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Abstract— We address the problem of controlling a noisy
differential drive mobile robot such that the probability of
satisfying a specification given as a Bounded Linear Temporal
Logic (BLTL) formula over a set of properties at the regions
in the environment is maximized. We assume that the vehicle
can precisely determine its initial position in a known map
of the environment. However, inspired by practical limitations,
we assume that the vehicle is equipped with noisy actuators
and, during its motion in the environment, it can only measure
the angular velocity of its wheels using limited accuracy
incremental encoders. Assuming the duration of the motion is
finite, we map the measurements to a Markov Decision Process
(MDP). We use recent results in Statistical Model Checking
(SMC) to obtain an MDP control policy that maximizes the
probability of satisfaction. We translate this policy to a vehicle
feedback control strategy and show that the probability that the
vehicle satisfies the specification in the environment is bounded
from below by the probability of satisfying the specification
on the MDP. We illustrate our method with simulations and
experimental results.

I. INTRODUCTION

Temporal logics, such as Linear Temporal Logic (LTL)
and Computational Tree Logic (CTL) have become increas-
ingly popular for specifying robotic tasks (see, for example
[KGFP07], [KB08b], [WTM09]). It has been shown that
temporal logics can serve as rich languages capable of
specifying complex motion missions such as “go to region
A and avoid region B unless regions C or D are visited”.

In order to use existing model checking tools for motion
planning (see [BK08]), many of the above-mentioned works
rely on the assumption that the motion of the vehicle in
the environment can be modeled as a finite system [CGP99]
that is either deterministic (applying an available action
triggers a unique transition [KB08b]) or nondeterministic
(applying an available action can enable multiple transi-
tions, with no information on their likelihoods [KB08a]).
If sensor and actuator noise models can be obtained from
empirical measurements or an accurate simulator, then the
robot motion can be modeled as a Markov Decision Process
(MDP). However, robot dynamics are normally described by
control systems with state and control variables evaluated
over infinite domains. A widely used approach for temporal
logic verification and control of such a system is through
the construction of a finite abstraction ([Gir07], [YTC+12]).
Even though recent works discuss the construction of ab-
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stractions for stochastic systems [JP09], [ADBS08], the ex-
isting methods are either not applicable to robot dynamics or
are computationally infeasible given the size of the problem
in most robotic applications.

In this paper, we consider a vehicle whose performance
is measured by the completion of time constrained temporal
logic tasks. In particular, we provide a conservative solu-
tion to the problem of controlling a stochastic differential
drive mobile robot such that the probability of satisfying
a specification given as a Bounded Linear Temporal Logic
(BLTL) formula over a set of properties at the regions in the
environment is maximized. Inspired by a realistic scenario
of an indoor vehicle leaving its charging station, we assume
that the vehicle can determine its precise initial position
in a known map of the environment. The actuator noise is
modeled as a random variable with a continuous probability
distribution supported on a bounded interval, where the
distribution is obtained through experimental trials. Also,
we assume that the vehicle is equipped with two limited
accuracy incremental encoders, each measuring the angular
velocity of one of the wheels.

Assuming the duration of the motion is finite, through dis-
cretization, we map the incremental encoder measurements
to an MDP. By relating the MDP to the vehicle motion in the
environment, the vehicle control problem becomes equivalent
to the problem of finding a control policy for an MDP
such that the probability of satisfying the BLTL formula is
maximized. Due to the size of the MDP, finding the exact so-
lution is computationally too expensive. Therefore, we trade-
off correctness for scalability and we use computationally
efficient techniques based on system sampling. Specifically,
we use recent results in Statistical Model Checking (SMC)
for MDPs ([HMZ+12]) to obtain an MDP control policy and
a Bayesian Interval Estimation (BIE) algorithm ([ZPC10])
to estimate the probability of satisfying the specification.
Finally, we show that the probability that the vehicle satisfies
the specification in the original environment is bounded
from below by the maximum probability of satisfying the
specification on the MDP under the obtained control policy.

