL) as a spec-
ification language and discrete-time piecewise affine (PWA)
systems with polyhedral parameter uncertainty as mathemat-
ical models for synthetic gene networks. We showed that
such models can be derived from experimental data and
checked against arbitrary LTL formulas by constructing finite
abstractions. Due to the wide uncertainty ranges from the
experimental data and the conservativeness of the approach,
the results were inconclusive. In this paper, we propose
to capture the distribution of the experimental data into
stochastic discrete-time PWA models and to use probabilistic
verification techniques to analyze the behavior of the system.
We find that this approach is much more conclusive and
reflects more closely the biology it is modeling.

The probabilistic verification of finite state stochastic
systems, such as Markov chains, is a well understood prob-
lem [11]. There are efficient tools, such as PRISM [12],

This work was supported at Boston University by the ONR under grant
MURI 014-001-0303-5.

Ebru Aydin Gol (ebru@bu.edu), Douglas Densmore (dougd@bu.edu), and
Calin Belta (cbelta@bu.edu) are with Boston University.

that model check the system against a probabilistic temporal
logic property. However, such tools cannot deal with stochas-
tic systems with infinite state spaces. In [13], the authors
proposed to use partitions of the state space to produce
abstractions in the form of Markov chains, which can then
be model checked with an explicit error bound on the
probability of satisfaction. However, due to the dependence
of the error bound on the partition size, the computation of
the abstraction is infeasible for high-dimensional systems.

An alternative approach to the probabilistic verification
problem of systems with large or infinite state spaces is
statistical model checking (SMC) [14], [15], which applies
statistical inference techniques to solve the verification prob-
lem. Since SMC relies on the model checking results of
sample system traces, the outcome is probabilistic in nature,
i.e. it is correct with a certain probability. The key advantage
of this technique is that it can handle complex and high-
dimensional systems with infinite state spaces in an efficient
way, since the computation necessary for trace generation
and model checking can be parallelized.

In this work, SMC is used to verify the dynamic behavior
of a synthetic gene network assuming that the gene network
is built from primitive DNA parts for which experimental
data exists. The composite behavior of these parts is captured
in a stochastic dynamical system whose parameters are
obtained from experimental data. We use this model to solve
two problems. The first is a verification problem against
a specification expressed as a probabilistic bounded LTL
(PBLTL) formula, which is used to check the correctness of
the design. The second is a parameter optimization problem,
in which we use SMC to find time bounds and species
concentration threshold values that make a formula satisfiable
with a given probability. This problem allows us to tune a
design parameter to improve the performance. The optimized
parameters can be further used to compare gene networks
designed to satisfy the same specification.

II. PROBLEM FORMULATION
A. Gene Network

A synthetic gene network (circuit) is composed of two
basic biological parts (encapsulated DNA sequences): pro-
moters and genes. A gene g codes for a certain protein that
degrades at a rate ↵g . The concentration of the protein is
denoted by xg and it is assumed to be bounded in a relevant
range xmin

g ! xg ! xmax
g . The rate of expression of a gene

is regulated by a promoter that precedes the gene (to the left
when DNA is depicted visually) in the DNA. Regulators bind
to the promoters and define regulations motifs. A regulator,
which can be either a protein coded by a gene in the

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5717-3/13/$31.00 ©2013 IEEE 4074

network or a small molecule (external regulator), can enable
(activator) or disable (repressor) the ability of a promoter to
initiate transcription (production of mRNA). The mRNA is
translated into protein by the ribosome that recognizes and
binds to the Ribosome Binding Site (RBS) of the mRNA.
A promoter p can be regulated by multiple regulators, and
the rate of expression �p of a gene g that proceeds the
promoter p depends on the concentrations of the regulators
of the promoter p. In our simplified description of gene
regulation, the rate of expression captures both transcription
and translation.

Fig. 1. A synthetic gene network. The promoters (pBad and pTet) are
indicated by bent arrows. The genes (tetR and RFP) are shown as
colored polygons. The regulators (arabinose and tetR) are connected to
the corresponding promoters: arrows show activations and stub connectors
show repressions. The RBSs are shown with half circles.

