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Abstract

In this paper we propose modeling and analysis techniques for genetic
networks that provide biologists with an insight into the dynamics of the
system. These techniques are scalable to high dimensions and can in-
corporate uncertainty (partial knowledge of kinetic parameters and state
uncertainty). We are not only interested in developing mathematical mod-
els and simulating them, but in proving biologically significant properties.
Central to our modeling approach is the framework of hybrid systems and
our analysis tools derived from formal analysis of such systems. Given a
set of states characterizing a property of interest P , we present the Multi-
Affine Rectangular Partition (MARP) algorithm for the construction of
a set of infeasible states I that will never reach P and the Rapidly Ex-
ploring Random Forest of Trees (RRFT) algorithm for the construction
of a set of feasible states F that will reach P . We apply these meth-
ods to understand the genetic interactions involved in the phenomenon of
luminescence production in the marine bacterium V. fischeri.

1 Introduction

The recent completion of a draft of the human genome and the sequencing of
several other organisms provides a vast amount of genomic data for advanc-
ing our understanding of fundamental biological processes. However, in order
to understand different cellular behaviors such as differentiation, response to
environmental signals, and cell-to-cell communication, we need to study the
regulatory systems determining expressions of genes. This is usually a complex
process, which can be regulated at several stages such as transcription (the best
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studied form of regulation), translation, and post translational modification of
proteins. An example of transcriptional regulation is repression: a regulatory
molecule binds to a regulatory site of some gene preventing the RNA poly-
merase from transcribing the gene. The number of regulating factors is usually
large, and it involves proteins (products of other genes and possibly of the gene
itself), RNA, and other molecules. A collection of interacting genes, their prod-
ucts, and some other molecules involved in the regulation of the genes form a
genetic regulatory network.

The traditional approach to modeling of genetic networks leads to highly
nonlinear systems of differential equations for which analytical solutions are not
normally possible. The only alternative for analysis is numerical simulation.
One way to work around the difficulties of the nonlinearities is to use simplified,
approximate models. Existing work focuses on very low-dimensional genetic net-
works. Decoupled piecewise linear differential equations (PLDE) are considered
in [22, 40], where gene regulation is modeled as a discontinuous step function
and chemical reactions are ignored. This (over)simplified approach to modeling
allows for interesting qualitative analysis [15]. An even more radical idealization
is obtained if the state of a gene is abstracted to a Boolean variable and the
interaction among elements to Boolean functions, as in Boolean networks [28].
Other types of simplified approaches combining logical and continuous aspects
include generalized logical formalisms [50] and qualitative differential equations
[34]. The highest level of abstraction is achieved in the knowledge-based, or
rule-based formalism [10].

While amenable for interesting analysis, the methods mentioned above are
based on assumptions which disregard important biochemical phenomena. Most
of them only capture protein dynamics but cannot accommodate chemical reac-
tions [28]. When the regulatory systems are not spatially homogeneous, partial
differential equations and other spatially distributed models such as reaction-
diffusion equations [29] and the gene circuit method [43] can be used. The
modeling approach based on differential equations implicitly assumes that the
concentrations of the species in the network vary continuously and determinis-
tically. The continuity assumption is compromised in cases when the number
of molecules of a certain specie is small or due to fluctuations in the timing of
cellular events. The use of discrete stochastic models is proposed in [21, 39, 13].
However, these methods are computationally expensive and cannot handle high-
dimensional systems.

Our modelling approach is deterministic and based on hybrid systems [38],
i.e., systems in which discrete events are combined with continuous differential
equations to capture the switching behavior that is observed in phenomena such
as transcription, protein-protein interactions, and cell division and growth. We
also propose the use of hybrid system as the natural framework giving a global
description of a biological system described locally around operating points by
simpler dynamics, which are easier to approach for analysis. Our own work
using hybrid systems to model, simulate and perform preliminary analysis on
low-dimensional genetic networks is given [3, 7, 8, 4, 2].

We are interested in developing general modeling, simulation, and analysis
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Figure 1: The three sets of interest: the property set P , the infeasible set I
from which no trajectory can enter P , and the feasible set F from which there
exists at least one trajectory which can enter P .

techniques for metabolic and genetic networks to deal with partial knowledge of
kinetic information, and possibly innacurate experimental data. Our ultimate
goal is to create tools enabling us to answer biologically significant questions of
the type: “if an organism is initially in a state partially or completely described
by certain ranges of metabolite and enzyme concentrations, kinetic parameters,
and levels of activation of genes, describe the set of states that the organism
can reach while time evolves”. Or, “describe the states with the property that
if the system starts in any of them it will never reach an undesired state as time
flows”. The undesired state could correspond, for example, to a certain disease.