The main contribution of this work lies in bridging the
gap between a low level sensory inputs and a high level
temporal logic specifications. We develop a framework for
the synthesis of a vehicle feedback control strategy from such
specifications based on a realistic model of an incremental
encoder. This paper extends our previous work ([CB12b])
of controlling a stochastic version of Dubins vehicle such
that the probability of satisfying a temporal logic statement,
given as a Probabilistic CTL (PCTL) formula, over some
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environmental properties, is maximized. Specifically, the
approach presented here allows for richer temporal logic
specifications, where the vehicle performance is measured
by the completion of time constrained temporal logic tasks.

Due to page constraints, preliminaries are not included in
this paper. We refer readers to [BK08] for information about
MDPs and to [ZPC10] for detailed description of BLTL.
Furthermore, we omit all proofs of all results. An extended
version of this paper can be found in [CB12a].

II. PROBLEM FORMULATION

A differential drive mobile robot ([LaV06]) is a vehicle
having two main wheels, each of which is attached to its
own motor, and a third wheel which passively rolls along
preventing the robot from falling over. In this paper, we
consider a stochastic version of a differential drive mobile
robot, which captures actuator noise: ẋ

ẏ
θ̇

=

 r
2 (ur + εr +ul + εl)cos(θ)
r
2 (ur + εr +ul + εl)sin(θ)

r
L (ur + εr−ul− εl)

 , ur ∈Ur, ul ∈Ul ,

(1)
where (x,y) ∈ R2 and θ ∈ [0,2π) are the position and
orientation of the vehicle in a world frame, ur and ul are
the control inputs (angular velocities before being corrupted
by noise), Ur and Ul are control constraint sets, and εr and
εl are random variables modeling the actuator noise with
continuous probability density functions supported on the
bounded intervals [εmin

r ,εmax
r ] and [εmin

l ,εmax
l ], respectively.

L is the distance between the two wheels and r is the wheel
radius. We denote the state of the system by q = [x,y,θ ]T ∈
SE(2).

Motivated by the fact that the time optimal trajectories for
the bounded velocity differential drive robots are composed
only of turns in place and straight lines ([BM00]), we
assume Ur and Ul are finite, but we make no assumptions
on optimality. We define

Wi = {u+ ε|u ∈Ui,ε ∈ [εmin
i ,εmax

i ]}, i ∈ {r, l},

as the sets of applied control inputs, i.e, the sets of angular
wheel velocities that are applied to the system in the presence
of noise. We assume that time is uniformly discretized
(partitioned) into stages (intervals) of length ∆t, where stage
k is from (k− 1)∆t to k∆t. The duration of the motion is
finite and it is denoted K∆t (later in this section we explain
how K is determined). We denote the control inputs and the
applied control inputs at stage k as uk

i ∈Ui, i ∈ {r, l}, and
wk

i ∈Wi, i ∈ {r, l}, respectively.
We assume that the vehicle is equipped with two incre-

mental encoders, each measuring the applied control input
(i.e., the angular velocity corrupted by noise) of one of
the wheels. Motivated by the fact that the angular velocity
is considered constant inside the given observation stage
([PTPZ07]), the applied controls are considered piecewise
constant, i.e., wi : [(k−1)∆t,k∆t]→Wi, i∈ {r, l}, are constant
over each stage.

Incremental encoder model: As shown in [PTPZ07], the
measurement resolution of an incremental encoder is con-
stant and for encoder i we denote it as ∆εi, i ∈ {r, l}.
Given ∆εi and [εmin

i ,εmax
i ], i ∈ {r, l}, then the following

holds: ∃ni ∈ Z+ s.t. ni∆εi = |εmax
i −εmin

i |, i ∈ {r, l} (for more
details see Sec. VII.) Then, [εmin

i ,εmax
i ] can be partitioned1

into ni noise intervals of length ∆εi: [ε
ji
i ,ε

ji
i ], ji = 1, . . . ,ni,

i ∈ {r, l}. We denote the set of all noise intervals Ei =
{[ε1

i ,ε
1
i ], . . . , [ε

ni
i ,ε

ni
i ]}, i ∈ {r, l}. At stage k, if the applied

control input is uk
i +εi, the incremental encoder i will return

measured interval

[wk
i ,w

k
i ] = [uk

i + ε i,u
k
i + ε i],

where εi ∈ [ε i,ε i] ∈ Ei, i ∈ {r, l}. The pair of measured
intervals at stage k, ([wk

r ,w
k
r ], [w

k
l ,w

k
l ]), returned by the in-

cremental encoders, is denoted Wk.
The vehicle moves in a planar environment in which a set

of non-overlapping regions of interest, denoted R, is present.
Let Π be the set of propositions satisfied at the regions in the
environment. One of these propositions, denoted by πu ∈Π,
signifies that the corresponding regions are unsafe. We
employ BLTL to describe high level motion specification.