Example 2.1: A synthetic gene network composed of 2

promoters and 2 genes is shown in Figure 1. The pBad
promoter, which is activated by the small-molecule species
Arabinose, regulates the tetR gene. tetR represses the sec-
ond promoter pTet, which regulates the RFP gene. 1 This
gene network is expected to work as an inverter gate, where
the concentration of the external regulator arabinose, xAra,
is treated as the input and xRFP is treated as the output.
A high arabinose concentration, xAra > TH

Ara, activates the
pBad promoter, and hence increases the production rate of
tetR. As tetR represses the pTet promoter, high arabinose
concentration eventually decreases xRFP , xRFP < TL

RFP .
In the absence of arabinose, xAra < TL

Ara, pBad is not
activated, the tetR gene is not transcribed and pTet is
not repressed. Consequently, the low arabinose concentration
eventually increases xRFP , xRFP > TH

RFP . This qualitative
behavior will be “quantified” later in the paper. In the
above, TH

Ara, TL
RFP , TL

Ara, TH
RFP are species concentration

thresholds that characterize the circuit.

B. Specification
The evolution of a gene network in time is defined as a

sequence of protein concentrations, called a trajectory, e.g. a
trajectory of the gene network from Example 2.1 is given by

{(xtetR(k), xRFP (k))}k2Z+ . (1)

In this work, we use Bounded Linear Temporal Logic
(BLTL) formulas over linear inequalities over the concen-
trations of proteins and external regulators to specify the
dynamic behavior of a gene network. A detailed description
of the syntax and semantics of BLTL is beyond the scope

1To keep the notation to a minimum, we use the same names for a gene
and for the protein expressed from that gene.

of this paper and can be found in [15]. Informally, a BLTL
formula over a set of linear inequalities is inductively defined
by using Boolean operators ¬ (negation), " (disjunction), #
(conjunction), $ (implication) and a temporal operator U k

(until) with bound k. Additional bounded temporal operators
can be defined, e.g. F k

� = TU k
� (eventually), or G k

� =

¬F k¬� (always), where T stands for Boolean constant true.
We interpret BLTL formulas over trajectories of gene

networks as defined above. For example, consider a simple
formula

�S = (xtetR < TtetR)U
k1
(xRFP > TRFP),

where TtetR, TRFP %R+. A trajectory � of the form given
in Equation (1) satisfies formula �S , written as � |= �S ,
if there exists k ! k1, such that xtetR(i) < TtetR for all
i = 0, . . . , k & 1 and xRFP (k) > TRFP .

The inverter gate specification from Example 2.1 can be
formally stated as the following BLTL formula:

�I =

�
(xAra < TL

Ara) $ (F k1Gk2
(xRFP > TH

RFP))
�

#
�
(xAra > TH

Ara) $ (F k1Gk2
(xRFP < TL

RFP))
�
. (2)

Formula �I requires the circuit to respond in k1 time steps
to the input and the output is interpreted as high (low) only
when xRFP > TH

RFP (xRFP < TL
RFP) is satisfied for

k2 consecutive time steps. Hence, k1 can be considered as
the response time and k2 can be considered as the signaling
time. For example, if xAra < TL

Ara, a trajectory � satisfies
formula �I if there exists k < k1 such that xRFP (k + i) >
TH

RFP , for all i = 1, . . . , k2. If all the bounds that appear in
a formula � have finite values, then � |= � can be decided
based on a finite prefix of the trajectory � [15].

As explained above, a trajectory of a gene network can
be checked against a BLTL formula. A gene network is
inherently a stochastic system due to complex biochemistry
involved in the protein production, e.g. a regulator binds to
a promoter with a certain probability. For this reason, we
use Probabilistic BLTL (PBLTL) to specify the behavior of
a gene network.

A PBLTL formula is a formula of the form P�✓(�), where
� is a BLTL formula and ✓ %[0, 1] is a probability. A gene
network satisfies PBLTL formula P�✓(�) if and only if the
probability that a trajectory of the gene network satisfies
BLTL formula � is greater than or equal to ✓.