We denote the set associated with properties of interest as P . To answer the
questions formulated above, we are interested in determining two disjoint types
of sets of initial conditions that can be associated with the set P . See Figure
1. First, we will be interested in characterizing feasible sets F , consisting of
initial conditions that make it possible for the system to enter the set P under
parameters uncertainties and noise in the model. We are also interested in the
infeasible sets I, from which it is impossible to enter the set P . Knowledge
of F may assist in experiment design; while a knowledge of the set I, is par-
ticularly useful for model validation. If experimental data indicate the system
enters P and if experimental conditions were known to lie in set I, one could
prove the model to be inconsistent with the experimental data. In many ways
the approaches to generating the two sets, and the information they encode,
are complementary – neither approach alone is complete. Together however,
knowledge of the sets F and I can enable us to make some powerful assertions
about the system’s behavior.

The connection between biomolecular networks and robotic systems exists
on two levels. From a modelling point of view robotic systems share many of the
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salient features of biological system models described above. Just as the rate
equations for biomolecular are known to qualitatively switch based on the pres-
ence or absence of various inhibitor genes, robotic systems often employ different
controllers and estimators in different regimes [14] and their dynamics switch
based on the contact mechanics of rolling and sliding. Therefore, both types
systems can be modelled as hybrid systems. Indeed there are several papers
that use hybrid models for molecular and cellular networks [3, 7, 8, 4, 2, 22, 15].
In addition, many robotic systems consist of multi-agent teams, and therefore
the interactions and messaging among the team members must be taken into
account and many of the system properties are distributed spatially. Multi-cell
networks behave in much the same way. Finally the significant modeling uncer-
tainty, which is central to our discussion and analysis of biological systems, is a
common theme in mobile robotics operating in unstructured environments.

Perhaps a deeper connection between the two fields exists at the level of the
types of problems we seek to solve. The problem of finding sets of states F ,
from which the system may reach P , is similar to the motion planning problem in
robotics where the goal is, given a robot with dynamics and constraints (obsta-
cles), to find a path or trajectory (if one exists) from the starting configuration
to the goal configuration. Determining an infeasible set I, from which it is im-
possible to reach the property set P is closely related to trajectory generation,
controllability and steering. As one can imagine, the literature on simulation
and verification of hybrid systems is also particularly relevant to our discus-
sion [46, 25, 35, 49, 5, 1, 11, 42, 41, 12].

In this paper we develop methodologies for finding the sets shown in Figure
1. To construct infeasible sets I, we propose the Multi-Affine Rectangular
Partitioning (MARP) algorithm, which exploits the specific properties of hybrid
models of genetic networks: they have rectangular invariants because different
behaviors are specified as functions of ranges of concentrations of regulatory
species and the vector fields have product type non-linearities due to chemical
reactions. For these types of systems, which we denote as rectangular multi-
affine hybrid systems, given a set P , we develop a computationally efficient
method to construct an infeasible set I based on evaluating the vector field
at the vertices of the rectangular invariants. Given a specific initial condition,
the popular Rapidly Exploring Random Tree (RRT) algorithm from the motion
planning literature provides a natural way for one to determine if a set should be
included in F , by searching for a trajectory which reaches P , over all possible
noise functions (i.e., inputs). However, it does not provide a natural way to
address time invariant uncertainty such as unknown initial conditions or rate
constants. We introduce an algorithm called the Rapidly Exploring Random
Forest of Trees (RRFT) which samples the set of possible initial conditions using
a Monte Carlo type approach and “plants” a RRT at each sample point. Each
RRT can be grown on a different processor. We then introduce various measures
of growth and coverage for RRT’s which can be used to allocate computational
resources effectively among the set of trees. If the growth of a given RRT has
slowed below a certain threshold, it can be terminated and another RRT is
planted dynamically. The process continues until a trajectory which reaches P
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is discovered or until the sample set is sufficiently dense that one can conclude
the existence of such a trajectory is unlikely. The RRFT algorithm allows one to
address the reachability problem probabilistically for complex high-dimensional
systems having both time-varying and time-invariant uncertainty.

The rest of the paper is organized as follows. In Section 2, we introduce the
hybrid system modelling paradigm and provide the basic definitions that will be
used throughout the paper. In Section 3, we exploit the particular structure of
the hybrid models of genetic networks to derive a computationally attractive al-
gorithm (Multi-Affine Rectangular Partitioning - MARP) to compute infeasible
sets I. We then describe a randomized algorithm (Rapidly Exploring Random
Forest of Trees - RRFT) that is used to intelligently explore a large state space
to identify points in the feasible sets F in Section 4. The usefulness of the two
algorithms is illustrated in Section 5, where we study the phenomenon of bio-
luminescence production in the marine bacterium V. fischeri by analyzing the
corresponding genetic network. The paper concludes with final remarks and
directions of future research in Section 6.