Formulas of BLTL are constructed by connecting proper-
ties from a set of proposition Π using Boolean operators (¬
(negation), ∧ (conjunction), ∨ (disjunction)), and temporal
operators (U≤t (bounded until), F≤t (bounded finally), and
G≤t (bounded globally), where t ∈ R≥0 is the time bound
parameter). The semantics of BLTL formulas are given over
infinite traces σ = (o1, t1)(o2, t2) . . ., oi ∈ 2Π, ti ∈R≥0, i≥ 1,
where oi is the set of satisfied propositions and ti is the time
spent satisfying oi. A trace satisfies a BLTL formula φ if φ

is true at the first position of the trace; G≤tφ1 means that
φ1 will remain true for the next t time units; and φ1U≤tφ2
means that φ2 will be true within the next t time units and
φ1 remains true until then. The fact that trace σ satisfies φ

is denoted σ � φ .
In this work, the motion specification is expressed as a

BLTL formula φ over Π:

φ = ¬πuU≤T1(ϕ1∧¬πuU≤T2(ϕ2∧ . . .∧¬πuU≤Tf ϕ f )), (2)

f ∈ Z+, and ϕ j, ∀ j ∈ {1, . . . , f}, is of the following form:

ϕ j = G≤τ1
j (
∨

π∈Π1
j
π)∨ . . .∨G≤τ

n j
j (

∨
π∈Π

n j
j

π),

where n j ∈Z+, ∀n=1,...,n j Π
n
j ⊂Π\πu, ∀n=1,...,n j τ

n
j ∈R≥0 and

Tj ∈ R≥0.
Example 1: Consider the environment shown in

Fig. 2 (Sec. IV). Let Π = {πu,πp,πt1,πt2,πd} where
πu,πp,πt1,πt2,πd label the unsafe, pick-up, test1,
test2 and the drop-off regions, respectively. Let the
motion specification be as follows:

Start from an initial state qinit and reach a pick-up
region within 14 time units and stay in it at least 0.8 time
units, to pick-up a load. After entering the pick-up region,

1Throughout the paper, we relax the notion of partition by allowing the
endpoints of the intervals to overlap.
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reach a test1 region within 5 time units and stay in it at
least 1 time unit or reach a test2 region within 5 time units
and stay in it at least 0.8 time units. Finally, after entering
the test1 region or the test2 region reach a drop-off
region within 4 time units to drop off the load. Always avoid
the unsafe regions.

The specification translates to BLTL formula φ :

φ = ¬πuU≤14(G≤0.8
πp∧¬πuU≤5(

[G≤1
πt1∨G≤0.8

πt2]∧¬πuU≤4
πd)).

(3)

We assume that the vehicle can precisely determine its
initial state qinit = [xinit ,yinit ,θinit ], in a known map of the
environment. While the vehicle moves, incremental encoder
measurements Wk are available at each stage k. We define
a vehicle control strategy as a map that takes as input a
sequence of pairs of measured intervals W1W2 . . .Wk−1, and
returns control inputs uk

r ∈Ur and uk
l ∈Ul at stage k. Let us

formulate the main problem we consider in this paper:
Problem 1: Given a set of regions of interest R satisfying

propositions from a set Π, a vehicle model described by Eqn.
(1) with initial state qinit , a motion specification expressed
as a BLTL formula φ over Π (Eqn. (2)), find a vehicle
control strategy that maximizes the probability of satisfying
the specification.

