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Abstract— We propose a framework for generating a control
policy for a traffic network of signalized intersections to
accomplish control objectives expressed in linear temporal logic.
Traffic management indeed calls for a rich class of objectives
and offers a novel domain for these formal methods tools. We
show that traffic networks possess structural properties that
allow significant reduction in the time required to compute a
finite state abstraction. We further extend our approach to a
probabilistic framework by modeling the traffic dynamics as a
Markov Decision Process.

I. INTRODUCTION

Due to the growing need for intelligent use of exist-
ing transportation infrastructure [1], control of networks of
signalized intersections has received considerable attention
in recent decades, see [2] for a review. Many existing
strategies focus on limited objectives such as maximizing
throughput [3] or maintaining stability of network queues
[4], [5]. However, efficient traffic management often calls for
a range of objectives beyond those mentioned above. In this
work, we consider control objectives expressible using linear
temporal logic (LTL) [6], [7]. For example, LTL formula
allows objectives such as “infinitely often, the queue length
on road ℓ should reach 0” and “anytime link ℓ becomes
congested, it eventually becomes uncongested” and “traffic
flow throughput is always greater than a given threshold.”

In this paper, we leverage recent results on control syn-
thesis from LTL specifications such as [8]–[13] to design
signal control policies for traffic networks. We model the
traffic network as a network of queues [3]–[5] with link
capacities. The result is a piecewise-affine (PWA) dynamical
model, and we describe a method for obtaining a finite state
abstraction of the dynamics using polyhedral operations as
proposed in [9]. A related approach to control of freeway
traffic is proposed in [14], but [14] only considers control of
freeway networks through ramp metering while in this paper,
we study signaling control of road networks.

Next, due to the expense of performing the required
polyhedral operations in high dimensions, we propose an
approximate finite state abstraction which can be computed
much more efficiently. This efficiency is due to properties
of the traffic flow model which allow efficient computation
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of bounds on the one-step reachable states of a given link.
We then suggest a method for extending these results to a
probabilistic framework, which leads to numerous interesting
directions for future work. Our prior work [15], currently in
submission to a journal, does not present this extension or a
method based on polyhedral operations.

This paper is organized as follows: Section II describes
the traffic network dynamical model. Section III presents
the LTL-based approach to control synthesis based on a
computationally efficient method of constructing a finite state
representation of the network dynamics. We extend these
results to a probabilistic formulation in Section IV. A case
study is presented in Section V, and we provide concluding
remarks in Section VI.

II. SIGNALIZED NETWORK TRAFFIC MODEL

A signalized traffic network consists of a set L of links and
a set V of signalized intersections or nodes. For ℓ ∈ L, let
σ(ℓ) ∈ V denote the head node of link ℓ and let τ(ℓ) ∈ V∪∅
denote the tail node of link ℓ. A link ℓ with τ(ℓ) = ∅ serves as
an entry-point into the network, and we assume σ(ℓ) ̸= τ(ℓ)
for all ℓ ∈ L (i.e., no self-loops). Link k ̸= ℓ is upstream of
link ℓ if σ(k) = τ(ℓ), downstream of link ℓ if τ(k) = σ(ℓ),
and adjacent to link ℓ if τ(k) = τ(ℓ). Roads exiting the
traffic network are not modeled explicitly. For each v ∈ V ,
define

Lin
v = {ℓ : σ(ℓ) = v} (1)

Lout
v = {ℓ : τ(ℓ) = v}. (2)

Each link ℓ ∈ L possesses a queue xℓ[t] ∈ [0, xcap
ℓ ]

representing the number of vehicles on link ℓ at time step
t ∈ N ≜ {0, 1, 2, . . .} where xcap

ℓ is the capacity of link ℓ.
We allow xℓ to be a continuous quantity, thus adopting a
fluid-like model of traffic flow. Let

X =
∏
ℓ∈L

[0, xcap
ℓ ]. (3)

Movement of vehicles among link queues is governed
by mass-conservation laws and the state of the signalized
intersections. When a link is actuated, a maximum of cℓ
vehicles are allowed to flow from link ℓ to links Lout

σ(ℓ) per
time step where cℓ is the known saturation flow for link ℓ.
To simplify notation, we assume each intersection v ∈ V
has two possible states actuating either “East-West” (EW)
incoming links or “North-South” (NS) incoming links1.

1We can easily generalize to signal variables with more than two states
and general network topologies at the cost of more complex notation.
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Fig. 1. A typical traffic network. In the figure, Ldown
ℓ = {ℓ, 7, 8, 10},

Lup
ℓ = {1, 2, 5}, and Ladj

ℓ = {3, 4}. At each time step, a signal is
either actuating “East-West” (EW) links or “North-South” (NS) links where
LEW = {1, ℓ, 10} and LNS = {2, 3, . . . , 9}. Note that if a link is actuated,
it may send vehicles to any downstream link regardless of orientation.