2 Hybrid system modelling of genetic networks

Hybrid systems are dynamical systems with both discrete and continuous state
changes [38]. We are interested in a special class of hybrid system, called
Switched systems, which are defined as having different dynamics in different
nonoverlapping regions of the state space. In our view, hybrid and switched
systems are appropriate and attractive for modeling the dynamics of biomolec-
ular networks for two main reasons:

Hybrid systems are global descriptions from simpler local models
Computationally attractive formalisms for modelling biomolecular networks such
as linearizations, half-systems [48], synergistic (S) systems [47], generalized mass
- action (GMA) [45]), and power law [24] are only valid locally around operating
points. For example, the S-systems can be thought of linearizations of “real”
systems in logarithmic coordinates [47]. Then, in this case, a global description
of the network is a collection of regions with different posynomial vector fields in
each region, therefore a hybrid system. The specific nonlinearites of dynamics
in each region are simpler than the dynamics of a global continuous description,
and easier to approach for analysis.

Hybrid systems capture discrete events Discrete dynamics are necessary
to capture switching behavior that is observed in phenomena such as transcrip-
tion, protein-protein interactions, and cell division and growth. Consider, for
example, the case when a metabolite from the network regulates the production
of a metabolic enzyme expressed from a gene with a strong promoter. Then,
the gene can be “on” and “off”, which induces two different dynamics of the
network, as a function of the concentration of the metabolite.
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Formally, hybrid systems are defined as tuples

HS = (Q, X,X0, I, T, F ) (1)

where Q is a finite set of discrete variables, X is the set of continuous variables
x, X is the set of all evaluations of x over the corresponding domains, Q is the
countable set of discrete states, called modes, or locations, X0 ⊂ Q×X is a set of
initial states, I is a map which assigns to each discrete location in Q an invariant
set, T ⊂ Q×X×Q is a set of discrete transitions, and F : Q→ (X→ TX) is
a mapping that specifies the continuous (possibly time dependent) flow in each
discrete state.

We focus on vector fields f which are products of the state components
to capture the nonlinearities which are specific to dynamics of chemical reac-
tions. To take into account possible modelling noise and to accommodate non-
deterministic modelling approaches, we also allow for an additive noise term ν(t)
in the vector field. Therefore, as suggested by [31], the vector field associated
with the map F takes the form F = f(x) + ν(t). The form of f is made precise
in the next subsection, while ν is discussed in Section 4.

We are also interested in constant parameters that might be unknown. Ex-
amples of these parameters are binding constants and other constants determin-
ing reaction rate kinetics. While these constants are known to lie within known
bounds, their exact values are often unknown. It is useful to note that these
unknown constants can be viewed as state variables with trivial dynamics, e.g.,
x = c, ẋ = 0, while the corresponding projection of X0 characterizes the known
bounds. Thus, our definition of HS in (1) allows for unknown parameters that
lie in some specified set.

Finally, since molecular networks are qualitatively described in terms of
ranges of concentrations of the involved species, a rectangular partition of the
state space is naturally induced and the invariants are rectangular.

2.1 Rectangular multi-affine hybrid systems

Rectangular multi-affine hybrid systems are characterized by rectangular invari-
ants and multi-affine continuous dynamics.

Definition 2.1 (Multi-affine function) A multi-affine function f : R
N −→

R
N is a polynomial in the indeterminates x1, . . . , xN with the property that the

degree of f in any of the indeterminates x1, . . . , xN is less than or equal to 1.
Stated differently, f has the form

f(x1, . . . , xN ) =
∑

i1,...,iN∈{0,1}

ci1,...,iN
xi1

1 · · ·x
iN

N , (2)

with ci1,...,iN
∈ R

N for all i1, . . . , iN ∈ {0, 1} and using the convention that if
ik = 0, then xik

k = 1.
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An N -dimensional rectangle in R
N is characterized by two vectors a =

(a1, . . . , aN) ∈ R
N and b = (b1, . . . , bN) ∈ R

N , with the property that ai < bi

for i = 1, . . . , N :

RN (a, b) = {x = (x1, . . . , xN ) ∈ R
N | i = 1, . . . , N : ai ≤ xi ≤ bi}. (3)

xi, i = 1, . . . , N are species concentrations and are restricted to the positive
quadrant. Also, there are practical upper bounds on the concentration of each
specie. Therefore, the set X as in (1) is usually specified as an N -rectangle. A
rectangular partition of X is defined as follows. Each axis Oxi, i = 1, . . . , N is
divided into ni ≥ 1 intervals by the thresholds 0 = θ0

i < θ1
i < . . . < θni

i . The

jth interval on the Oxiaxis, i = 1, . . . , N is therefore defined as θj−1
i ≤ xi < θj

i ,
j = 1, . . . , ni. By convention, θ0

i = 0 and θni

i is an upper bound giving a physical
limit of xi. The thresholds θ are defined as values of species concentrations for
each the dynamics of the overall system changes. For example, they can be
concentrations of regulatory species for which specific genes are turned ’on’ and
’off’. The division of the axes determines a partition of the state space into
∏N

i=1 ni rectangles. If we let

a(q1...qN ) = (θq1−1
1 , . . . , θqN−1

N ) ∈ R
N , b(q1...qN ) = (θq1

1 , . . . , θqN

N ) ∈ R
N , (4)

for qi = 1, . . . , ni, i = 1, . . . , N , then an arbitrary rectangle in the partition is
given by

