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Abstract. We consider the following problem: given a linear system and an
LTL−X formula over a set of linear predicates in its state variables, find a feed-
back control law with polyhedral bounds and a set of initial states so that all
trajectories of the closed loop system satisfy the formula. Our solution to this
problem consists of three main steps. First, we partition the state space in accor-
dance with the predicates in the formula and construct a transition system over
the partition quotient, which captures our capability of designing controllers. Sec-
ond, using model checking, we determine runs of the transition system satisfying
the formula. Third, we generate the control strategy. Illustrative examples are
included.

1 Introduction

Temporal logic [1] is the natural framework for specifying and verifying the correctness
of computer programs. However, due to their resemblance to natural language, their ex-
pressivity, and the existence of off-the-shelf algorithms for model checking, temporal
logic has the potential to impact several other areas of engineering. Analysis of systems
with continuous dynamics based on qualitative simulations and temporal logic was pro-
posed in [2, 3, 4]. In the control-theoretic community, a framework for specifying and
controlling the behavior of a discrete linear system has been developed in [5]. The use
of temporal logic for task specification and controller synthesis in mobile robotics has
been advocated as far back as [6], and recent results include [7, 8, 9]. In the area of sys-
tems biology, the qualitative behavior of genetic circuits can be expressed in temporal
logic, and model checking can be used for analysis, as suggested in [10, 11].

We consider the following problem: given a linear system ẋ = Ax + b + Bu with
polyhedral control constraints U , and given an arbitrary LTL−X formula φ over an
arbitrary set of linear predicates, find initial states and a feedback control strategy u so
that the corresponding trajectories of the closed loop system verify the formula φ, while
staying inside a given full-dimensional polytope PN .

Our approach to solving the above problem can be summarized as the following
three steps. In the first step, we construct a finite state “generator” transition system Tg.
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Its states are the equivalence classes produced by the feasible full-dimensional subpoly-
topes of PN determined by the linear predicates appearing in the formula φ. The tran-
sitions of Tg are determined by adjacency of subpolytopes and existence of feedback
controllers making such subpolytopes invariant or driving all states in a subpolytope to
an adjacent subpolytope through a common facet [12]. In the second step, we produce
runs of Tg that satisfy formula φ. This is in essence a model checking problem, and we
use standard tools based on Büchi automata [13]. In the third step, we construct a feed-
back ”control strategy”, which leads to a closed loop hybrid system, whose continuous
trajectories satisfy formula φ. We implemented our approach as a user friendly software
package LTLCON [14] under Matlab.

Related work and contribution of the paper. In order to extend temporal logic tech-
niques from purely discrete systems to continuous systems, two approaches are pos-
sible. First, a careful treatment of the semantics of temporal logic formulas in models
with continuous or hybrid dynamics [4] can be performed. Second, finite quotients with
respect to meaningful equivalence relations can be constructed. Such equivalence rela-
tions include language equivalences (preserving properties specified in linear temporal
logic) and bisimulation relations (preserving specifications in both linear and branching
time logic). The first success in this direction was the work on timed automata reported
in [15], followed by multi-rate automata [16], and rectangular hybrid automata [17].
Other classes of systems for which finite bisimulation quotients exist are identified in
[18]. The interested reader is referred to [19] for an excellent review of all these works.
Linear dynamics are studied in [20], while nonlinear systems are considered in [21, 22].
Quotients that only simulate a continuous or hybrid system and can be used for conser-
vative analysis are developed in [23].

This paper is inspired from [5, 9]. The problem of controller synthesis from LTL
specifications for discrete-time continuous-space linear systems with semi-linear par-
titions are considered in [5], where it is shown that finite bisimulations exist for con-
trollable systems with properly chosen observables. The focus in [5] is on existence
and computability. Specifically, it is shown that the iterative (partitioning) bisimula-
tion algorithm [18] terminates and each step is computable. However, no computational
formulas for the controllers are provided. Another contribution of [5] is setting up the
framework for producing runs of the finite quotient satisfying an LTL formula. This
framework is further refined in [9], where the authors study the problem of controlling
a planar robot in a polygon so that its trajectory satisfies an LTL−X formula. In [9], it
is assumed that a triangulation of the polygon is given, and vector fields are assigned in
each triangle so that the produced trajectories satisfy a formula over the triangles. For
construction of vector fields, the authors use the algorithms developed in [24].

This paper extends the results of [5, 9] in several ways. First, we consider continuous-
time systems as opposed to discrete-time systems in [5]. Second, based on results on
controlling a linear system to a facet of a polytope from [12], and an invariance the-
orem stated in this paper, we provide a fully computational and algorithmic approach
to controller design consisting of polyhedral operations and searches on graphs only.
Third, as opposed to [5], we can guarantee arbitrary polyhedral control bounds. Fourth,
we extend the results [9] by approaching arbitrary dimensional problems and consider-
ing systems with (linear) drift. The feasibility of the partition induced by the predicates
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in the formula and the construction of the partition quotient is fully automated in our
framework, rather than assuming a given triangulation. Finally, we provide a tighter
connection between the continuous and the discrete part of the problem in two ways.
First, the transitions of the discrete quotient capture the controllability properties of
the continuous system. Second, the runs of the discrete system are shown to be of a
particular form which is implementable by the continuous system.