To make this precise, we partition L into EW links and
NS links, denoted by LEW and LNS, respectively, so that
L = LEW ∪ LNS. We define the signal variable sv ∈ {0, 1}
as follows for each v ∈ V:

sv =

{
1 if links Lin

v ∩ LEW are actuated
0 if links Lin

v ∩ LNS are actuated
(4)

When a link ℓ is actuated, the turn ratio βℓk denotes the
fraction of vehicles exiting link ℓ that are routed to link k.
It follows that βℓk ̸= 0 only if σ(ℓ) = τ(k) and∑

k∈Lout
σ(ℓ)

βℓk ≤ 1. (5)

Strict inequality in (5) implies that a fraction of vehicles on
link ℓ are routed off the network via unmodeled roads that
exit the network. Even when a link is actuated, traffic flow
can occur only if there is available capacity downstream. To
this end, the supply ratio αℓk denotes the fraction of link
k’s capacity available to link ℓ, that is, link ℓ may only send
αℓk(x

cap
k − xk[t]) vehicles to link k in time period t. Since

only incoming EW or NS links are actuated in each time
step, it follows that, for all k ∈ L,∑

ℓ∈Lin
τ(k)

∩LEW

αℓk =
∑

ℓ∈Lin
τ(k)

∩LNS

αℓk = 1. (6)

We are now in a position to define the dynamics of the
link queues. We first define the following:

Ldown
ℓ = Lout

σ(ℓ) ∪ {ℓ} Lup
ℓ = Lin

τ(ℓ) (7)

Ladj
ℓ = Lout

τ(ℓ)\{ℓ} Lloc
ℓ = Ldown

ℓ ∪ Lup
ℓ ∪ Ladj

ℓ (8)

so that Ldown
ℓ includes link ℓ and the links downstream of

link ℓ, Lup
ℓ and Ladj

ℓ are links upstream and adjacent to ℓ,
respectively, see Fig. 1. As we will see subsequently, the
flow of vehicles out of link ℓ is only a function of the state
of links in Ldown

ℓ , and the update of link ℓ’s state is only a
function of links in Lloc

ℓ , that is, links “local” to link ℓ.
Let x[t] = {xℓ[t]}ℓ∈L, s[t] = {sv[t]}v∈V , xdown

ℓ =
{xk}k∈Ldown

ℓ
, and xloc

ℓ = {xk}k∈Lloc
ℓ

. We define the outflow
of link ℓ for all ℓ ∈ L as follows:

f out
ℓ (xdown

ℓ , sσ(ℓ)) =

{
sσ(ℓ) · ϕℓ(x

down
ℓ [t]) if ℓ ∈ LEW

(1− sσ(ℓ)) · ϕℓ(x
down
ℓ [t]) if ℓ ∈ LNS

(9)

where

ϕℓ(x
down
ℓ [t]) = min

{
xℓ[t], cℓ, min

k s.t.
βℓk ̸=0

{αℓk

βℓk
(xcap

k − xk[t])
}}

.

(10)

The number of vehicles in each link’s queue then evolves
according to the mass conservation equation

xℓ[t+ 1] =Fℓ(x
loc
ℓ [t], sloc[t], dℓ[t]) (11)

≜xℓ[t]− f out
ℓ (xdown

ℓ [t], sσ(ℓ))

+
∑
j∈Lup

ℓ

βjℓf
out
j (xdown

j [t], sσ(j)) + dℓ[t] (12)

where dℓ[t] is the number of vehicles that exogenously enters
the queue on link ℓ in time step t, d = {dℓ[t]}ℓ∈L, and sloc

ℓ =
{sσ(ℓ), sτ(ℓ)}, that is, sloc

ℓ is the state of the signals that are
“local” to link ℓ (if τ(ℓ) = ∅, then we take sloc

ℓ = {sσ(ℓ)}).
We assume there exists D ⊂ R|L| such that

d[t] ∈ D ∀t. (13)

We let F (x, s,d) = {Fℓ(x
loc, sloc, dℓ)}ℓ∈L so that

x[t+ 1] = F (x[t], s[t],d[t]). (14)

We then have F (x, s,d) : R|L| × {0, 1}|V| × D → R|L|.
Finally, we define the set Lin

v,s to be the set of links actuated
by signal s ∈ {0, 1}|V| at intersection v, that is,

Lin
v,s =

{
Lin
v ∩ LEW if sv = 0

Lin
v ∩ LNS if sv = 1.

(15)

III. CONTROLLER SYNTHESIS FROM LINEAR TEMPORAL
LOGIC SPECIFICATIONS

We now turn to the main objective this paper, namely,
synthesizing a signal control strategy such that the resulting
traffic dynamics and signal sequence satisfies a control
objective expressed using linear temporal logic (LTL). We
first define and motivate the need for the rich class of
control objectives expressible in LTL in the context of traffic
networks. We then propose a control synthesis approach
which relies on a finite state representation of the traffic
dynamics.

A. LTL Specifications for Traffic Networks

LTL formulae describe properties of trajectories of the
traffic network and are generated inductively using the
Boolean operators ∨ (disjunction), ∧ (conjunction), ¬ (nega-
tion), and the temporal operators  (next) and U (until).
Formally, such formulae are expressed over the states of
the finite state representation constructed below. We use
LTL formulae to describe desired behaviors of the traffic
network, which allows very rich control specifications that
include derived logical and temporal operators such as →
(implication),  (always), and  (eventually), see [6], [7].