RN (a(q1...qN ), b(q1...qN )) = {(x1, . . . , xN ) ∈ R
N |θqi−1

i ≤ xi ≤ θqi

i , i = 1, . . . , N}
(5)

Due to the different levels of gene transcription activation and enzymatic
action, in each of the rectangles the system evolves along specific multi-affine
vector fields (2):

f (q1...qN )(x1, . . . , xN ) =
∑

i1,...,iN∈{0,1}

c
(q1...qN )
i1,...,iN

xi1
1 · · ·x

iN

N , (6)

where x ∈ RN (a(q1...qN ), b(q1...qN )) and c
(q1...qN )
i1,...,iN

∈ R
N for all i1, . . . , iN ∈ {0, 1}

captures specific reaction rates.
Therefore, our models of biomolecular networks are hybrid systems (1) with

the set of labels for the discrete states Q = (q1 . . . qN ), the set of all
∏N

i=1 ni

modes Q = {(q1 . . . qN )|, qi = 1, . . . , ni, i = 1, . . . , N}, X is the set of species
symbols x1, . . . , xN , the invariant I(q1 . . . qN ) is the corresponding rectangle
(5), and the map F has a deterministic part described by (6). A transition
((q1 . . . qN ), x, (q′1 . . . q′N )) corresponds to the crossing of the boundary between
rectangles I(q1 . . . qN ) and I(q′1 . . . q′N ) at state x.

Remark 2.2 Due to the particular shape of the invariants, a convenient way
of representing a rectangular multi-affine hybrid system (6), (5) is as a simple

graph with
∏N

i=1 ni nodes. Node (q1 . . . qN ) corresponds to rectangle I(q1 . . . qN ) =
RN (a(q1...qN ), b(q1...qN )) and has associated dynamics (6). An edge in the graph
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connects nodes corresponding to adjacent rectangles, i.e., there is an edge be-
tween any pair of nodes that differ by a Hamming distance of 1. See Figure 7
for an example with N = 3, n1 = n2 = n3 = 3.

2.2 Set definitions

As stated before, we are interested in characterizing the properties of the system
HS related to whether it can reach a given set of interest P described by a
rectangle I(p1 . . . pN ), (p1 . . . pN) ∈ Q.

Definition 2.3 (Infeasible set) An infeasible set I is a collection of rectan-
gles I(q1 . . . qN ), (q1 . . . qN ) ∈ Q with the property that the system can never
reach I(p1 . . . pN) if it starts in any of the initial states contained in any of
rectangles in I.

Definition 2.4 (Feasible set) A feasible set F is a collection of rectangles
I(q1 . . . qN ), (q1 . . . qN ) ∈ Q with the property that they contain initial states
that will reach I(p1 . . . pN ) in a pre-specified finite time interval.

3 Computing an infeasible set I

This section introduces the Multi-Affine System Partitioning (MARP) algo-
rithm which uses the properties of hybrid multiaffine rectangular systems to
construct infeasible sets I, and extends some results presented in [7]. In the
form presented in this paper, the algorithm can only be applied to deterministic
vector fields where F = f . However, as explained in Section 1, it can easily
accommodate rectangular parametric uncertainties: set-valued uncertainty in a
constant parameter can be included in the set of initial conditions, X0.

3.1 Preliminaries

The MARP algorithm is based on the fact that the value of a multi-affine
function (6) is uniquely determined everywhere in the rectangular invariant
I(q1 . . . qN ) by its values at the vertices. Moreover, it is a convex combination
of these values.

Formally, for an arbitrary rectangle (3), let

VN (a, b) =

N
∏

i=1

{ai, bi} (7)

denote the set of its 2N vertices. Let ξ : {a1, . . . , aN , b1, . . . , bN} −→ {0, 1} be
defined by

ξ(ak) = 0, ξ(bk) = 1, k = 1, . . . , N (8)
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Proposition 3.1 A multi-affine function f : RN (a, b) −→ R
N is a convex

combination of its values f(v1, . . . , vN ) at the vertices VN (a, b). Explicitly,

f(x1, . . . , xN ) =
∑

(v1,...,vN )∈VN (a,b)

N
∏

k=1

(

xk−ak

bk−ak

)ξ(vk) (

bk−xk

bk−ak

)1−ξ(vk)

f(v1, . . . , vN ),

(9)

with

1 =
∑

(v1,...,vN )∈VN (a,b)

N
∏

k=1

(

xk − ak

bk − ak

)ξ(vk) (

bk − xk

bk − ak

)1−ξ(vk)

(10)

where (v1, . . . , vN ) ∈ VN (a, b).