2 Preliminaries

2.1 Polytopes

Let N ∈ N and consider the N - dimensional Euclidean space R
N . A full dimensional

polytope PN is defined as the convex hull of at least N + 1 affinely independent points
in R

N . A set of M ≥ N + 1 points v1, . . . , vM ∈ R
N whose convex hull gives PN

and with the property that vi, i = 1, . . . , M is not contained in the convex hull of
v1, . . . , vi−1, vi+1, . . . , vM is called the set of vertices of PN . A polytope is completely
described by its set of vertices:

PN = conv(v1, . . . , vM ), (1)

where conv denotes the convex hull. Alternatively, PN can be described as the inter-
section of at least N + 1 closed half spaces. In other words, there exist a K ≥ N + 1
and ai ∈ R

N , bi ∈ R, i = 1, . . . , K such that

PN = {x ∈ R
N | aT

i x + bi ≤ 0, i = 1, . . . , K} (2)

Forms (1) and (2) are referred to as V- and H- representations of the polytope, respec-
tively. Given a full dimensional polytope PN , there exist algorithms for translation from
representation (1) to representation (2) [25, 26]. A face of PN is the intersection of PN

with one or several of its supporting hyperplanes. If the dimension of the intersection
is p (with 0 ≤ p < N ), then the face is called a p-face. A (N − 1)-face obtained by
intersecting PN with one of its supporting hyperplanes is called a facet. The vertices
of PN are 0-faces. We denote by int(PN ) the set of points of PN which are not on its
facets, i.e., the region in R

N obtained if the inequalities in (2) were strict. If F is a facet
of PN , int(F ) is defined analogously, with the observation that F is full dimensional
polytope in R

N−1.
A full dimensional polytope with N + 1 vertices (and N + 1 facets) is called a full

dimensional simplex. Arbitrary full dimensional polytopes can be triangulized [27]. In
other words, for any full dimensional polytope PN , there exist full dimensional sim-
plices S1, . . . , SL such that: (i) PN =

⋃L
i=1 Si, (ii) Si

⋂
Sj is either empty or a com-

mon face of Si and Sj , for all i, j = 1, . . . , L, i �= j, and (iii) The set of vertices of
simplex Si is a subset of {v1, . . . , vM}, for all i = 1, . . . , L.

2.2 Transition Systems and Temporal Logic

Definition 1 . A transition system is a tuple T = (Q, Q0, →, Π, �), where Q is a set of
states, Q0 ⊆ Q is a set of initial states, →⊆ Q×Q is a transition relation, Π is a finite
set of atomic propositions, and �⊆ Q × Π is a satisfaction relation.
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In this work, we assume that the transition system is finite (Q is finite). For an arbi-
trary proposition π ∈ Π , we define [[π]] = {q ∈ Q|q � π} as the set of all states satis-
fying it. Conversely, for an arbitrary state q ∈ Q, let Πq = {π ∈ Π | q � π}, Πq ∈ 2Π ,
denote the set of all atomic propositions satisfied at q. A trajectory or run of T starting
from q is an infinite sequence r = r(1)r(2)r(3) . . . with the property that r(1) = q,
r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory r = r(1)r(2)r(3) . . .
defines a word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i).

In the rest of this section, we give a brief review of a propositional linear temporal
logic known as LTL−X [1].

Definition 2 [Syntax of LTL−X formulas]. A linear temporal logic LTL−X formula
over Π is recursively defined as follows:

– Every atomic proposition πi, i = 1, . . . , K is a formula, and
– If φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, φ1Uφ2 are also formulas.

The semantics of LTL−X formulas are given over words of transition system T .

Definition 3 [Semantics of LTL−X formulas]. The satisfaction of formula φ at posi-
tion i ∈ N of word w, denoted by w(i) � φ, is defined recursively as follows:

– w(i) � π if π ∈ w(i),
– w(i) � ¬φ if w(i) � φ,
– w(i) � φ1 ∨ φ2 if w(i) � φ1 or w(i) � φ2,
– w(i) � φ1Uφ2 if there exist a j ≥ i such that w(j) � φ2 and for all i ≤ k < j we

have w(k) � φ1

A word w satisfies an LTL−X formula φ, written as w � φ, if w(1) � φ.