Examples of LTL formulae representing desired control
objectives relavent to traffic networks include those from the
Introduction as well as:



• φ =(xℓ ≤ C) for some C
“Eventually, link ℓ has less than C vehicles for all future
time”

• φ = (sv = 0)
“Always, it is eventually the case (i.e., infinitely often)
that signal v actuates NS traffic”

• φ = ((sv1 = 1)→(sv2 = 1))
“Whenever signal v1 actuates EW traffic, signal v2 must
actuate EW traffic in the next time step”

• φ = ((xℓ1 ≥ C1)→ (xℓ2 ≥ C2))
“The number of vehicles on link ℓ1 is allowed to exceed
C1 only if the number of vehicles has exceeded C2 on
link ℓ2.”

LTL formulae constitute a large class of control objectives
that encompass reachability, safety, sequentiality, and fair-
ness conditions, along with many other derived composite
conditions.

To generate control strategies for the traffic network that
guarantee satisfaction of a LTL formula, we first construct
a finite state representation, or abstraction, of the model
defined in Section II. In the next section, we present an
abstraction approach based on polyhedral operations, and
we then show that a modified abstraction can be efficiently
constructed by exploiting the sparsity and the dynamical
properties of the traffic network.

B. Finite State Representation

We begin by defining a quotient transition system obtained
via a rectangular partitioning of the state space that over-
approximates the traffic dynamics. In particular, we consider
partitioning each interval [0, xcap

ℓ ] into the set of intervals

{[0, x1
ℓ ], (x

1
ℓ , x

2
ℓ ], . . . , (x

Nℓ−2
ℓ , xNℓ−1

ℓ ], (xNℓ−1
ℓ , xNℓ

ℓ ]} (16)

where xi
ℓ < xi+1

ℓ for all i and xNℓ

ℓ = xcap
ℓ . By convention,

we let x0
ℓ = 0. For Xℓ ∈ {1, . . . , Nℓ}, let

JXℓK = {
[xXℓ−1

ℓ , xXℓ

ℓ ] if Xℓ = 1

(xXℓ−1
ℓ , xXℓ

ℓ ] if Xℓ > 1,
(17)

i.e., J·K gives the interval corresponding to the discrete state
Xℓ. For X = {Xℓ}ℓ∈L, we let

JXK = ∏
ℓ∈L

JXℓK ⊂ X . (18)

Remark 1. We assume each link is partitioned into a collec-
tion of intervals, which results in a grid-based partitioning of
X . We could instead partition X into a courser partitioning
of hyperrectangles that is not based on a gridding of the state
space, resulting in a smaller finite state abstraction, but this
approach is not pursued here and is left for future work.

Definition 1 (Quotient Transition System). Given an interval
partitioning as in (16) for each link ℓ ∈ L, a finite, nonde-
terministic quotient transition system of the traffic model is
defined as the tuple T = (X, S,→) where

• X =
∏

ℓ∈L{1, . . . , Nℓ} is the set of states,
• S = {0, 1}|V| is the set of controls,

• →⊆ X × S × X is the set of transitions given by
(X, s,X′) ∈→ if and only if

∃d ∈ D, ∃x ∈ JXK, ∃x′ ∈ JX′K such that (19)
x′ = F (x, s,d). (20)

In words, a discrete state X transitions to X′ under signal
input s ∈ S if and only if for some disturbance d ∈ D, there
exists continuous states x ∈ JXK and x′ ∈ JX′K such that x
may transition to x′ under the signaling input s.

Remark 2. It is important to note that the transition system
T defined above simulates [7] the original traffic network
model, that is, all possible trajectories of the traffic net-
work dynamics are represented in T . Thus T is an over-
approximation of the traffic network model; due to this
approximation, there may exist spurious executions of the
quotient system that do not correspond to any trajectory
of the original traffic network. Furthermore, T is nonde-
terministic due to these spurious trajectories and due to
the disturbance taking values within a set. While the over-
approximation implies possible conservatism in our approach
[7], it does not affect soundness of the synthesis algorithm.
In particular, we synthesize a controller that guarantees
satisfaction of the control objective for all executions of the
quotient system, which encompasses all possible trajectories
of the original system.

We now discuss a method for obtaining the quotient tran-
sition system T = (X, S,→) from the dynamics presented in
Section III-B. We observe that (9)–(13) result in dynamics
that are piecewise affine, that is, there exists a set of polytopes
{Xp}p∈P for some index set P such that ∪p∈PXp = X and
int(Xp) ∩ int(Xq) = ∅ for all p ̸= q, and such that for each
p ∈ P , we have

F (x, s,d) = Ap,sx+ bp,s + d ∀x ∈ Xp (21)

for some Ap,s ∈ R|L|×|L|, bp,s ∈ R|L|. In other words, the
traffic dynamics are affine in each polyhedral partition. The
polytopes arise from the min{·} functions in (10).