C. Verification and Parameter Optimization
Problem 2.1 (Verification): Assume we have a gene net-

work and a specification expressed as a BLTL formula � over
linear inequalities over the concentrations of the proteins and
the external regulators.
(i) Assume a probability ✓ %[0, 1] is given. Decide whether

the network satisfies the PBLTL formula P�✓(�).
(ii) Compute the probability ✓ with which the gene network

satisfies the BLTL formula �.
In the second problem, our goal is to optimize a parameter

that appears in the specification formula, i.e. either a thresh-
old used in an inequality or a time bound of a temporal logic
operator, while the rest of the parameters are assumed fixed.

4075

Problem 2.2 (Parameter Optimization): Assume we
have a gene network, a probability ✓ % [0, 1], and a
specification expressed as a BLTL formula � in which the
thresholds and the time bounds are fixed except one that is
denoted as T . Find the minimum (or maximum) value of
T such that the gene network satisfies the PBLTL formula
P�✓(�).

To illustrate the usefulness of Problem 2.2, consider
formula �I from Equation (2). Since TH

RFP is used as
a lower bound for xRFP , increasing TH

RFP decreases the
probability that a trajectory of the gene network satisfies
�I . On the other hand, the gene network works as an
inverter if it satisfies P�✓(�I) for a high probability ✓ when
TH

RFP > TL
RFP and TH

Ara > TL
Ara. We can use the solution

of Problem 2.2 to find the maximum value for TH
RFP for

a given probability of satisfaction. Similarly, we can find
the minimum value for TL

RFP for a given probability of
satisfaction. Solving these types of problems allows us to
optimize the “qualitative” behavior of the circuit. Moreover,
different network designs can be compared with respect to
the optimized thresholds.

To provide solutions to the above problems, we assume
that the degradation rates of all the proteins are (statistically)
known (see Section III) and characterization data for all the
promoters is available (more information on this type of
data is given in Section III-A). We will use the available
data to model the gene network as a discrete-time stochastic
dynamical system. We will employ statistical model checking
techniques to solve the problems presented above. Specifi-
cally, we will simulate the model, model check the produced
trajectories against the specification formula, and use the
sample set of model checking results to solve the problems
by using statistical inference.

III. MATHEMATICAL MODEL

A gene network S composed of n genes and s promoters
is modeled by

xgi
(k + 1) = ↵gi

(k)xi(k) + ��(gi)(k), i = 1, . . . , n, (3)

where xgi
(k) % [xmin

gi
, xmax

gi
] and ↵gi

(k) % (0, 1) are the
concentration and the degradation rate, respectively, of the
protein coded by gene gi at time k % Z+. Function � :

{g1, . . . , gn} ' {p1, . . . , ps} maps a gene to the promoter
that regulates it, i.e. gene gi is expressed at rate ��(gi)(k)
from the promoter �(gi) at time k % Z+. The expression
and the degradation rates are modeled by random variables,
whose distributions depend on their value at the previous
time step, i.e.

↵gi(k) (P↵gi
(· | ↵gi(k & 1)), i = 1, . . . , n,

�pj
(k) (P�pj

(· | xpj
(k), �pj

(k & 1)), j = 1, . . . , s,

where xpj
(k) is a vector containing the concentrations of

the regulators of promoter pj at time k %Z+. We use ⇡0 to
denote the distribution of the initial states, and S⇡0 to denote
the system initialized at ⇡0.

The stochastic model from Equation (3) captures our
simplified view of the gene expression mechanism introduced

in Section II. It also allows us to capture that the degradation
rate of a protein or an expression rate from a promoter can
not change drastically in a short time period in a living cell.

In our subsequent analysis, we assume that the distribu-
tions of the degradation rates are known and characterization
data for each promoter is available. The distributions of the
degradation rates are often available in literature [16] or can
be obtained computationally [17].