The symbols ¬ and ∨ stand for negation and disjunction. The Boolean constants � and
⊥ are defined as � = π ∨ ¬π and ⊥ = ¬�. The other Boolean connectors ∧ (conjunc-
tion), ⇒ (implication), and ⇔ (equivalence) are defined from ¬ and ∨ in the usual way.
The temporal operator U is called the until operator. Formula φ1Uφ2 intuitively means
that (over a word) φ2 will eventually become true and φ1 is true until this happens.
Two useful additional temporal operators, “eventually” and “always” can be defined as
♦φ = �Uφ and �φ = φU⊥, respectively. Formula ♦φ means that φ becomes eventu-
ally true, whereas �φ indicates that φ is true at all positions of w. More expressiveness
can be achieved by combining the temporal operators. Examples include �♦φ (φ is
true infinitely often) and ♦�φ (φ becomes eventually true and stays true forever).

LTL [1], the most used propositional linear temporal logic, is richer than LTL−X in
the sense that it allows for an additional temporal operator ©, which is called the ‘next’
operator. Formally, the syntax of LTL is obtained by adding “©φ1” to Definition 2
and its semantics is defined by adding ”w(i) � ©φ if w(i + 1) � φ” to Definition 3.
A careful examination of the LTL and LTL−X semantics shows that the increased
expressivity of LTL is manifested only over words with a finite number of repetitions
of a symbol. Our choice of LTL−X over LTL is motivated by our definition of the
satisfaction of a formula by a continuous trajectory and by our approach to finding runs.
Specifically, as it will become clear in Section 3, a word corresponding to a continuous
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trajectory will never have a finite number of successive repetitions of a symbol. In
Section 4.3, we produce runs which will either have one or infinitely many successive
appearances of a symbol (or finite sequences of symbols).

3 Problem Formulation and Approach

Consider the following affine control system in a full dimensional polytope PN in R
N :

ẋ = Ax + b + Bu, x ∈ PN , u ∈ U ⊂ R
m (3)

where A ∈ R
N×N , B ∈ R

N×m, b ∈ R
N , and U is a given polyhedral subset of R

m

capturing control constraints. Let Π be a set of atomic propositions given as arbitrary
strict linear inequalities in R

N . Formally:

Π = {πi | i = 1, . . . , n}, (4)

where each proposition πi, i = 1, . . . , n, denotes an open half-space of mathbbRN :

[[πi]] = {x ∈ R
N | cT

i x + di < 0} (5)

The polytope PN can be seen as a region of R
N capturing known physical bounds on the

state of system (3), or as a region that is required to be an invariant for its trajectories.
For example, P2 can be a convex polygon giving the environment boundaries for a
planar robot with kinematics given by (3). The predicates (5) describe other regions
(properties) of interest. Note that, for technical reasons to become clear later, we only
allow strict inequalities in (5). However, this assumption does not seem restrictive from
an application point of view. If the predicates in Π model sensor information, it is
unrealistic to check for the attainment of a specific value due to sensor noise. Moreover,
if a specific value is of interest, it can be included in the interior of a polyhedron given
by other predicates.

In this paper we consider the following problem:

Problem 1. For an arbitrary LTL−X formula φ over Π , find a set of initial states and
a feedback control strategy for system (3) so that all trajectories of the corresponding
closed loop system satisfy φ, while always staying inside PN .

To fully specify Problem 1, we need to define the satisfaction of an LTL−X formula φ
on Π by a trajectory of (3), which can be seen as a continuous curve α : [0, ∞) → R

N .
This curve can, in general, be non-smooth and can have self-intersections. For each
symbol Θ ∈ 2Π , we define [[Θ]] as being the set of states in R

N satisfying all and only
propositions π ∈ Θ:

[[Θ]] =
⋂

π∈Θ

[[π]] \
⋃

π∈Π\Θ

[[π]] (6)

Definition 4 . The word corresponding to trajectory α is the sequence wα = wα(1)
wα(2)wα(3) . . ., wα(k) ∈ 2Π , k ≥ 1, generated such that the following rules are
satisfied for any τ ≥ 0 and any k ∈ N

∗:
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– α(0) ∈ [[wα(1)]],
– If α(τ) ∈ [[wα(k)]] and wα(k) �= wα(k + 1), then there exist τ ′ > τ such that: (1)

α(τ ′) ∈ [[wα(k+1)]], (2) α(t) /∈ [[π]], ∀t ∈ [τ, τ ′], ∀π ∈ Π \(wα(k)∪wα(k+1)),
and (3) cT

i α(t′) + di �= 0, for all i ∈ {1, . . . , n} and t′ ∈ {τ, τ ′} ,
– If α(τ) ∈ [[wα(k)]] and wα(k) = wα(k + 1), then α(t) ∈ [[wα(k)]], ∀t ≥ τ (i.e.

the region [[wα(k)]] is a ”sink” for trajectory α).

A careful examination of Definition 4 shows that the word produced by a continuous
trajectory is exactly the sequence of sets of propositions satisfied by it as time evolves.
Note that Definition 4 captures the situations when a trajectory hits a sink region, leave
it and eventually come back and remains there, as well as Zeno-type behaviors, when a
trajectory visits two adjacent regions infinitely often.