To fully specify Problem 1, we need to define the satisfac-
tion of a BLTL formula φ by a trajectory q : [0,K∆t]→ SE(2)
of the system from Eqn. (1). A formal definition is given in
[CB12a]. Informally, since the duration of the motion is fi-
nite, q(t) produces a finite trace σ = (o1, t1)(o2, t2) . . .(ol , tl),
oi ∈Π∪ /0, ti ∈ R≥0, i≥ 1, where oi is the satisfied proposi-
tion2 and ti is the time spent satisfying oi, as time evolves.
A trajectory q(t) satisfies BLTL formula φ if and only if the
generated trace satisfies the formula. We give an example in
Fig. 2 (Sec. IV). Given φ , for the duration of the motion we
use the smallest K ∈ Z+ for which model checking a trace
is well defined, i.e., the smallest K for which the maximum
nested sum of time bounds (see [ZPC10]) is at most K∆t.

III. CONSTRUCTION OF AN MDP MODEL

Recall that εi is a random variable with a continuous prob-
ability density function supported on the bounded interval
[εmin

i ,εmax
i ], i ∈ {r, l}. The functions are obtained through

experimental trials and they are defined as follows:

Pr(εi ∈ [ε ji
i ,ε

ji
i ]) = p ji

i , (4)

[ε ji
i ,ε

ji
i ] ∈ Ei, ji = 1, . . . ,ni, s.t. ∑

ni
ji=1 p ji

i = 1, i ∈ {r, l}.
An MDP M that captures every sequence realization of

pairs of measurements returned by the incremental encoders
is defined as a tuple (S,s0,Act,A,P), where:
• S = ∪k=1,...,K{([ur + εr,ur + εr], [ul + ε l ,ul + ε l ])|ur ∈
Ur,ul ∈Ul , [εr,εr]∈ Er, [ε l ,ε l ]∈ El}k is the set of states with
the following meaning: (W1, . . . ,Wk)∈ S means that at stage
i, 1≤ i≤ k, the pair of measured intervals is Wi.
• s0 = /0 is the initial state.
• Act = {Ur ×Ul}∪ϕ is the set of actions, where ϕ is a

2Since the regions of interest are non-overlapping it follows that oi ∈
Π∪ /0.

dummy action when the termination time is reached.
• A : S→ 2Act gives the enabled actions at state s: if |s|= K,
i.e., if the termination time is reached, A(s) = ϕ , otherwise
A(s) = {Ur×Ul}.
• P : S×Act×S→ [0,1] is a transition probability function
constructed by the following rules:
1) If s = (W1, . . . ,Wk) ∈ S then P(s,a,s′) = pm

r pn
l iff s′ =

(W1, . . . ,Wk,([ur + εm
r ,ur + ε

m
r ], [ul + εn

l ,ul + ε
n
l ])) ∈ S and

a = (ur,ul) ∈ {Ur ×Ul} where m = 1, . . . ,nr, n = 1, . . . ,nl
and k = 1, . . . ,K.;
2) If |s|= K then P(s,a,s′) = 1 iff a = ϕ and s′ = s;
3) P(s,a,s′) = 0 otherwise.

In the technical report [CB12a] we prove that P is a
valid transition probability function. Finally, we define a
control policy µ of an MDP M as a function that resolves
nondeterminism in each state s by providing a distribution
over the set of actions enabled in s, i.e., µ(s,a) : S×Act→
[0,1], s.t., ∑a∈A(s) µ(s,a) = 1 and µ(s,a) > 0 only if a is
enabled in s. A control policy for which either µ(s,a) = 1 or
µ(s,a)= 0 for all pairs (s,a)∈ S×Act is called deterministic.

IV. POSITION UNCERTAINTY

A. Nominal state trajectory
For each interval belonging to the set of noise intervals

Ei, we define a representative value ε
ji

i = (ε ji
i + ε

ji
i )/2,

ji = 1, . . . ,ni, i ∈ {r, l}, i.e., ε
ji

i is the midpoint of interval
[ε ji

i ,ε
ji
i ] ∈ Ei, i ∈ {r, l}. We denote the set of representative

values as Ei = {ε1
i , . . . ,ε

ni
i }, i ∈ {r, l}.