A. Promoter Characterization
Our promoters are characterized by a rate of expres-

sion that depends on the corresponding set of regulator
concentrations and the probability that the regulators bind
to the promoter. The relation between the rate of expres-
sion from the promoter and the regulators can be captured
from experimental data that simultaneously measures the
concentrations of the regulators and the concentration of
a protein whose expression is directly regulated by only
the promoter. In our experimental set-up, a characterization
circuit is constructed for each promoter. The characterization
circuit involves the promoter and a gene coding for a
fluorescent protein (a reporter protein). Thus, as the promoter
is regulated to different levels of transcription, different levels
of fluorescence will be observed. The cell culture is allowed
to fluoresce, and then the fluorescence level in each cell
is measured using a flow cytometer. The flow cytometer
excites the fluorescent proteins with laser. The light emitted
by the fluorescent proteins is measured and translated to
fluorescence units [18]. The cells are assumed to be in steady
state when the measurements are taken. From Equation (3),
it follows that, for each gene gi:

xgi = ↵gixgi + ��(gi). (4)

The characterization circuit for a promoter that is regu-
lated by only an external regulator consists the promoter
and a gene coding a fluorescent protein. In the case that
the promoter is regulated by a protein, a more complex
characterization circuit is required as the concentration of
the regulator protein can not be controlled directly. The
concentrations of both the regulator protein and a protein
expressed by the promoter should be measured. Generally,
the regulator protein can not be measured and a fluorescent
protein is used as a reporter. Characterizing a promoter
with multiple regulators requires combining the techniques
explained above.

Fig. 2. Characterization circuit for a promoter regulated by a protein.

Example 3.1: A circuit that is composed of the pBad
promoter and a gene coding for a fluorescent gene such as
GFP can be used to characterize pBad from Example 2.1.
Since the pTet promoter is regulated by the tetR protein and

4076

tetR is not fluorescent, the circuit given in Figure 3.1 is build
in vivo and used to characterize both of the promoters as
follows. A population of cells is partitioned into 7 parts and
each part is subjected to a different arabinose concentration,
{0, 0.5, 1, 2.5, 5, 7.5, 10} millimolar (mM) arabinose. Then,
the green (GFP) and the red (RFP) fluorescent proteins are
measured simultaneously in fluorescent units. The GFP data,
xGFP , obtained at different arabinose levels is used to char-
acterize the pBad promoter. The paired data (xGFP , xRFP)

for all arabinose levels is used to characterize the pTet
promoter, where xGFP is used as the reporter of xtetR.

We compute the distributions of the expression rates
from the characterization data of the promoters as fol-
lows. Consider promoter p that regulates gene g, and let
xp = (xp,g,xp,e) denote the set of concentrations of
the corresponding regulators, where xp,g % Rng

+ is the
vector containing concentrations of the protein regulators,
and xp,e % Rne

+ is the vector containing concentrations
of the external regulators. Even though a promoter usually
has either one or two regulators, the general case, ng + ne

regulators, is considered here. To characterize the promoter, a
set of concentration levels {x1

p,e,i, . . . , x
bi
p,e,i} is set for each

external regulator xp,e,i and an experiment is conducted for
each concentration combination (xc1

p,e,1, . . . , x
cne
p,e,ne), where

1 ! ci ! bi for all i = 1, . . . , ne. Hence, ⇧ne
i=1bi experiments

are necessary to characterize the promoter. In each of these
experiments, the concentrations of both regulator proteins
(or a reporter protein), xp,g , and the concentration of the
protein coded by gene g, xg , are measured, which results in
the following data set:

Dxp,e
= {(xp,g, xg)k}k2Z+ , xp,e %Xp,e, where (5)

Xp,e = {(xc1
p,e,1, . . . , x

cne
p,e,ne) | 1 ! ci ! bi,) i = 1, . . . , ne}.

As mentioned before, we assume that the distribution of
the degradation rate P↵g

(·) is known and it is independent
from the regulator concentrations. Therefore, we can com-
pute the distribution of the expression rate conditioned on
the regulator concentrations from P↵g

(·), (4), and Dxp,e as:

P�p
(�|xp,g,xp,e) =

Z

↵2(0,1)
P↵g

(↵)Pxg
(

�
1 & ↵

| xp,g,xp,e).