The proof of this proposition can be found in [7]. Since the projection
of a multi-affine vector field along a given direction is a multi-affine function,
an immediate consequence of Proposition 3.1 can be used to develop a com-
putationally efficient algorithm for constructing infeasible sets for rectangular
multi-affine hybrid systems:

Corollary 3.2 The projection of a multi-affine vector field defined on a rect-
angle along a given direction is positive (negative) everywhere in the rectangle
if and only if its projection along that direction is positive (negative) at the
vertices.

3.2 MARP algorithm

We assume that the piecewise defined vector field (6) (possibly non-differentiable),
is continuous everywhere, i.e., the vector fields in adjacent rectangles coincide
on the common facet. A simple consequence of Corollary 3.2 can be used to
qualitatively analyze the system.

Corollary 3.2 is applied to the facets of the N - rectangles (5) and to the pro-
jections of the vector fields along the corresponding outer normals. Each facet
is a N − 1-rectangle. An infeasible set I can be built by defining an orientation
for the simple graph of the network defined in Remark 2.2. We allow for both
unidirectional and bidirectional edges in the oriented graph. The semantics of
the orientation are defined as follows. Let (q1 . . . qN ) and (q′1 . . . q′N ) be two
adjacent nodes in the graph and I(q1 . . . qN ) and I(q′1 . . . q′N ) the corresponding
adjacent rectangles. A unidirectional edge from (q1 . . . qN ) to (q′1 . . . q′N ) means
that there exists at least one trajectory originating in I(q1 . . . qN ) that enters
into I(q′1 . . . q′N ) through the separating facet, and there is no trajectory start-
ing in I(q′1 . . . q′N ) going to I(q1 . . . qN ) through that facet. A bidirectional edge
insures the existence of at least one trajectory originating in I(q1 . . . qN ) eneter-
ing in I(q′1 . . . q′N ) and at least one trajectory originating in I(q′1 . . . q′N ) entering
into I(q1 . . . qN ).

Note that, in the oversimplified description above, Algorithm 1 seems in-
efficient. Indeed, if we apply it to all the rectangles in the partition, most of
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Algorithm 1 Define an oriented graph

for each node (q1 . . . qN ), qi = 1, . . . , ni, i = 1, . . . , N do
for each incident edge do

for each vertex of the corresponding facet do
calculate the projection of f (q1...qN ) along the outer normal of the facet

end for
if the projections are positive at all vertices then

the edge is unidirectional oriented out of (q1 . . . qN )
end if
if the projections are negative at all vertices then

the edge is unidirectional oriented towards (q1 . . . qN )
end if
if there is a sign change among the projections at the vertices then

the edge is bidirectional
end if

end for
end for

the vertices are visited more than ones, and this is not necessary because the
vector fields in adjacent rectangles match on the separating facet. A more effi-
cient description would require more complicated notation and a more detailed
discussion which we omit because it is peripheral to the main ideas in the paper.

Using the oriented graph, we can now construct an infeasible set I. Let
P = I(p1 . . . pN ) denote the target rectangle, or, equivalently, (p1 . . . pN ) is
the target node in the graph. The following algorithm constructs a set R of
nodes with the property that if the system starts in any of the corresponding
rectangles, then it may be possible to reach P . The complement of this set is
an infeasible set I.

Algorithm 2 Construct an infeasible set I

initialize R with P
repeat

for each element (q1 . . . qN ) of R do
for all incident nodes (q′1 . . . q′N ) connected with an edge (uni or bi-
directional) oriented towards (q1 . . . qN ) do

if (q′1 . . . q′N ) is not already in R then
add (q′1 . . . q′N ) to R

end if
end for

end for
until cardinality of R increases
I := complement of R with respect to the set Q of all nodes
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Remark 3.3 Algorithm 2 for the construction of the infeasible set I might be
too conservative, i.e., the set I might be unnecessarily small. Indeed, our method
guarantees the existence of a trajectory from a rectangle I(q1 . . . qN ) to an adja-
cent rectangles I(q′1 . . . q′N ) if the (unidirectional or bidirectional) edge between
the corresponding nodes in the oriented graph has an arrow from (q1 . . . qN ) to
(q′1 . . . q′N ). But if there is an edge from (q1 . . . qN ) to (q′1 . . . q′N ) and also an edge
from (q′1 . . . q′N ) to (q′′1 . . . q′′N ), we cannot guarantee that there is a trajectory of
the system from I(q1 . . . qN ) to I(q′′1 . . . q′′N ). In our analysis, we simply say that
there might be a trajectory from I(q1 . . . qN ) to I(q′′1 . . . q′′N ).