We use qk(t), wk
r and wk

l , t ∈ [(k−1)∆t,k∆t], k = 1, . . . ,K,
to denote the state trajectory and the constant applied controls
at stage k, respectively. With a slight abuse of notation, we
use qk to denote the end of state trajectory qk(t), i.e., qk =
qk(k∆t). Given state qk−1, the state trajectory qk(t) can be
derived by integrating the system given by Eqn. (1) from the
initial state qk−1, and taking into account the applied controls
are constant and equal to wk

r and wk
l . Throughout the paper,

we will also denote this trajectory by qk(qk−1,wk
r ,w

k
l , t),

when we want to explicitly capture the initial state qk−1 and
the constant applied controls wk

r and wk
l .

Given a path through the MDP:

s0
(u1

r ,u
1
l )−−−−→ s1

(u2
r ,u

2
l )−−−−→ s2 . . .sK−1

(uK
r ,u

K
l )−−−−→ sK , (5)

where sk = (W1, . . . ,Wk), with Wk = ([uk
r +εk

r ,u
k
r +ε

k
r ], [u

k
l +

εk
l ,u

k
l + ε

k
l ]), k = 1, . . . ,K, we define the nominal state

trajectory q(t), t ∈ [0,K∆t], as follows: q(t) = qk(qk−1,uk
r +

εk
r ,u

k
l +εk

l , t), t ∈ [(k−1)∆t,∆t], k = 1, . . . ,K, where εk
i ∈ Ei

is such that εk
i ∈ [εk

i ,ε
k
i ], i ∈ {r, l} and q0 = qinit . For every

path through the MDP, its nominal state trajectory is well
defined. The next step is to define the uncertainty evolution,
along the nominal state trajectory, since the applied controls
can take any value within the measured intervals.

B. Position uncertainty evolution
Since a motion specification is a statement about the

propositions satisfied by the regions of interest in the environ-
ment, in order to answer whether a state trajectory satisfies
φ (Eq. (2)) it is sufficient to know its projection in R2.
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The position uncertainty of the vehicle when its nominal
position is (x,y) ∈R2 is modeled as a disc centered at (x,y)
with radius d ∈R, where d denotes the distance uncertainty:

D((x,y),d) = {(x′y′) ∈ R2|||(x,y),(x′,y′)|| ≤ d}, (6)

where || · || denotes the Euclidian distance. Next, we explain
how to obtain d.

First, let ∆θ ∈ S1 denote the orientation uncertainty. Let
q(t), t ∈ [0,K∆t], be the nominal state trajectory correspond-
ing to a path through the MDP (Eqn. (5)). Then, q(t) can
be partitioned into K state trajectories: qk(t) = qk(qk−1,uk

r +
εk

r ,u
k
l + εk

l , t), t ∈ [(k−1)∆t,∆t], k = 1, . . . ,K, where εk
i ∈ Ei

is such that εk
i ∈ [εk

i ,ε
k
i ] ∈ Ei, i ∈ {r, l} and q0 = qinit (see

Fig. 1). The distance and orientation uncertainty at state qk

are denoted as dk and ∆θ k, respectively. We set dk and ∆θ k

at state qk = [xk,yk,θ k]T equal to:

dk = max[x′,y′,θ ′]T∈Rk(||(xk,yk),(x′,y′)||)+dk−1 and
∆θ k = max[x′,y′,θ ′]T∈Rk(|θ k−θ ′|), (7)

where

Rk = {qk([xk−1,yk−1,θ k−1 +α]T ,uk
r + ε

′
r,u

k
l + ε

′
l ,k∆t)|

α ∈ {∆θ
k−1,−∆θ

k−1},ε ′r ∈ {εk
r ,ε

k
r},ε ′l ∈ {εk

l ,ε
k
l }},

(8)

for k = 1, . . . ,K, where d0 = 0 and ∆θ 0 = 0.

qinit

q1(t) q1(t)

q2(t) q2(t)

q3(t) q3(t)

qinit

q(t) q(t)

d2

d3 d3
�✓3

q1

q2

q3

q1

q2

q3

�✓3

�✓2 �✓2

Fig. 1. Left: Evolution of the position uncertainty along the nominal
state trajectory q(t) = [x(t),y(t),θ(t)], where q(t) is partitioned into 3
state trajectories, qk(t), k = 1,2,3. Right: The conservative approximation
of region D((x(t),y(t)),d(t)) along q(t), where the distance uncertainty
trajectory is d(t ′) = dk(t), t ′ ∈ [(k−1)∆t,k∆t], with dk(t) = dk , k = 1,2,3.