Remark 1. On the well posedness of Definition 4, first note that our assumption that
trajectories of system (3) always stay inside PN implies that the generated words have
infinite length, so the problem of satisfaction of an LTL−X by such a word is well-
posed. Second, the predicates in (4) are given by strict linear inequalities, Definition 4
makes sense only if cT

i α(0) + di �= 0 and cT
i ᾱ + di �= 0, where ᾱ = limt→∞ α(t)

(if it exists), for all i = 1, . . . , n. Third, Definition 4 is a proper characterization of
satisfaction of sets of predicates from Π by α(t) as time evolves only if there does not
exist t1 < t2 and i = 1, . . . , n such that cT

i α(t) + di = 0, for all t ∈ (t1, t2). All these
three requirements are guaranteed by the way we design controllers, as it will become
clear in Sections 4.1 and 5.

Remark 2. According to Definition 4, the word wα produced by a trajectory α(t) does
not contain a finite number of successive repetitions of a symbol, which suggests using
LTL without the ’next’ operator, as stated in Section 2.2.

Definition 5 . A trajectory α : [0, ∞) → R
N of (3) satisfies LTL−X formula φ, written

as α � φ, if and only if wα � φ, where wα is the word generated by α in accordance
with Definition 4.

4 The Generator Transition System

4.1 Control of Affine Systems in Polytopes

Consider a full dimensional polytope P in R
N with vertices v1, . . . , vM , M ≥ N + 1.

Let F1, . . . , FK denote the facets of P with normal vectors n1, . . . , nK pointing out of
the polytope P . For i = 1, . . . , K , let Vi ⊂ {1, . . . , M} be the set of indexes of vertices
belonging to facet Fi. For j = 1, . . . , M , let Wj ⊂ {1, . . . , K} be the set of indexes of
all facets containing vertex vj .

Lemma 1 [Lemma 4.6 from [12]]. There exists a continuous function λ : P → [0, 1]M

with
∑M

j=1 λj(x) = 1 such that, for all x ∈ P , x =
∑M

j=1 λj(x)vj .

Theorem 1 [Theorem 4.7 plus Remark 4.8 from [12]]. Consider control system (3)
defined on the full dimensional polytope P . Assume that there exist u1, . . . , uM ∈ U
such that:
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(1) ∀j ∈ V1 :
(a) nT

1 (Avj + Buj + b) > 0,
(b) ∀i ∈ Wj \ {1} : nT

i (Avj + Buj + b) ≤ 0.
(2) ∀j ∈ {1, . . . , M} \ V1 :

(a) ∀i ∈ Wj : nT
i (Avj + Buj + b) ≤ 0,

(b) nT
1 (Avj + Buj + a) > 0.

Then there exists a continuous feedback controller u : P → U with the property that for
any initial state x(0) ∈ P , there exist a T0 > 0 such that (i) ∀t ∈ [0, T0] : x(t) ∈ P ,
(ii) x(T0) ∈ F1, and (iii) nT

1 ẋ(T0) > 0.

In other words, Theorem 1 states that if linear inequalities (1)(a),(b) and (2)(a),(b) are
satisfied by some u1, . . . , uM ∈ U , then a continuous feedback controller driving all
initial states from P out of P through facet F1 in finite time exists (condition (iii) means
that the velocity on the exit facet F1 is oriented outside the facet).

Theorem 2 . Consider control system (3) defined on the full dimensional polytope P .
There exists a continuous feedback controller u : P → U that makes P an invariant
for (3) if and only if there exist u1, . . . , uM ∈ U such that:

∀j ∈ {1, . . . , M}, ∀i ∈ Wj : nT
i (Avj + Buj + b) ≤ 0

Proof. See [28].

For both Theorems 1 and 2, given the values u1, . . . , uM at the vertices, the construction
of a continuous controller everywhere in P starts with a triangulation S1,. . .,SL of P .
Let vi

1, . . . , v
i
N+1 ∈ {v1, . . . , vM} be the vertices of the full dimensional simplex Si,

i = 1, . . . , L and ui
1, . . . , u

i
N+1 ∈ {u1, . . . , uM} be the corresponding control values.