For X ∈ X, let {XX
p }p∈P be the partitioning of JXK with

respect to P , that is, XX
p = JXK∩Xp (in general, many XX

p

will be empty).
The set of states of system (14) that are reachable from

a set Y ⊂ X under the control signal s is denoted by the
Post operator and given by

Post(Y, s) = {x′ = F (x, s,d) | x ∈ Y,d ∈ D}. (22)

It follows that for X ∈ X,

Post(JXK, s) = ∪
p∈P

Post(XX
p , s). (23)

If D is assumed to be a polytope, then Post(XX
p , s) is

computed through basic polyhedral operations since each
XX

p is a polytope and the dynamics are affine in XX
p under

the control signal s as in (21), see [9] for details.
Let PostT (X, s) ⊂ X be the set of discrete states that the

quotient transition system may transition to under signal s



when in discrete state X, that is

PostT (X, s) = {X′ | (X, s,X′) ∈→}. (24)

According to Definition 1, we have

PostT (X, s) = {X′ | Post(JXK, s) ∩ JX′K ̸= ∅}. (25)

Therefore, the quotient transition system can be constructed
by performing a set of polyhedral operations. However, these
operations scale exponentially in the number of links. Next,
we propose constructing an approximation of T that does
not require polyhedral operations.

C. Approximate Quotient Transition System

We now introduce an approximate quotient system which
can be constructed much more efficiently than the system
proposed in Definition 1.

Definition 2 (Approximate Quotient Transition System).
Given an interval partitioning as in (16) for each ℓ ∈ L,
an approximate finite quotient system of the traffic dynamics
is defined as the tuple T ′ = (X, S,→′) where

• X =
∏

ℓ∈L{1, . . . , Nℓ} is the set of states,
• S = {0, 1}|V| is the set of controls,
• →′⊆ X × S × X is the set of transitions given by

(X, s,X′) ∈→′ if and only if

∃d ∈ D such that (26)
∀ℓ ∈ L, ∃x ∈ JXK, ∃x′

ℓ ∈ JX ′
ℓK such that (27)

x′
ℓ = Fℓ(x, s, dℓ). (28)

In words, a discrete state X transitions to X′ = {X ′
ℓ}ℓ∈L

under signal input s ∈ S if and only if there exists d ∈ D
and, for each link ℓ ∈ L, there exists x′

ℓ ∈ JX ′
ℓK and x ∈ JXK

such that x′
ℓ = Fℓ(x

loc, sloc, dℓ).

The difference between Definitions 1 and 2 is that in
verifying (28), a different x ∈ JXK may be chosen for each ℓ,
whereas (20) must hold for a particular x ∈ JXK. This subtle
difference between Definitions 1 and 2 allows us to exploit
the structure and sparsity of traffic network dynamics to
efficiently compute T ′. While T ′ may, in general, introduce
additional conservatism, we remark that in the examples
below, a satisfying controller is found which is valid for every
initial condition, thus the approximate quotient transition
system introduces no conservatism in the final synthesized
controller.

Remark 3. The transition system T ′ is again an over-
approximation of the transition system T and thus a con-
troller synthesized for T ′ is guaranteed to also be correct for
T and the original traffic network.

D. Efficient Computation of Approximate Quotient System

We now present an algorithm for efficiently computing T ′

when D is a union of hyperrectangles where computation of
{X′ | (X, s,X′) ∈→′} only requires evaluating Fℓ at two
corners of the hyperrectangle JXK for each ℓ.

We first assume D =
∪nD

i=1 Di for some nD ∈ N where

Di =
∏
ℓ∈L

[dℓi , d̄
ℓ
i ] ∀i ∈ {1, . . . , nD} (29)

for dℓi ≤ d̄ℓi for all ℓ ∈ L. Let PostT ′(X, s) = {X′ |
(X, s,X′) ∈→′} and let

PostT ′,Y(X, s) = {X′ | (X, s,X′) ∈→′ when D is
replaced with Y in (26)}. (30)

Trivially,

PostT ′(X, s) = PostT ′,D(X, s) =
∪nD

i=1 PostT ′,Di(X, s),
(31)

and we thus focus on computation of PostT ′,Di(X, s). For
given X ∈ X, s ∈ S, and Di, let

x′
ℓ = min

x∈JXK,dℓ∈[dℓ
i ,d

ℓ
i ]

Fℓ(x
loc
ℓ , sloc

ℓ , dℓ) (32)

x′
ℓ = max

x∈JXK,dℓ∈[dℓ
i ,d

ℓ
i ]

Fℓ(x
loc
ℓ , sloc

ℓ , dℓ). (33)

Proposition 1. Given X ∈ X, s ∈ S, Di as in (29), and
{x′

ℓ, x
′
ℓ}ℓ∈L as defined in (32)–(33), we have

PostT ′,Di(X, s) =

{X′ = {X ′
ℓ}ℓ∈L | JX ′

ℓK ∩ [x′
ℓ, x

′
ℓ] ̸= ∅ ∀ℓ ∈ L}. (34)

Proposition 1 follow straightforwardly from the rectangu-
lar form of Di and the definition of →′ in Definition 1.

The computational advantage of Definition 2 over Defi-
nition 1 comes from the fact that the right hand sides of
(32) and (33) can be computed efficiently. We first make
the following technical assumption which is not particularly
restrictive and can always be satisfied in traffic networks
when a short enough time step is considered:

Assumption 1. For all ℓ ∈ L,

cℓ ≤ xcap
ℓ − βkℓ

αkℓ
cj ∀k ∈ Lup

ℓ . (35)

Assumption 1 is a sufficient condition for ensuring that a
link cannot completely clear its queue in one time step while
simultaneously restricting flow from an upstream link, which
is required for the following proposition.