Eqn. (7) and (8) are obtained using a worst scenario
assumption. At stage k, the pair of measured intervals is
Wk = ([uk

r + εk
r ,u

k
r + ε

k
r ], [u

k
l + εk

l ,u
k
l + ε

k
l ]) and we use the

endpoints of the measured intervals to define set Rk. Rk

is the smallest set of points in SE(2), at the end of stage k,
guaranteed to contain (i) the state with the maximum distance
(in Euclidian sense) from qk given that the applied controls
at stage i are within the measured intervals at stage i, and (ii)
the state with the maximum orientation difference compared
to qk given that the applied controls at stage i are within the
measured intervals at stage i, i = 1, . . . ,k. (for more details
about Rk see [FMAG98]). An example is given in Fig. 1.

From Eqn. (7) and (8) it follows that, given a nominal
state trajectory q(t), t ∈ [0,K∆t], the distance uncertainty
increases as a function of time. The way it changes along
q(t) makes it difficult to characterize the exact shape of the
position uncertainty region. Instead, we use a conservative
approximation of the region. We define d : [0,K∆t]→ R as
an approximate distance uncertainty trajectory and we set
d(t) = dk, t ∈ [(k− 1)∆t,k∆t], k = 1, . . . ,K, i.e., we set the
distance uncertainty along the state trajectory qk(t) equal to
the maximum value of the distance uncertainty along qk(t),
which is at state qk (see Fig. 1).

C. Generating a trace under the position uncertainty

Let q(t) be a nominal state trajectory with the distance
uncertainty trajectory d(t), t ∈ [0,K∆t]. In [CB12a] we intro-
duce a set of conservative rules according to which the trace
corresponding to the uncertainty region D((x(t),y(t)),d(t))
is generated. In Fig. 3 we show an uncertainty region and the
corresponding trace. The rules guarantee that if the generated
trace satisfies φ (Eqn. (2)) then any state (position) trajectory,
inside D((x(t),y(t)),d(t)), will satisfy φ . Formal proof can
be found in [CB12a].

qinit

⇡p

⇡t1

⇡t2

⇡d

⇡u

(;, 13.47)

(⇡p, 2.18)

(;, 2.25) (⇡t2, 2.16)

(;, 0.93)

(⇡d, 2.41)

(;, 13.56)

(⇡p, 1.92)

(;, 2.27)

(⇡t2, 1.34)

(;, 2.75)

(⇡d, 1.56)

Fig. 2. An example environment with the regions of interest. The unsafe,
pick-up, test1, test2 and the drop-off regions are shown in
red, blue, cyan, yellow and green, respectively. An uncertainty region
and a sample state (position) trajectory, inside the uncertainty region, are
shown in black and magenta, respectively. The corresponding generated
traces are σD=( /0,13.56)(πp,1.92)( /0,2.27)(πt2,1.34)( /0,2.75)(πd ,1.56) and
σq′ = ( /0,13.47)(πp,2.18)( /0,2.25)(πt2,2.16)( /0,0.93)(πd ,2.41). Let φ be as
given by Eq. (3). Then, it follows that σD � φ and σq′ � φ .