The conditional distribution of xg , Pxg
(· | xp,g,xp,e), can

be computed from the data set Dxp,e by using the Bayesian
rule as follows:

Pxg
(x | xp,g,xp,e) =

Prob(x,xp,g | xp,e)

Prob(xp,g | xp,e)
. (6)

This computation requires distribution fitting steps. To avoid
additional computational burden and errors introduced by
distribution fitting, we use the data directly to construct
a piecewise constant conditional density function (a multi-
dimensional histogram) for each xp,e %Xp,e.

To construct the density function in the form of a multi-
dimensional histogram, first, P↵g

(·) is approximated by a
histogram H↵g with a sufficiently large number of intervals.
Then for each measured point (xp,g, xg) %Dxp,e and ↵g,i,

which is the center point of each interval i of H↵g , an
expression rate is computed as

�p,i = (1 & ↵g,i)xg.

These expression rates, the concentrations of the protein
regulators xp,g and the frequency fi of the corresponding
intervals are used to construct a data set Dxp,e,�p . Specif-
ically, for each expression rate �p,i as computed above,
(xp,g, �p,i) is added to the set Dxp,e,�p fi times. Finally,
a multi-dimensional histogram Hp,xp,e is constructed from
the data set Dxp,e,�p for the expression rate �p.

The presented method for constructing the conditional
density function Hp,xp,e has several advantages. First, it is
faster than fitting multi-dimensional density functions given
in (6) and provides a general method, since the shapes of
these density functions are unknown. Second, by considering
the discretization levels of the flow cytometry instrument and
the intervals of H↵g , Hp,xp,e can capture P�g (· | xp,g)

precisely, where a deviation can only occur due to the
approximation of P↵g

(·). However, a degradation rate is
either known or has a distribution with a low variance
and compact support, i.e. supp(P↵g

(·)) * (0, 1). If the
degradation rate is known then the derived density function
Hp,xp,e is an exact representation of P�g (· | xp,g) with
respect to the available data. If, however, P↵g

(·) is given,
Hp,xp,e can approximate P�g

(· | xp,g) with arbitrarily high
accuracy, since supp(P↵g

(·)) is a compact set.
Example 3.2: The characterization data obtained as ex-

plained in Example 3.1 is used to construct histograms shown
in Figure 3 for �pBad and �pTet by assuming that the degra-
dation rates are known, i.e. for each g %{tetR, GFP, RFP}
P↵g (↵̄g) = 1 for some ↵̄g %(0, 1).

B. Gene Network Simulator

In this section, we describe a simulator that generates
trajectories of the stochastic model defined in (3). The
simulator is initialized by constructing the density functions
from characterization data for each promoter as described
in Section III-A. Then for a given trajectory length N ,
and initial state x(0), first a degradation rate ↵gi

for each
gene gi, i = 1, . . . , n, and an expression rate �pj

for each
promoter pj , j = 1, . . . , s is sampled from the corresponding
distributions and the state at time k = 1, x(1), is computed
according to (3). In the subsequent time steps, i.e. for
1 ! k ! N , the random variables (↵gi

, �pj
) are sampled

from a distribution that depends on the sampled value of the
random variable in the previous iteration. In particular, we
use truncated sampling that is explained next for a random
variable ↵g .

Truncated sampling The value of ↵g(k + 1) is sampled
from the distribution of ↵g truncated to the semi-open
interval (↵g(k)& w, ↵g(k)+w], where w %R+. Specifically,
↵g(k + 1) is sampled from the distribution function

F↵g
(↵|↵g(k)) =

F↵g
(↵) & F↵g

(↵g(k) & w)

F↵g
(↵g(k) + w) & F↵g

(↵i(k) & w)

, (7)

4077

Low arabinose
concentration

�pBad

(a) HpBad,0

High arabinose
concentration

�pBad

(b) HpBad,10

xtetR�pTet

(c) HpTet

�pTet

(d) A slice from (c)

Fig. 3. (a-b) The expression rates computed from the measured concentrations and ↵̄GFP are shown with red marks on the x�axis. (d) A slice from
histogram (c), where xtetR 2 [3382.8, 4745.1)

where F↵g (↵) = Prob(↵g ! ↵). Note that, when w tends
to infinity, F↵g (·|↵g(k)) converges to F↵g (·).