Proposition 2. Given X = {Xℓ}ℓ∈L ∈ X where Xℓ =
[xXℓ−1

ℓ , xXℓ

ℓ ] or Xℓ = (xXℓ−1
ℓ , xXℓ

ℓ ] as in (17). For given
s ∈ S and d ∈ Di, let

xloc
ℓ =

∪
k∈

Ldown
ℓ ∪Lup

ℓ

{xXk−1
k } ∪

∪
k∈Ladj

ℓ

{xXk

k } (36)

xloc
ℓ =

∪
k∈

Ldown
ℓ ∪Lup

ℓ

{xXk

k } ∪
∪

k∈Ladj
ℓ

{xXk−1
k }. (37)

Then

min
x∈JXK,dℓ∈[dℓ

i ,d
ℓ
i ]

Fℓ(x
loc
ℓ , sloc

ℓ , dℓ) = Fℓ(x
loc
ℓ , sloc

ℓ , dℓi) (38)

max
x∈JXK,dℓ∈[dℓ

i ,d
ℓ
i ]

Fℓ(x
loc
ℓ , sloc

ℓ , dℓ) = Fℓ(x
loc
ℓ , sloc

ℓ , d
ℓ

i). (39)



We provide the following proof sketch: Observe that xloc
ℓ

is the collection of lower bounds for link ℓ and the links
that are upstream and downstream of link ℓ, and the upper
bounds for the links adjacent to link ℓ. Likewise, xloc

ℓ is the
collection of upper bounds for link ℓ and the links that are
upstream and downstream of link ℓ, and the lower bounds
for the links adjacent to link ℓ. Furthermore, the structure
of traffic dynamics renders Fℓ(x

loc
ℓ , sloc, dℓ) monotonically

increasing in xk for k ∈ (Ldown
ℓ ∪ Lup

ℓ )\{ℓ} and dℓ, and
monotonically decreasing in xk for k ∈ Ladj

ℓ . Thus xloc
ℓ , dℓi

are the conditions ensuring that x′
ℓ achieves the minimum

possible under the constraint x ∈ JXK and d ∈ Di, and
similarly xloc

ℓ , d
ℓ

i are the conditions ensuring that x′
ℓ achieves

the maximum possible under the same constraints.
Combining Propositions 1 and 2, we have the following:

Corollary 1. Given X ∈ X, s ∈ S, Di of the form (29), and
xloc
ℓ ,xloc

ℓ for each ℓ ∈ L given by (38)–(39), we have

PostT ′,Di(X, s) =

{X′ = {X ′
ℓ}ℓ∈L | JX ′

ℓK ∩ [x′
ℓ, x

′
ℓ] ̸= ∅ ∀ℓ ∈ L} (40)

where

x′
ℓ = Fℓ(x

loc
ℓ , sloc

ℓ , dℓi) (41)

x′
ℓ = Fℓ(x

loc
ℓ , sloc

ℓ , d
ℓ

i). (42)

Corollary 1 exploits the structure and sparsity of the traffic
dynamics and provides the key for efficient computation of
the approximate quotient system T ′. Indeed, sparsity allows
consideration of only links and signals that are “local” to a
link, and the structure of the dynamics is the foundation for
Proposition 2 and, in turn, efficient computation of x′

ℓ and
x′
ℓ via (41)–(42). Note that (41)–(42) requires computing Fℓ

at two points for each ℓ ∈ L, and that the two points xloc
ℓ and

xloc
ℓ are easily obtained from X ∈ X using (36)–(37). For

disturbance set D of the form (29), we compute PostT ′,Di

for each Di and combine the resulting transitions via (31).
It follows that computing {X′ | (X, s,X′) ∈→′} for some

X and s scales linearly with the dimension of the continuous
state space, i.e., the number of links in the network. If
we instead compute this set with polyhedral operations, the
calculation scales exponentially with the number of links.

E. Augmenting the State Space with Signal History

To capture control objectives that include the state of
the signals themselves (which are modeled as inputs in the
approximate quotient transition system T ′), we augment the
discrete state space. Examples of specifications that require
this augmentation include conditions such as “the state of an
intersection cannot change more than once per nmin time
steps” or “an input signal cannot remain unchanged for
nmax time steps.” We propose the following transition system
which includes the current state of each signal as well as the
number of steps the signal has remained unchanged:

Definition 3 (Signal History Transition System). The signal-
ized intersection history is modeled as a transition system
Tsig = (Qsig, S,→sig) where

• Qsig = {0, 1}|V| × {0, . . . , N}|V| is a set of states,
• S = {0, 1}|V| is the set of controls,
• →sig⊂ Qsig × S×Qsig is the set of transitions given by

((ξ,n), s, (ξ′,n′)) ∈→sig with ξ, ξ′ ∈ {0, 1}|V |, n,n′ ∈
{0, . . . , N}|V|, and s ∈ S if and only if

ξ′ = s and n′
v =


nv + 1 if ξv = sv and nv < N

N if ξv = sv and nv = N

0 if ξv ̸= sv

∀v ∈ V.
(43)