Remark 3.4 The above algorithm can be easily extended to construct infeasible
sets I under rectangular parameter uncertainties. This is possible because the
parameters c capturing kinetic constants enter the vector fields (6) in the same
way as the variables x, so the system (1) defined on an extended space formed by
species concentrations and parameters is still characterized by multi-affine vector
fields. The components of the vector fields corresponding to parameters will be
zero, meaning that the kinetic constants are assumed constant but unknown
within given ranges.

Remark 3.5 Algorithm 1 requires the vector field f to be evaluated at each
vertex. If there are Nr rectangular sets in the partition, the number of evalu-
ations is Nr × 2N . If each coordinate is divided into K intervals, Nr = KN .
Thus, the number of computations scales as (2K)N . While the complexity of
this algorithm is exponential in the number of dimension, the alternative which
is exhaustive simulation, is impractical.

4 Determining the feasible set F

In this section we briefly describe the Rapidly Exploring Random Forest of
Trees (RRFT) algorithm, a randomized algorithm that can be used to delineate
a feasible set F — a collection of rectangles I(q1, . . . , qN ), (q1, . . . , qN ) ∈ Q
which contain initial conditions that can reach P . Our algorithm leverages the
work in randomized motion planning pioneered by the robotics community. We
briefly review this work before introducing our algorithm.

4.1 Motion planning

Probabilistic Road Maps (PRMs) can be used to solve the motion problem [44,
30], which involves finding a path from a starting point to a goal point in config-
uration space. The problem is usually cast in a geometric setting with no kine-
matics or dynamics. In contrast, Rapidly exploring Random Trees (RRTs) [36]
generate random states for dynamic systems directly by working in the space
of admissible input functions u(t) ∈ U . The algorithm (see Figures 2 and 3)
constructs a tree Tx0 rooted at initial state x0, whose vertices are states x ∈ X
and whose edges are inputs u(t) ∈ U which cause the system to evolve from
one vertex to a connected vertex. The algorithm constructs the tree beginning
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xinit , qinit

xrand , qrand

xinit , qinit

xrand , qrand

xnear , qnear

Figure 2: Growth of individual trees in the RRT algorithm [36]). Each tree
consists of vertices which are states x, and edges which are input functions
u(t) ∈ U . First a new state is generated at random, xrand (left). The algorithm
then determines the closest state, xnear in the tree to the random state (right).

xinit , qinit

xrand , qrand

xinit , qinit

xrand , qrand

xnew , qnew

Figure 3: Growth of individual trees in the RRT algorithm (continued from
Fig. 2). After finding the closest node, the algorithm determines which u(t) ∈ U
brings xnear closest to xrand (left). unew(t) is applied for a pre-determined
duration ∆t and the new state xnew and unew are added to the tree (right).

with a user supplied initial state, which we refer to as the seed value. A sample
state is generated at random, xrand ∈ X . It is then determined which of the
existing states, in the tree are closest to this new state, xnear ∈ Tx0 ; and which
unew(t) ∈ U , when applied for pre-determined time interval ∆t, would bring the
system as close as possible to xrand. The resulting new state xnew is added as a
vertex to Tx0 with unew(t) the input characterizing the edge from xnear to xnew .
This procedure has the effect of growing a tree whose distribution of vertices
approaches that of the random distribution which was used to create xrand,
causing it to cover the state space rather rapidly. A survey of the algorithm’s
properties appears in [37].

Of course the application of such algorithms require the ability to simulate
system’s dynamics. For hybrid systems this requires a special set of algorithms,
such as [51] or [19] to properly address the nonsmooth nature; and integration
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algorithms capable of handling system evolving at disparate time scales such as
[16, 17].

4.2 The RRFT algorithm

Unlike motion planning in which the end goal is to physically steer the system,
our intention is merely to determine if it is possible for the system to reach P
from some x0 ∈ I(q1, . . . , qN ) ⊂ X0 within a finite time span t ∈ [t0, tf ]. If so,
the set I(q1, . . . qN ) is added to F . All possible I(q1, . . . qN ) in X0 are tested. In
this way our usage of the RRT method for analysis rather than synthesis [27, 33,
20] is closely related to our work on test generation for hybrid systems [32, 18].
While the RRT algorithm is in many ways suited to applications such as ours
where the system dynamics are complex and high-dimensional, the RRT only
addresses time varying inputs such as u(t). Recall that the evolution of our
hybrid system is characterized by two elements.

• The initial condition x0 ∈ X0 for the evolution of the state.

• The exogenous modelling noise ν(t) ∈ N that “steers” the system.

In our algorithm, the repeated application of the RRT algorithm results in a
tree for every choice of initial condition x0. Accordingly, we need to consider a
set of trees that rapidly explore the state space.