V. VEHICLE CONTROL STRATEGY

Given the MDP M, the next step is to obtain a control
policy that maximizes the probability of generating a path
through M such that the corresponding trace is satisfying.
Given Ur, Ul , nr, nl and K, the size of the MDP M is bounded
above by (|Ur| × |Ul | × nr × nl)

K . Even for a simple case
study, due to the size of M, using exact methods to obtain a
control policy is computationally too expensive. Therefore,
we decide to trade-off correctness for scalability and use
computationally efficient techniques based on sampling.
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We obtain a suboptimal control policy by iterating over the
control synthesis and the probability estimation procedure
until the stopping criterion is met (see Sec. V-B). In the
control synthesis procedure we use a control policy optimiza-
tion algorithm from [HMZ+12] to incrementally improve a
candidate control policy for the MDP M (control policy is
initialized with a uniform distribution at each state). Next, in
the probability estimation procedure we use SMC by BIE,
as presented in [ZPC10]. We estimate the probability that
the MDP M, under the candidate control policy, generates a
path such that the corresponding trace satisfies BLTL formula
φ . Finally, if the estimated probability converges, i.e., if
the stopping criterion is met, we map the control policy to
a vehicle control strategy. Otherwise, the control synthesis
procedure is restarted using the latest update of the control
policy.

A. Control synthesis

The details of the control policy optimization algorithm
can be found in [HMZ+12] and here we only give an
informal overview of the approach. In the control policy
evaluation procedure we sample paths of the MDP M under

the current control policy µ . Given a path ω = s0
a1
−→ s1

a2
−→

s2 . . .sK−1
aK
−→ sK , where ak = (uk

r ,u
k
l ), the corresponding

trace σ is generated as described in Sec. IV. Next, we check
BLTL formula φ on each σ and estimate how likely it is for
each action to lead to the satisfaction of φ , i.e., we obtain
the estimate of the probability that a path crossing a state-
action pair, (sk,ak+1), k = 0, . . . ,K−1, in ω will generate a
trace that satisfies φ . These estimates are then used in the
control policy improvement procedure, in which we update
the control policy µ by reinforcing the actions that led to the
satisfaction of φ most often. The authors ([HMZ+12]) show
that the updated control policy is provably better than the
previous one by focusing on more promising regions of the
state space. In the next step, to estimate the probability of
satisfaction, we use the deterministic version of the updated
probabilistic control policy µ , denoted µdet where: for all
s ∈ S and a ∈ A, µdet(s,a) = I{a = arg maxa∈Act(s)µ(s,a)}.
B. Probability estimation

Next, we determine the estimate of the probability that
the MDP M, under µdet , generates a path such that the
corresponding trace satisfies φ . To do so we use the BIE
algorithm as presented in [ZPC10]. We denote the exact
probability as pM and the estimate as p̂M .

The algorithm generates traces by sampling paths through
M under µdet (as described in Sec. IV) and checks whether
the corresponding traces satisfy φ , until enough statistical
evidence has been found to support the claim that pM is
inside the interval [p̂M − δ , p̂M + δ ] with arbitrarily high
probability, i.e., Pr(pM ∈ [p̂M − δ , p̂M + δ ]) ≥ c, where c ∈
( 1

2 ,1) and δ ∈ (0, 1
2 ) are user defined parameters.

We stop iterating over the control synthesis and the prob-
ability estimation procedure when the difference between
the two consecutive probability estimates converges to a
neighborhood of radius e ∈ (0,1). Let µ∗det and p̂∗M be the

current control policy and the corresponding probability
estimate, respectively, when the stopping criterion is met.

C. Control strategy

The vehicle control strategy is a function γ : S→{Ur×Ul}
that maps a sequence of pairs of measured intervals, i.e., a
state of the MDP, to the control inputs: γ((W1, . . . ,Wk)) =
γ(sk) = arg maxa∈Act(sk)

µ∗det(sk,a), k = 1, . . . ,K − 1 with
γ(s0) = arg maxa∈Act(s0)

µ∗det(s0,a). At stage k, the control
inputs are (uk

r ,u
k
l ) = γ((W1, . . . ,Wk−1)) ∈ {Ur×Ul}. Thus,

given a sequence of pairs of measured intervals, γ returns
the control inputs for the next stage; the control inputs are
equal to the action returned by µ∗det at the state of the MDP
corresponding to that sequence.

Theorem 1: The probability that the system given by Eqn.
(1), under the vehicle control strategy γ , generates a state tra-
jectory that satisfies BLTL formula φ (Eqn. (2)) is bounded
from below by p∗M , where Pr(p∗M ∈ [p̂∗M−δ , p̂∗M +δ ])≥ c.
The result follows from the conservative approximation of
the uncertainty region, the result mentioned in IV-C and the
MDP construction (formal proof can be found in [CB12a]).