In other words, for a state (ξ,n) ∈ Qsig, ξ is the latest
control signal applied to the intersections of the traffic
network and nv is the number of time steps for which the
state intersection v has not changed. The counter nv saturates
at N time steps to ensure that Tsig remains finite. From
Definitions 2 and 3, we construct the synchronous product
of the approximate quotient system and the signal history
transition system:

Definition 4 (Product Transition System). The final product
transition system that models the dynamical behavior of the
traffic network is a transition system Tprod = (Qprod, S,→prod

) where
• Qprod = X×Qsig is a set of discrete states,
• S = {0, 1}|V| is the set of controls,
• →prod⊂ Qprod × S × Qprod is the set of transitions

given by ((X, ξ,n), s, (X′, ξ′,n′)) ∈→prod if and only
if (X, s,X′) ∈→′ and ((ξ,n), s, (ξ′,n′)) ∈→sig.

F. Controller Synthesis

We omit the details of how a control strategy is synthesized
from the nondeterministic transition system Tprod for a given
LTL control objective as this is well-documented elsewhere
in the literature, see e.g. [9], [16]. Instead, we summarize
the main steps of this synthesis as follows: from the LTL
control objective, we obtain a deterministic Rabin automaton
that accepts all and only trajectories that satisfy the LTL
specification using off-the-shelf software. We then construct
the synchronous product of the Rabin automaton and Tprod,
resulting in a nondeterministic Rabin automaton from which
a control strategy is found by playing a Rabin game [16].
The result is a control strategy along with a set of initial
conditions from which trajectories of the traffic network are
guaranteed to satisfy the desired LTL specification.

As the discrete state space is finite, the control strategy
takes the form of a collection of “lookup” tables over the
discrete states of the system, Qprod, and there is one such
table for each state in the Rabin automaton encoding the de-
sired LTL property. Thus implementing the control strategy
requires implementing the specification Rabin automaton,
which is interpreted as “tracking” progress of the LTL
specification and updates at each time step, and applying the
control corresponding to the current discrete state (X, ξ,n) ∈
Qprod of the system within the lookup table dictated by the
current state of the Rabin automaton.



IV. EXTENSIONS TO A PROBABILISTIC MODEL

The above approach accommodates uncertainty in the
disturbance input via nondeterminism in the finite state
abstraction, and a controller is synthesized to satisfy the
control objective for any disturbance input. However, in
traffic networks, disturbance inputs are often characterized
probabilistically. Furthermore, it is often sufficient for a
controller to satisfy a specification with high probability
rather than with certainty. For example, we may wish to
find a controller that avoids congestion with 95% probability;
the rare occurrence of a large exogenous input may prevent
synthesis of a controller that avoids congestion with certainty.

To this end, we now extend the above methodology to a
probabilistic framework. We model the traffic network as a
Markov Decision Process (MDP), and seek to maximize the
probability of satisfying a LTL specification.

A. Probabilistic Model of Freeway Traffic

We propose modifying the nondeterministic system devel-
oped in Section III to include transition probabilities obtained
from a known probability distribution on the disturbance set
D. We create an MDP from the approximate quotient system
T ′; applying this approach to a product transition system
that includes signal history is a straightforward extension of
Section III-E. From T ′, we obtain an MDP M as follows:

Definition 5 (Traffic Model MDP). From an approximate
transition system and a probability distribution on D, we
obtain a Markov Decision Process (MDP) M = (X,S, P )
that models the traffic dynamics where:

• X =
∏

ℓ∈L{1, . . . , Nℓ} is the set of states,
• S = {0, 1}|V| is the set of controls,
• P : X × S × X → [0, 1] is the transition probabil-

ity function satisfying for all X ∈ X and s ∈ S,∑
X′∈X P (X, s,X′) = 1 and P (X, s,X′) > 0 if and

only if (X, s,X′) ∈→′. A formula for P is given
sebsequently.

We assume D is a hyperrectangle, that is, D =∏
ℓ∈L[d

ℓ, d̄ℓ] for some dℓ ≤ d̄ℓ for all ℓ ∈ L. Let pD :
D → [0, 1] be the probability distribution on D so that∫
D pD(δ)dδ = 1. We assume pD is a product distribution,

that is, pD(d) =
∏

ℓ∈L pDℓ (dℓ) where pDℓ : [dℓ, d̄ℓ] → [0, 1]

and
∫ d̄ℓ

dℓ pDℓ (δ)dδ = 1 for all ℓ ∈ L (note that pDℓ may
be, e.g., a Dirac delta function). We suppose the exogenous
disturbance is drawn independently from D at each time step.
Now define pX,s

ℓ : [0, xcap
ℓ ] → [0, 1] as follows:

pX,s
ℓ (x′

ℓ) =
1

ȳℓ − y
ℓ

∫ ȳℓ

y
ℓ

pDℓ (x
′
ℓ − z)dz (44)

where

y
ℓ
= Fℓ(x

loc
ℓ , sloc

ℓ , 0), ȳℓ = Fℓ(x
loc
ℓ , sloc

ℓ , 0) (45)

and xloc
ℓ , xloc

ℓ are as given in (36)–(37). We substitute 0 for
the disturbance in (45) as the disturbance is accommodated
probabilistically in (44). Notice that pX,s(xℓ) has support
only on [y

ℓ
+dℓ, yℓ+dℓ] and integrates to one on this domain.

v1 v2 v3

1 2 3
4

5

6

7

Fig. 2. Signalized network consisting of a major corridor road (links 1, 2,
and 3) which intersects minor cross streets (links 4, 5, 6, and 7). The gray
links are not explicitly modeled.