Then everywhere in P , the feedback control is given by:

u(x) = ui(x) if x ∈ Si, i = 1, . . . , L (7)

where the control in each simplex is given by [29]:

ui(x) =
[
ui

1 · · · ui
N+1

]
[
vi
1 · · · vi

N+1
1 · · · 1

]−1 [
x
1

]

, i = 1, . . . , L. (8)

Note that the controller given by (7) is well defined. It is obvious that the controller is
well defined when (7) is restricted to the interior of the simplices, since the intersection
of all such interiors is empty. The only problem that might appear is on the common
facets. However, recall that an affine function defined on R

N is uniquely determined by
its values at the vertices of a full dimensional simplex and the restriction of the function
to the simplex is a unique convex combination of these values [12, 29]. Moreover, a
facet of a full dimensional simplex in R

N is a full dimensional simplex in R
N−1. It

follows that, given a pair of adjacent simplices Si and Sj , ui(x) = uj(x) everywhere
on the common facet of Si and Sj . Therefore, formula (7) is well defined and the affine
feedback controller is continuous everywhere in P . Moreover, u(x) constructed using
(7) is always a convex combination of the values u1, . . . , uM . This guarantees that
u(x) ∈ U everywhere in P if and if uj ∈ U , for all j = 1, . . . , M .
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If inequalities (1)(b) and (2)(a) from Theorem 1 are satisfied strictly, then it is easy
to see that, for all i = 2, . . . , K and all j ∈ Vi, nT

i (Avj + Buj + b) < 0. Since with
u constructed using (7) and (8), the restriction of nT

i (Ax + Bu + b) to Fi is a convex
combination of nT

i (Avj + Buj + b), j ∈ Vi, it follows that nT
i (Ax + Bu + b) < 0

everywhere in Fi. We conclude that, if the system starts in int(P ), it will never reach Fi.
Moreover, if it starts in Fi, it will instantaneously penetrate in int(P ). Similar reasoning
applies the case when the inequalities of Theorem 2 are strict, leading to the following
two Corollaries:

Corollary 1. If inequalities (1)(b) and (2)(a) from Theorem 1 are satisfied strictly, the
continuous controller constructed in accordance with (7), (8) produces trajectories that
satisfy x(t) ∈ int(P ), for all t ∈ (0, T0), and x(T0) ∈ int(F1).

Corollary 2. If the inequalities in Theorem 2 are satisfied strictly, then int(P ) is an
invariant for system (3) with controls given by (7), (8).

4.2 Construction of the Generator Transition System

Assume the polytope PN is given in the inequality form (2). Assume there are M,
1 ≤ M ≤ 2n feasible sets of the form

∧n
i=1((−1)ji(cT

i x+ di) < 0)
∧K

l=1(a
T
l x+ bl <

0), where j1, . . . , jn ∈ {0, 1} (each of these sets is the interior of a full dimensional
polytope included in PN and corresponds to a feasible combination of all predicates
from Π inside PN ). To each of them we attach a symbol qi, i = 1, . . . , M. Let P
denote the set of all such symbols P = {qi | i = 1, . . . , M}. Let h : PN− → P be the
quotient map corresponding to these nonempty sets, where PN− = int(PN )\

⋃n
i=1{x ∈

R
n|cT

i x + di = 0}. We also use the notations h−1(q) and h−1(h(x)) to denote the
set of all points in PN− with quotient q and the set of all points in PN− in the same
equivalence class with x, respectively. Let h−1(q) denote the closure of h−1(q). Note
that h−1(q), q ∈ P are full-dimensional subpolytopes of PN . It is easy to see that
h−1(qi)

⋂
h−1(qj) = ∅ for all i, j = 1, . . . , M, i �= j and

⋃M
i=1 h−1(qi) = PN .

Definition 6 . The transition system Tg = (Qg, Qg0, →g, Πg, �g) is defined by

– Qg = Qg0 = P ,
– For all i = 1, . . . , M, (qi, qi) ∈→g if there exists a feedback controller uqiqi :

h−1(qi) → U for the polytope h−1(qi), making h−1(qi) an invariant for the tra-
jectories of (3) as in Corollary 2 of Theorem 2,

– For all i, j = 1, . . . , M, i �= j, (qi, qj) ∈→g if h−1(qi) and h−1(qj) share a
facet and there exists a feedback controller uqiqj : h−1(qi) → U for the polytope

h−1(qi) with exit facet h−1(qi) ∩ h−1(qj) as in Corollary 1 of Theorem 1,
– Πg = Π , with Π as defined in (4),
– q �g πi ∈ Π if ∃x ∈ h−1(q) so that cT

i x + di < 0.

On the computation of the transition system Tg, (i.e., checking the existence of affine
controllers uqiqi and uqiqj ), it is important to note that it only consists of checking the
non-emptiness of polyhedral sets (since U is polyhedral), for which there exists several
powerful algorithms.
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4.3 Determining Trajectories of the Generator Transition System

In this section, we will outline a procedure for finding runs of Tg satisfying an arbitrary
LTL−X formula φ over Π . Due to space constraints, we omit the details, and refer the
reader to the technical report available at [28]. We start by translating φ into a Büchi
automaton Bφ. To this goal, we use the conversion algorithm described in [13] and its
freely downloadable implementation LTL2BA. Then we take the (synchronous) product
of Tg with Bφ to obtain a product automaton Ag,φ [30]. We use standard algorithms for
graph traversing on Ag,φ and eventually project back to find the desired runs of Tg.
Our approach is inspired by model checking algorithms, which are used to verify if a
transition system satisfies a property expressed in terms of LTL. The difference is that
a model checker constructs a Büchi automaton for the negation of the LTL formula and
the product automaton is checked for emptiness (i.e. non-existence of accepted runs).