Example 3.3: We generate the trajectories of the gene
network from Example 2.1 as explained above. The random
variables �p, p = {pBad, pTet}, are sampled from the
histograms constructed as in Example 3.2. The expression
rate from the pTet promoter is sampled with respect to xtetR.
For example, if xtetR %[3382.8, 4745.1), �pBad is sampled
from the histogram shown in Figure 3 (d).

IV. STATISTICAL ANALYSIS

In this section, we provide solutions to the problems
given in Section II based on statistical analysis. We use
the Bayesian Interval Estimation and Bayesian Hypothesis
Testing algorithms presented in [15]. Both of the algorithms
iteratively generate trajectories of system S (3) and model
check the trajectories against the specification formula.

A. Statistical Hypothesis Testing
Statistical hypothesis testing is a widely used tool to prove

(with bounded error) statistical assumptions on a stochastic
system. In [15] a statistical model checking algorithm based
on iterative Bayesian Hypothesis Testing is proposed, where
the hypothesis is defined as the satisfaction of a PBLTL
formula H0 : S |= P�✓(�), and the iterative algorithm
decides between H0 : S |= P�✓(�) and H1 : S |= P<✓(�)

for a stochastic system S .
We use the Bayesian Hypothesis Testing algorithm to solve

Problem 2.1-(i). The algorithm sequentially draws a sample
� (model checking result of a trajectory �),

� =

(
1 if � |= �

0 otherwise,

updates the available data set � of model checking results
of sample trajectories, computes the Bayes factor B =

Prob(! |H0)
Prob(! |H1)

with respect to the prior knowledge, and then
compares it against a fixed threshold � + 1 : i) accepts H0

if B > �; ii) accepts H1 if B < 1/�. If both i) and ii)
are not satisfied, the algorithm continues by drawing another
sample.

Error: For any discrete random variable and prior, both
probabilities of accepting H0 when it is wrong (Type 2 error)
and rejecting H0 when it is correct (Type 1 error) are upper

bounded by 1/�. Consequently, when the algorithm accepts
H0, S |= P�✓(�) is correct with probability 1 & 1/�.

Example 4.1: We use the algorithm outlined above to
decide whether the gene network described in Example 2.1
works as an inverter. Since we do not consider the dynamics
of the external regulators and our data only covers fixed
values of the external regulators, we initialize the external
regulator and model check the gene network against PBLTL
formulas P�0.95(�IL) and P�0.95(�IH), where �IL and
�IH are sub-formulas of formula �I (2):

�IL = F 360G240
(xRFP > 5200), (8)

�IH = F 360G240
(xRFP < 3200). (9)

We define the hypothesis as H0 : S⇡L
0 |= P�0.95(�IL),

where ⇡L
0 is the distribution of initial states such that xAra =

0mM with probability 1, and the concentration of each
protein is uniformly distributed over its domain. The hy-
pothesis testing algorithm terminates after 18676 iterations,
with 17763 satisfying trajectories by proving that S⇡L

0 |=
P�0.95(�IL) holds with probability 0.99, (� = 100). Next,
we define the hypothesis as H0 : S⇡H

0 |= P�0.95(�IH),
where ⇡H

0 is the same as ⇡L
0 except that xAra = 10mM with

probability 1. The hypothesis testing algorithm terminates
after 87 iterations, with 75 satisfying trajectories by proving
that the alternative hypothesis H1 : S⇡H

0 |= P<0.95(�IH)

holds with probability 0.99(� = 100).