We interpret (44) as the probability distribution for the state
of link ℓ in the next time step when initialized in discrete
state X. We define the joint probability distribution

pX,s(x) =
∏
ℓ∈L

pX,s
ℓ (xℓ) (46)

and are now in a position to define the probability transition
function P :

P (X, s,X′) :=

∫
X′

pX,s(x)dx. (47)

We thus have a complete definition for an MDP model
of the traffic network dynamics. For simple pD(·), P is
straightforward to compute. To synthesize a control policy
for the MDP that maximizes the probability of satisfying
an LTL specification, we apply the learning based approach
suggested in [17], see [7, Ch. 10], [13] for alternative
approaches.

B. Discussion

The advantages of a probabilistic approach include more
realistic assumptions on disturbance inputs, control synthesis
that achieves objectives with high probability when they
cannot be achieved with certainty, and a natural foundation
for incorporating measured data and online control updates.

We emphasize that the results proposed in this section
are preliminary. Unlike the nondeterministic case where a
control strategy synthesized for the approximate transition
system is guaranteed to apply to the original traffic network,
the probability of satisfying a control objective computed
from the MDP model may not completely reflect the actual
satisfaction probability exhibited by the traffic network. This
is due to the over-approximating nature of T ′ inherited
by M and also due to the inherent Markov property of
M . That is, the implicit assumption in Definition 5 is that
transition probabilities from a given state are independent
of the trajectory taken to this state. In the limit as the size
of the interval partitions decreases to zero, we recover the
discrete time stochastic process defining the traffic dynamics,
thus the transition probabilities computed here are reasonable
for a sufficiently refined partitioning. Furthermore, these
preliminary results are promising and suggest an important
future role for a probabilistic framework in traffic control
synthesis. For example, we may update estimated transition
probabilities based on observed traffic flow, allowing us to
incorporate measured data.



V. EXAMPLE NETWORK

A. Nondeterministic Abstraction

We consider the example network in Fig. 2 which consists
of a main corridor (links 1, 2, and 3) with intersecting cross
streets (links 4, 5, 6, and 7) and three intersections. The
gray links exit the network and are not explicitly modeled.
Network parameters are given in Table I where the time step
is 15 seconds. We divide the continuous state of each link
into partitions of length 10. We assume that at each time step,
the exogenous input d belongs to one of the sets defined by:

• 0 to 20 vehicles joins link 1, or
• 0 to 10 vehicles joins links 4 and 5 each, or
• 0 to 10 vehicles joins link 6, or
• 0 to 10 vehicles joins link 7

where we assume that vehicles join a link only if the
link is not at capacity. The above conditions establish the
disturbance set D. If a disturbance input would result in
a link exceeding its capacity, we assume the link state is
set to capacity. This can be interpreted as excess vehicles
choosing not to enter the network, but we could alternatively
explicitly prevent this condition with appropriate choice of
control specification.

We wish to find a control policy for the three signalized
intersections that satisfies the following linear temporal logic
property:

φ1 =(sv1 = 0) ∧(sv1 = 1)∧ (48)
(sv2 = 0) ∧(sv2 = 1)∧ (49)
(sv3 = 0) ∧(sv3 = 1)∧ (50)
(x2 ≤ 30 ∧ x3 ≤ 30) (51)

and the following additional restriction on the signaling:

sv[t] ̸= sv[t+ 1] implies sv[t+ 1] = sv[t+ 2]

for v ∈ {v1, v2, v3}. (52)

In words, (48)–(52) represent the following desired property:
“(Always eventually each signal is red) and (always even-
tually each signal is green) and (eventually, links 2 and 3
have adequate supply for all future time) and (a signal’s state
cannot change twice in two periods)”

Above, “adequate supply” for links 2 and 3 means the
number of vehicles on links 2 and 3 does not exceed 30,
that is, these links can always accept upstream demand.
The control objective (48)–(51) is transformed into a Rabin
automaton with 18 states. To accomodate (48)–(52), we
augment the discrete state space X with the signaling history
up to two time steps as described in Section III-E, resulting
in the final discrete state space Qprod.

Fig. 3(a) shows a sample trajectory of the network using
a naive signaling strategy whereby each intersection actuates
EW traffic for four time steps and then NS traffic for four
times steps, and the signals are coordinated so that the
actuated directions are synchronized. The disturbance input
is chosen as the maximum from one of the four sets defined
above to demonstrate the approach, and the particular set
is chosen uniformly randomly. As the figure suggests, the

(x
cap
1 , . . . , x

cap
7 ) = (30, 50, 50, 20, 20, 20, 20)

(c1, . . . , c7) = (10, 20, 20, 10, 10, 10, 10)

β12 = β23 = β42 = β52 = 0.5, β63 = 1

α42 = α52 = 0.5, α12 = α23 = α63 = 1

TABLE I
NETWORK PARAMETERS FOR THE EXAMPLE NETWORK IN SECTION V.

trajectories are not guaranteed to satisfy the control objective,
in particular, (51) is violated. Fig. 3(b) shows a sample
trajectory of the system with a control strategy synthesized
using the approximate quotient system. The control strategy
is correct-by-construction and thus guaranteed to satisfy
(48)–(52).