While we refer the reader to [28] for details, two important observations are in order.
First, as opposed to related approaches reported in [30, 9], we consider possible self-
transitions in states of Tg (Definition 6), and cannot use the ”stutter extension” rule. In
our case, the usage of this rule (adding self-loops to blocking final states of Ag,φ) could
lead to incorrect results, because we could obtain runs which cannot be produced by
Tg. Second, we consider only runs of Tg that have a special structure composed of one
prefix and an infinite number of repetitions of a suffix. Note that this is not restrictive,
since it can be proved [30] that, if there is an accepted run, then there is at least one
accepted run with the above structure. If there are more such runs starting from the
same state, we choose the ”shortest” one, as defined in [28].

Let ri = ri(1)ri(2)ri(3) . . ., ri(j) ∈ Qg = P denote the nonempty run of Tg

starting from state qi, i.e., ri(1) = qi, i ∈ I , where I ⊆ {1, . . . , M} is the set of
indices of all nonempty runs. The fact that ri has the prefix-suffix structure can be
formally written as: for any i ∈ I , there exists ni

p and ni
s such that for any j > ni

p +ni
s,

ri(j) = ri((j −ni
p −1)modni

s +ni
p +1). ni

p and ni
s are the number of states in prefix

and suffix of ri, respectively and thus the run ri contains at most ni
p+ni

s different states.
Proposition 1, proved in [28], states that, in a run ri, i ∈ I of Tg , none of the states

can be succeeded by itself, except for the state of a suffix of length one (case in which
this state will be infinitely repeated).

Proposition 1. Each run ri = ri(1)ri(2)ri(3) . . ., i ∈ I , satisfies the following prop-
erty: ri(j) �= ri(j + 1), ∀j ∈ N

∗, j �= ni
p + k ni

s + 1, k ∈ N. Moreover, if ni
s ≥ 2,

ri(j) �= ri(j + 1), ∀j ∈ N
∗.

Remark 3. Proposition (1) and Remark 2 justifies our choice of LTL without the ’next’
operator. Indeed, we do not need the increased expressiveness obtained by adding it.

5 Control Strategy

To provide a solution to Problem 1, we restrict the set of initial states of system (3) to

x(0) ∈ ∪i∈Ih
−1(qi), (9)

where I ⊆ {1, . . . , M} is the set of indices of non-empty runs as defined in the previous
section.
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Definition 7 (Control strategy) . A control strategy for system (3) corresponding to an
LTL−X formula φ is a tuple Cφ = (L, L0, u, Inv, Rel), where:

– L = {liri(j)ri(j+1) | i ∈ I, j ≥ 1} is its set of locations,

– L0 = {liqiri(2), i ∈ I} is the set of initial locations,

– Inv : L → 2PN , Inv(liri(j)ri(j+1)) = h−1(ri(j)) gives the invariant for each
location,

– u : L × PN → U is a map which assigns to each location liri(j)ri(j+1) and state

x ∈ Inv(liri(j)ri(j+1)) a feedback controller u(liri(j)ri(j+1), x) = uri(j)ri(j+1)(x)
(uri(j)ri(j+1) are defined in Section 4.2),

– Rel ⊆ L × L, Rel = {(liri(j)ri(j+1), l
i
ri(j+1)ri(j+2)), i ∈ I, j ≥ 1, ri(j) �=

ri(j + 1)}

A location liri(j)ri(j+1) corresponds to position j in run ri. According to struc-
ture of runs described in Section 4.3, the set of locations L is finite, even though
the runs are infinite. A location liri(j)ri(j+1) corresponds to driving all states from

h−1(ri(j)) to h−1(ri(j + 1)) in finite time (through the common facet of h−1(ri(j))
and h−1(ri(j + 1))) if ri(j) �= ri(j + 1), or to keeping the state of the system in
h−1(ri(j)) for all times if ri(j) = ri(j + 1), by using the control uri(j)ri(j+1)(x).
Note that there can be several locations mapped to the same physical region h−1(q),
q ∈ Q. These can correspond to different runs of Tg passing through q or to locations
of the same run passing through q at different times and with different successors.

The semantics of control strategy from Definition 7 applied to system (3) with initial
states (9) are as follows: starting from x(0) ∈ h−1(qi) and location l = liqiri(2) ∈ L0,
feedback controller u(l, x) is applied to system (3) as long as the state x ∈ Inv(l).
When (and if) x /∈ Inv(l), then the location of Cφ is updated to l′ according to (l, l′) ∈
Rel and the process continues.