VI. CASE STUDY

We considered the system given by Eqn. (1) and we
used the numerical values corresponding to Dr. Robot’s
x80Pro mobile robot equipped with two incremental en-
coders. The parameters were r = 0.085m and L = 0.295m.
To reduce the complexity, {Ur × Ul} was limited to
{( 1+L

4r , 1−L
4r ),( 1

4r ,
1
4r ),(

1−L
4r , 1+L

4r )}, where the pairs of control
inputs corresponded to a vehicle turning left at 1

2
rad
s , going

straight, and turning right at 1
2

rad
s , respectively, when the

forward speed is 1
4

m
s .

Measurement resolution and probability density functions:
To obtain the angular wheel velocity, the frequency counting
method [PTPZ07] was used, i.e., the encoder pulses inside a
given sampling period were counted. The number of pulses
per revolution (i.e., the number of windows in the code
track of the encoders) was 378 and the sampling period
was set to ∆t = 2.6s. Thus, according to [PTPZ07] the
measurement resolution was ∆εr = ∆εl =

2π

378·2.6 ≈ 0.0064.
We obtained −εmin

r = εmax
r = −εmin

l = εmax
l = 0.0096 and

the corresponding probabilities through experimental trials
(details can be found in [CB12a]).

We considered the motion specification and the BLTL
formula given in Example 1 (Sec. II). Two different envi-
ronments are shown in Fig. 3. The estimated probability
p̂∗M corresponding to environment A and B was 0.664 and
0.719, respectively. From Eq. (3) it followed that K = 9. For
both environments, we found the vehicle control strategy as
described in Sec. V. To verify Theorem 1, we performed
multiple runs of BIE algorithm by simulating the system
under the vehicle control strategy. We denote the resulting
probability estimate as p̂S and we compare it to p̂∗M .

In Fig. 3 we show sample state trajectories and in Table I
we compare the estimated probabilities obtained on the MDP,
p̂∗M , with the estimated probabilities obtained by simulating
the system, p̂S. The results support Theorem 1, since p̂S
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Fig. 3. 20 sample state (position) trajectories for cases A and B (to
be read top-to-bottom). The unsafe, pick-up, test1, test2, and
the drop-off regions are shown in red, blue, cyan, yellow and green,
respectively. Satisfying and violating trajectories are shown in black and
red, respectively. Note that, in case A, the upper two red trajectories avoid
the unsafe regions and visit the pick-up, test2, and the drop-off
region in the correct order, but they violate the specification because they
do not stay long enough in the test2 region.

is bounded from below by p̂∗M . The discrepancy in the
probabilities is mostly due to the conservative approximation
of the uncertainty region in Sec. IV. The Matlab code used
to obtain the vehicle control strategy ran for approximately
2.2 hours on a computer with a 2.5GHz dual processor. A
movie showing a robot motion produced by applying the
vehicle control strategy for environment A is available online
at http://people.bu.edu/icizelj/Igor Cizelj/diff-bltl.html .

TABLE I
PROBABILITY ESTIMATES OF SATISFYING THE SPECIFICATION

Environment p̂∗M p̂S
Run 1 Run 2 Run 3

A 0.664 0.847 0.832 0.826
B 0.719 0.891 0.898 0.879

VII. CONCLUSION

We developed a feedback control strategy for a stochastic
differential drive mobile robot such that the probability of
satisfying a time constrained specification given in terms
of a temporal logic statement is maximized. By mapping
sensor measurements to an MDP we translate the problem
to finding a control policy maximizing the probability of
satisfying a BLTL formula on the MDP. The solution is based
on SMC for MDPs and we show that the probability that the

vehicle satisfies the specification is bounded from below by
the probability of satisfying the specification on the MDP.

The key limitation of the proposed approach is the com-
putation time. Since sampling accounts for the majority of
our runtime, future work includes improving the sampling
performance and making the implementation fully parallel,
as well as developing a less conservative uncertainty model.
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