It is interesting to observe that the controller exhibits the
so-called “green wave” phenomenon [2] whereby the green
time for the three signals are offset to facilitate a vehicle
traveling along the arterial without stopping. This control
technique is well known to produce increased throughput,
however the controller also reacts to undesirable disturbances
or initial conditions, such as during the first five time periods
or at time period 16 when the disturbance increases the
number of vehicles on Link 2 to undesirable levels and the
controller actuates EW traffic at junction 2 in response.

The final automaton contained 76,800 discrete states and
required approximately 14 minutes to obtain a solution.
A satisfying control policy was found from any initial
condition, and thus, once a control strategy is synthesized,
a controller can be implemented with negligible on-line
computation costs.

B. Probabilistic Abstraction

We now consider the same network as above, but assume
the disturbance is drawn from a uniform distribution over of
the box

D = {d | 0 ≤ d ≤
[
20 0 0 10 10 10 10

]T }. (53)

We obtain a probabilistic abstraction of the dynamics in the
form of an MDP as described in Section 5. The MDP is not
augmented with the signal history and contains 432 discrete
states. We wish to maximize the probability of satisfying the
following temporal logic specification:

φ2 =(x2 ≤ 30 ∧ x3 ≤ 30)∧ (54)
(x4 ≤ 10 ∧ x5 ≤ 10 ∧ x6 ≤ 10 ∧ x7 ≤ 10)∧ (55)


(
(x1 > 30)→x1 ≤ 10

)
. (56)

In words, (54)–(56) represent the following desired property:
“(Eventually, links 2 and 3 have adequate supply for all
future time) and (infinitely often, the queue on links 4, 5, 6,
and 7 are short), and (whenever the queue on link 1 exceeds
30 vehicles, the queue eventually is short).”

Above, a “short” queue has 10 or fewer vehicles, and we
do not require a signal to remain unchanged for two time
periods as in the previous section. Using the learning-based
approach proposed in [17], we obtain a control strategy that
achieves φ2 with probability one as verified using the PRISM
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Fig. 3. (a) A sample trajectory of a naive strategy that actuates EW traffic
and then NS traffic for four time steps each in a synchronized fashion. This
policy does not satisfy the desired control objective φ1, in particular, (51) is
not satisfied. (b) A sample trajectory resulting from the synthesized control
policy that is guaranteed to satisfy the LTL policy (48)–(52). In the lower
plots of (a) and (b), green (red) for the signal trace indicates EW (NS) traffic
is actuated.

model-checker [18] (total computation time for synthesis was
23.0 seconds). On the other hand, if we model the system
as a nondeterministic transition system as in Section III-C,
we find that no controller exists satisfying φ2, and thus the
probabilistic formulation is crucial.

We see in Fig. 4 that we indeed obtain a controller that
satisfies φ2 and behaves as expected. Signal 1 remains green
for long periods of time so that the queue on link 1 can
become short, as required by (56). The controller does exhibit
frequent changes in control input since we did not require the
signal to remain unchanged for a certain number of periods;
if this is undesirable for the application, we could augment
the state space with the signaling input and prevent frequent
switching as done in Section V-A.

VI. CONCLUSIONS

We have proposed a framework for synthesizing a control
strategy for a network of signalized intersections that ensures
the resulting traffic dynamics satisfy a control objective
expressed as a linear temporal logic formula. The large
class of control objectives accommodated by LTL is well-
suited for modern transportation infrastructure where there
are many, sometimes competing, objectives. Furthermore,
we exploit structural properties of the traffic network to
drastically reduce the time required to compute a finite
state abstraction of the dynamics. Our future research will
address ways of further exploiting the structure inherent in
such systems to reduce the number of discrete states in the
abstraction.
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Fig. 4. A sample trajectory of the strategy obtained by modeling the traffic
network as an MDP that satisfies φ2.

REFERENCES

[1] A. A. Kurzhanskiy and P. Varaiya, “Active traffic management on road
networks: A macroscopic approach,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 368, no. 1928, pp. 4607–4626, 2010.

[2] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and
Y. Wang, “Review of road traffic control strategies,” Proceedings of
the IEEE, vol. 91, no. 12, pp. 2043–2067, 2003.

[3] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli, and
D. Wang, “Distributed traffic signal control for maximum network
throughput,” in Intelligent Transportation Systems (ITSC), 2012 15th
International IEEE Conference on, pp. 588–595, Sept 2012.

[4] P. Varaiya, “The max-pressure controller for arbitrary networks of
signalized intersections,” in Advances in Dynamic Network Modeling
in Complex Transportation Systems, pp. 27–66, Springer, 2013.

[5] P. Varaiya, “Max pressure control of a network of signalized inter-
sections,” Transportation Research Part C: Emerging Technologies,
vol. 36, pp. 177–195, 2013.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
press, 1999.

[7] C. Baier and J. Katoen, Principals of Model Checking. The MIT Press,
2008.

[8] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.
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