B. Bayesian Interval Estimation
Interval estimation is used to find a probability range

⇥ for a well defined but unknown probability ✓ such that
✓ %⇥ with arbitrarily high probability. We use the Bayesian
Interval Estimation algorithm [15] to solve Problem 2.1-(ii).
The half size � %(0, 1

2) of the desired interval estimate ⇥ and
a coverage goal c %(

1
2 , 1), c ! Prob(✓ %⇥), are the param-

eters of the algorithm. Similar to the Bayesian Hypothesis
Testing algorithm, the algorithm sequentially draws a sample
model checking result and updates the Bayesian estimate.
The algorithm stops and outputs the current estimate ˆ✓ when
the coverage goal is achieved, otherwise it continues by
drawing another sample.

Error: For any discrete random variable and prior, the
probability that ✓ ,%⇥ = [

ˆ✓ & �, ˆ✓ + �] is upper bounded by
(1�c)⇡
c(1�⇡) , where ⇡ is the prior probability that ✓ %⇥.

4078

Example 4.2: Consider the gene network from Exam-
ple 2.1, and BLTL formulas �IL (8) and �IH (9), and
the initial distributions ⇡L

0 and ⇡H
0 from Example 4.1.

System S⇡L
0 satisfies �IL with probability 0.958 and system

S⇡H
0 satisfies �IH with probability 0.843, which shows

that the circuit works as an inverter with high probability.
These probabilities are found by using the Bayesian Interval
Estimation algorithm. A beta prior with ↵ = � = 1 is
used and the algorithm parameters are set to � = 0.01
(half interval size), c = 0.99 (coverage goal), meaning
that when the algorithm results in a probability estimate
ˆ✓, then the unknown probability ✓ that the circuit satisfies
the specification is in [

ˆ✓ & 0.01, ˆ✓ + 0.01] with probability
1 & (1�0.99)⇥0.02

0.99⇥0.98 .

C. Parameter Optimization
The problems solved in the previous sections require to

specify the formula fully, i.e. all the thresholds and time
bounds must be set. Here we show that we can use the
Bayesian Hypothesis Testing algorithm to solve Problem 2.2.
Specifically, we propose to iteratively use the testing algo-
rithm to minimize or maximize one of these parameters when
the rest of them together with a probability bound ✓ are given.
Algorithm 1 presents an example of such a search routine,
where a threshold is minimized through a binary search.

Algorithm 1 Threshold Minimization
Input: A system S, a BLTL formula � with xo < T appearing in

�, a probability bound ✓, a precision bound ⌧ .
Output: T such that S |= P�✓(�).

Set TL = xmin
o and TH = xmax

o .
testT = TL+TH

2 .
while TH � TL > ⌧ do

�t = � with T = testT .
if BHT (S,�t, ✓) then {Bayesian Hypothesis Testing}

TH = testT . {S |= P�✓(�t)}
else

TL = testT . {S 6|= P�✓(�t)}
end if
testT = TL+TH

2 .
end while

Example 4.3: Consider the gene network from Exam-
ple 2.1, and �IL (8), �IH (9), ⇡L

0 and ⇡H
0 from Example 4.1.

The minimum output threshold TL
RFP = 3534 for formula

�IH (9) and system S⇡H
0 is found by using Algorithm 1

with ⌧ = 10, ✓ = 0.95. Via a similar algorithm with
⌧ = 10, ✓ = 0.95, the maximum output threshold for formula
�IL (8) and system S⇡L

0 is found as TH
RFP = 5219.

These optimized thresholds can be used to compare dif-
ferent gene networks designed as inverters. Assume a set of
gene networks Si, i = 1, . . . , l and corresponding character-
ization data are given. High TH,i

RFP and low TL,i
RFP output

thresholds can be found for each Si as explained above.
Then, the gene network with the maximum threshold gap,
i.e. argmaxi=1,...,l T

H,i
RFP & TL,i

RFP , can be considered as the
most robust design. Moreover, such optimized thresholds can
further be used to couple the engineered cells with electronic
systems.