Remark 4. From the given semantics of the control strategy, it follows that the control
is well defined on common facets: the one from the polytope that is left is always used.
Also, with controllers uqiqi and uqiqj designed according to Corollaries 2 and 1, the
produced trajectories are consistent with Definition 4 in the sense of Remark 1.

We are now ready to provide a solution to Problem 1:

Theorem 3 . All trajectories of system (3), with feedback control strategy given by Def-
inition 7 and set of initial states as in (9), satisfy the LTL−X formula φ and stay inside
PN for all times.

Proof. The proof follows from the construction of Cφ from Definition 7, the satis-
faction of an LTL−X formula by a continuous trajectory given in Definition 5, and
Corollaries 1 and 2 of Theorems 1 and 2. The details can be found in [28].

Remark 5. It is possible that the solution trajectories visit some states more than once,
and have different velocities at the same state at different times. Therefore, the ob-
tained feedback controllers are in general time-variant. The feedback controllers will
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be piece-wise affine and with a thin set of discontinuities - the common facets of full
dimensional subpolytopes of PN . The generated trajectories will be piecewise smooth
and everywhere continuous.

To implement the control strategy described in Definition 7, we have in general in-
finitely many choices of controllers of the type uqiqi and uqiqj . Indeed, for any poly-
tope, Corollaries 2 and 1 return whole polyhedral sets of allowed controls at vertices.
In order to construct a controller according to (7), (8), we need to choose a control at
each vertex. To this goal, we solve a set of (maximization) linear programs obtained by
attaching a cost to each vertex. If a controller of type uqiqj is desired in h−1(qi), then
the costs corresponding to the vertices of h−1(qi) are the projections of the controls
at the vertices along the unit vector connecting the center of h−1(qi) to the center of
h−1(qj). If a controller of type uqiqi is desired in h−1(qi), then the cost at a vertex is
the projection of the control at the vertex along the unit vector from the vertex to the
center of h−1(qi).

Discussion. Our approach to solving Problem 1 is obviously conservative. If the model
checking algorithm does not find any solution, this does not mean that there does not ex-
ist initial states and feedback controllers producing trajectories satisfying the formula.
There are three sources of conservativeness in our approach. First, we look for whole
sets (full dimensional polytopes) of initial states instead of investigating isolated ones.
Second, we restrict our attention to affine feedback controllers, as opposed to allow-
ing for any type of controllers. Third, Theorem 1 and Corollary 1 provide sufficient
conditions for existence of controllers, as opposed to equivalent conditions.

On the positive side, working with sets of states instead of isolated states provides
robustness with respect to uncertainty in initial conditions and measurement of the cur-
rent state. As proved in [12], Theorem 1 can be replaced with a very similar result
providing equivalent conditions for the existence of affine controllers if full dimen-
sional simplices are considered instead of full dimensional polytopes. Therefore, if PN

was triangulized instead of partitioned into arbitrary polytopes, the third source of con-
servativeness would be eliminated. Another advantage of using simplices instead of
polytopes would be the fact that we could produce smooth trajectories everywhere by
matching the choice of controls at vertices on adjacent simplices [24]. We chose poly-
topes as opposed to simplices for two reasons. First, as far as we know, there does not
exist algorithms for triangulation in dimension larger than 2 that preserve linear con-
straints (we need to produce proposition preserving partitions when we construct Tg).
Second, triangulations can produce an explosion in the number of states of Tg. Due to
space constraints, we do not give here an analysis of complexity. However, an example
is included at the end of Section 6 for illustration.

6 Implementation and Simulation Results

We implemented our approach as a user friendly software package for LTL−X control
of linear systems LTLCon under Matlab. The tool, which is freely downloadable from
[14], takes as input the polytope PN , the matrices A, B, and b of system (3)), and the
LTL−X formula φ. If it finds a solution, it plots the produced trajectories corresponding
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to user defined initial states. Even though transparent to the user, LTLCon also uses two
free packages. The first one is a mex-file calling CDD in Matlab [31] and it is used to
convert a polytope expressed in form (1) to form (2) and vice-versa. The second one is
LTL2BA [13], which is used to convert an LTL formula to a Büchi automaton.

To illustrate the use of LTLCon, we first consider a 2D case (N = 2), chosen for
simplicity of graphical representation. We considered the following numerical values
for system (3):

ẋ =
[
0.2 − 0.3
0.5 − 0.5

]

x +
[

1 0
0 1

]

u +
[
0.5
0.5

]

, x ∈ P2, u ∈ U (10)

Polytope P2 is specified in form (2), as the intersection of 8 closed half spaces, defined
by: a1 = [−1 0]T , b1 = −5, a2 = [1 0]T , b2 = −7, a3 = [0 − 1]T , b3 = −3,
a4 = [0 1]T , b4 = −6, a5 = [−3 − 5]T , b5 = −15, a6 = [1 − 1]T , b6 = −7,
a7 = [−1 2.5]T , b7 = −15, a8 = [−2 2.5]T , b8 = −17.5. Control constraints are
captured by the set U = [−2, 2] × [−2, 2].