One key component of this approach is that each RRT can be computed
in parallel on a different CPU’s, therefore we assume a fixed computational
resource that will dictate the number of trees that can be simultaneously com-
puted in parallel. Let this number be nt. We propose the Rapidly exploring
Random Forest of Trees (RRFT) algorithm as follows. For each set I(q1, . . . , qN )
in X0, a set of seed values S = {s1, . . . snt} is generated from a quasi-random
sequence, where each si ∈ I(q1, . . . , qN ). RRT’s, Ts1 , . . . Tsnt are planted for
each of these “seed” values. As the RRT algorithm progresses, we monitor the
progress of each tree. If at any point the growth of one of the trees (as measured
by a function g(Tsi)) drops below a threshold ḡ; or, the coverage of the state
space (as measured by some function c(Tsi )) exceeds a threshold c̄, the tree is
terminated. Provided the set I(q1, . . . , qN ) is not adequately covered with seeds
(again as measured by some function µ(S)) a new “seed” is planted and a new
tree is initiated. The process of planting and growing new trees continues until
a trajectory linking I(q1, . . . qN ) and P is discovered (in which case I(q1, . . . qN )
is added to F), or until I(q1, . . . qN ) is sufficiently covered (µ(S) ≤ µ̄) with seed
values, whose trees have stopped growing. A new set I(q′1, . . . , q

′
N ) is selected

and the process is repeated until all of X0 has been tested.
We defer the discussion of how to compute the functions g(Tsi), c(Tsi), and

µ(S) until Section 4.3. Note that in the description of the algorithm below, we

will use the notation x0+
∫ ∆t

HS(ν(t))dt to denote the simulation of the hybrid
system HS, characterizing the biomolecular network, over a interval time ∆t,
using the disturbance function ν(t), and initial condition x0.
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Algorithm 3 Construct a feasible set F

for each I(q1, . . . , qN ) in X0 do
Generate initial seed set S = {s1, . . . , snt} where si ∈ I(q1, . . . , qN )
for i = 1, . . . nt do

Initialize RRT’s Tsi

end for
while (true) do

for i = 1, . . . nt do
Extend(Tsi)
if Tsi ∩ P 6 = 6 0 then

add I(q1, . . . , qN ) to F
break

else
if g(Tsi) ≤ ḡ, OR, c(Tsi) ≤ c̄ then

terminate Tsi

nt ← nt − 1
if µ(S) > µ̄ then

generate new seed point snew and append to S
initialize Tsnew

nt ← nt + 1
end if

end if
end if

end for
if nt = 0 then

break
end if

end while
end for

Algorithm 4 Extend(T )

xrand ← random()
xnear ← nearestNeighbor(T , xrand)

νnew = arg minν∈N {dist((xrand, xnear +
∫ ∆t

HS(ν(t))dt)}

xnew = xnear +
∫ ∆t

HS(νnew(t))dt
add vertex xnew to T
add edge νnew , from xnear to xnew , to T
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4.3 Adequacy Criteria

Theoretical results on RRT’s from the motion planning literature [37] suggest
that as the number of nodes in the tree goes to infinity, the tree should cover
the entire reachable set, although it is impossible to determine the reachable set
in advance. However, because the input function space must be discretized and
because the algorithm is inherently greedy, it is possible for the tree to create
new nodes that are very close to the existing nodes. Therefore, there are two
plausible reasons to stop growing a tree Tsi : (1) the state space is sufficiently
covered that one can be confident no trajectory exists linking I(q1, . . . , qN ) and
P ; or (2) the tree is no longer actively growing.

In order to determine how to allocate our computational resources effectively
we must monitor the progress of each tree. In particular, we are interested in
three measures: the growth rate of an individual RRT, g(Tsi); the coverage of
the state space by an individual RRT c(Tsi); and coverage of the set of possible
seeds I(q1, . . . , qN ) by S, µ(S). We explored different measures of growth and
coverage including the discrepancy and dispersion [9]; the size of the Vornoi
regions [37]; as well as the volume of the convex hull of the tree nodes as well as
other bounding polygons. However, we found these measures to be either too
expensive to compute in high dimensions or overly conservative. Instead, we
begin by overlaying a grid on the state space. Note that this grid is not used
to construct the tree, merely to assess its coverage and growth. We calculate
the minimum distance from each grid point to the set of nodes in the tree. The
distance may be thought of as the radius of the largest ball centered at each grid
point which does not contain a tree node or another grid point (see Figure 4).
Clearly, the maximum value of the radius is δ, the spacing between adjacent
grid points. It should be stressed that this list of distances can be updated
incrementally as new tree nodes are added, since the affect of each new node is
local. We define the coverage of the tree Tsi , c(Tsi), as the average of all the
distances obtained in this manner, normalized by the grid spacing.

c(Tsi) =
1

δ

ng
∑

j=1

min(dj , δ)

ng

(11)

where ng is the number of grid points, and di is the radius of the largest ball
centered at each grid point. Clearly this measure is a monotonically decreasing
function. If it goes to zero on a given grid it tells us that any set whose distance
along its smallest dimension is greater than the grid spacing has been entered.
Said another way, the state space is covered up to a resolution equal to the grid
spacing. This measure is similar to an approximation of dispersion [9], but less
conservative and faster to compute.