V. CONCLUSION

We developed a computational framework that allows for
statistical verification of a synthetic gene network given
information on the decay rates of its proteins and fluores-
cent microscopy experimental data characterizing its pro-
moters. The framework is based on (1) the construction
of a mathematical model in the form of a discrete-time
stochastic system with parameter distributions derived from
the experimental data, and (2) statistical model checking over
simulated trajectories of the model. We applied the proposed
computational tool to verify the behavior of a synthetic gene
circuit designed to behave as a logical inverter.

REFERENCES

[1] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt, “Environ-
mentally Controlled Invasion of Cancer Cells by Engineered Bacteria,”
Journal of Molecular Biology, vol. 355, no. 4, pp. 619–627, Jan. 2006.

[2] J. R. Kirby, “Synthetic biology: Designer bacteria degrades toxin,”
Nature Chemical Biology, vol. 6, no. 6, pp. 398–399, Jun. 2010.

[3] S. Atsumi, T. Hanai, and J. C. Liao, “Non-fermentative pathways for
synthesis of branched-chain higher alcohols as biofuels,” Nature, vol.
451, pp. 86–89, January 2008.

[4] H. Salis, A. Tamsir, and C. Voigt, “Engineering bacterial signals and
sensors,” Contrib Microbiol, vol. 16, pp. 194–225, 2009.

[5] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsimring, and
J. Hasty, “A sensing array of radically coupled genetic ’biopixels’,”
Nature, vol. 481, no. 7379, pp. 39–44, Jan 2012.

[6] B. Xia, S. Bhatia, B. Bubenheim, M. Dadgar, D. Densmore, and
J. Anderson, “Developer’s and user’s guide to clotho v2.0 a software
platform for the creation of synthetic biological systems.” Methods
Enzymol, vol. 498, 2011.

[7] L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, M. Leguia,
J. C. Anderson, and D. Densmore, “Eugene - A Domain Specific
Language for Specifying and Constraining Synthetic Biological Parts,
Devices, and Systems,” PLoS ONE, vol. 6, no. 4, p. e18882, 2011.

[8] J. Beal, T. Lu, and R. Weiss, “Automatic Compilation from High-Level
Biologically-Oriented Programming Language to Genetic Regulatory
Networks,” PLoS ONE, vol. 6, no. 8, p. e22490, Aug. 2011.

[9] J. Beal, R. Weiss, D. Densmore, A. Adler, E. Appleton, J. Babb,
S. Bhatia, N. Davidsohn, T. Haddock, J. Loyall, R. Schantz, V. Vasilev,
and F. Yaman, “An end-to-end workflow for engineering of biologi-
cal networks from high-level specifications,” ACS Synthetic Biology,
vol. 1, no. 8, pp. 317–331, 2012.

[10] B. Yordanov, E. Appleton, R. Ganguly, E. Gol, S. Carr, S. Bhatia,
T. Haddock, C. Belta, and D. Densmore, “Experimentally driven
verification of synthetic biological circuits,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, pp. 236–241.

[11] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Check-
ing. MIT Press, 2008.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[13] A. Abate, J. Katoen, J. Lygeros, and M. Prandini, “Approximate model
checking of stochastic hybrid systems,” European Journal of Control,
vol. 16, no. 6, pp. 624–641, 2010.

[14] H. L. S. Younes and D. J. Musliner, “Probabilistic plan verification
through acceptance sampling,” in In AIPS Workshop on Planning via
Model Checking. AAAI Press, 2002, pp. 81–88.

[15] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in
HSCC, K. H. Johansson and W. Yi, Eds. ACM, 2010, pp. 243–252.

[16] “BioNumbers–the database of key numbers in molecular and cell
biology.” Nucleic acids research, vol. 38, no. Database issue, pp.
D750–753, Jan. 2010.

[17] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins,
R. D. Appel, and A. Bairoch, “Protein identification and analysis tools
on the expasy server,” March 2005.

[18] J. C. Wood, “Fundamental flow cytometer properties governing sensi-
tivity and resolution.” Cytometry, vol. 33, no. 2, pp. 260–266, 1998.

4079