We define a set Π containing 10 predicates, as in equations (4,5), where: c1 =
[0 1]T , d1 = 0, c2 = [1 − 1]T , d2 = 0, c3 = [4 1]T , d3 = 12, c4 = [4 − 7]T ,
d4 = 34, c5 = [−2 − 1]T , d5 = 4, c6 = [−1 − 12]T , d6 = 31, c7 = [−1 − 1]T ,
d7 = 11, c8 = [1 0]T , d8 = −3, c9 = [0 − 1]T , d9 = −1.5, c10 = [−6 − 4.5]T ,
d10 = −12.

Fig. 1. The arrows represent the drift vector field of system (10). The yellow boxes mark the
half-spaces corresponding to atomic propositions πi, i = 1, . . . , 10. The regions to be visited are
green, while the obstacles are gray.
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There are 33 feasible full-dimensional subpolytopes in P2, and therefore 33 states in
Tg. Figure 1 depicts the bounding polytope P2, the vector field given by the drift of sys-
tem (10), the predicates πi, i = 1, . . . , 10, and the feasible subpolytopes corresponding
to states qi, i = 1, . . . , 33 of Tg. The red lines connecting the centroids of the polytopes
in Figure 1 represent the transitions of Tg, with the following convention: for all i �= j:
a full line means that (qi, qj), (qj , qi) ∈→g; a dashed line means that (qi, qj) ∈→g for
i < j; a dotted line means that (qi, qj) ∈→g for i > j. A self-transition (qi, qi) ∈→ is
represented by a red star in the center of h−1(qi).

We have chosen an LTL−X formula inspired from robot motion planning, which in-
volves visiting a sequence of three regions infinitely often, while always avoiding three
obstacles. The regions to be visited are, in order: r1 = h−1(q1), r2 =

⋃
i∈{20,21,29}

h−1(qi), and r3 = h−1(q32). The obstacles are represented by the polyhedral regions
o1 =

⋃
i∈{13,14,16,17,18} h−1(qi), o2 =

⋃
i∈{19,28} h−1(qi) and o3 = h−1(q10). All

regions to be visited and obstacles are represented in Figure 1. The LTL−X formula
can be written as φ = �(�(r1 ∧ �(r2 ∧ �r3)) ∧ ¬(o1 ∨ o2 ∨ o3)). By expressing in-
teresting regions ri and oi, i = 1, 2, 3 in terms of predicates πj , j = 1, . . . , 10 we
obtain φ = �(�((π3 ∧ π10) ∧ � ((¬π4 ∧ π5 ∧ π6 ∧ π8) ∧ � (¬π1 ∧ ¬π6 ∧ ¬π8)))
∧¬(π4 ∨ π7 ∨ (π1 ∧ ¬π2 ∧ ¬π5 ∧ π9))).

The set of initial states from which there exist continuous trajectories satisfying the
formula is the union of the yellow polytopes in Figure 2 (a). The set of initial states
of Tg from which there exist runs satisfying the formula are the corresponding la-
bels. The run r15 of Tg starting from q15 and satisfying φ is presented in Figure 2
(b). The prefix of run r15 of Tg is q15q2 (shown as green polytopes), while the suffix
is q1q3q26q23q20q23q31q32q30q22q20q23q26q3 (red polytopes). A continuous trajectory
starting from x0 = [−2.66 − 1.33]T (blue diamond) is also shown in Figure 2 (b). It
is colored in blue for prefix part and in red for suffix part.

The above case study was run on a Pentium 4 (2.66 GHz) machine with 1 GB RAM,
Windows XP, and Matlab 7. The transition system Tg with 33 states was created in

(a) (b)

Fig. 2. (a) The union of the yellow polytopes represents the set of initial states from which there
exist continuous trajectories satisfying formula φ. (b) An example of such a trajectory.
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about 0.9 seconds. The Büchi automaton had 9 states and was created in 2.2 seconds.
The desired runs of Tg were obtained in about 11 seconds. We also ran a four dimen-
sional example (N = 4), with P4 defined by 9 hyperplanes and Π containing n = 15
predicates. There were M = 295 states in Tg - its construction took 68 seconds. A
tesselation using the intersection points between hyperplanes defining the predicates
would yield 17509 tetrahedra. As explained before, these simplices are not suitable for
our problem, but even if they were, a transition system with so many states would be
inefficient from a computational point of view.

7 Conclusion

In this paper, we described a fully automated framework for control of linear systems
from specifications given in terms of LTL−X formulas over linear predicates in its state
variables. We expect that the method will find applications in several areas of engineer-
ing, where linear systems are used for modelling and temporal logic for specifying
performance. Future directions of research include the extension of these techniques to
piece-wise affine systems and hybrid systems with more complicated dynamics.
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