The derivative of c(Ti) indicates the growth of the tree. Therefore

g(Tsi) = dc(Tsi)/dnv,i ≈ ∆c(Tsi )/∆nv,i, (12)

where nv,i is number of vertices in tree rooted at si. Overall one of the advan-
tages of this measure is that the grid size can be as fine or coarse as one chooses.
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Figure 4: A grid is super imposed on the state space. The shaded regions
indicate unreachable sets. The average of the distances from the grid points to
the closest nodes (shown as dashed arrows), should converge to a finite number
as the tree fills the reachable space.

Finer grids will require more distance queries but are more accurate indications
of coverage.

Regarding the coverage of the set of potential seeds I(q1, . . . , qN ) by S, one
appropriate measure, which first appeared in the Monte Carlo literature and
later has been used in the context of RRT’s [9], is dispersion. Dispersion is
considered the radius of the largest empty ball whose center lies in a set which
does not include a sampled point in the set. It is a measure of the largest region
which is not covered. Therefore, we use normalized dispersion as a criteria for
coverage of I(q1, . . . , qN )

µ(S) = sup
x∈I(q1,...,qN )

min
s∈S

d(x, s)/µ(S)max. (13)

The grid based method introduced above can be use to approximate this quan-
tity as well. Fortunately there exists sequences of quasi-random numbers which
have low dispersion. Accordingly, we use Halton sequences [23] to generate the
seed values.

5 Case study: luminescence control in Vibrio

fischeri

In this section, we show how the theory and algorithms developed in this paper
can be applied to study the behavior of a specific genetic regulatory network.
We consider for illustration the phenomenon of bioluminescence production in

16



luxR luxI luxCDABEG

OL OR

LuxR

b

q

lux box

LuxI

pAi

substrate

C

k1, k2

luminescence

n

Figure 5: Schematic representation of the genetic network regulating the lumi-
nescence production in the marine bacterium V. fischeri.

the marine bacterium V. fischeri, which is controlled by the transcriptional acti-
vation of the lux genes [26, 8]. The lux regulon is organized in two transcriptional
units, OL and OR, separated by a regulatory region called the lux box, as shown
in Figure 5. The leftward operon, OL, contains the 1 luxR gene encoding pro-
tein LuxR, a transcriptional regulator of the system. The rightward operon OR

consists of seven genes luxICDABEG. The expression of the luxI gene results in
the production of protein LuxI, which is required for endogenous production of
autoinducer, Ai, a small membrane-permeant signal molecule. The other genes
in OR are involved in the production of luminescence. Finally, the autoinducer
Ai binds to protein LuxR to form a complex C, which has an electronic affinity
to the lux box. The transcription of both luxICDABEG and luxR is activated by
the binding of C to the lux box, which is modeled using a continuous piecewise
linear activation function (see Figure 6).

A 9-dimensional model for this network is presented in [8]. For illustrative
purposes, we consider a simplification that is possible under the assumption that
the dynamics of protein LuxI are fast [26]. With this simplification, the system
becomes three dimensional (N = 3) with state x = [x1 x2 x3]

T , where x1, x2, and
x3 represent the concentrations of protein LuxR, complex C, and autonducer Ai,
respectively. The main reason for chosing this simplified model is because the
reduction in dimensionality allows us to include three-dimensional trajectories
and reachability graphs, which would not be possible in higher dimensional
space. Examples of analysis in higher dimensional space are presented in [26, 6].

Two additive exogeneous inputs ν = [ν1 ν2]
T (m = 2) are present in the

model. In the presence of a plasmid that produces LuxR independently, ν1 is
the rate of transcription of the plasmid, while ν2 models an external source
of autoinducer. More generally, they can represent stochastic uncertainty that

1We use italics (e.g., luxR) to indicate the genes and plain font to denote the protein
expressed by the gene (e.g., LuxR)
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Figure 6: Continous piecewise linear activation function of the lux genes.

111

112

113

121 131

122 132

123 133

211

212

213

221 231

222 232

223 233

311

312

313

321 331

322 332

323 333

Figure 7: The simple graph for the partitioning in Equation (14).
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may be inherent in the model. We will let N be a rectangular set given by
[0, ν1,max]× [0, ν2,max].

Regarding the rectangular partition of the state space, we consider n1 =
n2 = n3 = 3. The thresholds θ2

j , j = 1, 2 represent the values of x2 for which
the dynamics are changed due to different activation rates (see Figure 6), while
j = 0, 3 represent physical lower and upper bounds. The other division points
θi

j , i = 1, 3, j = 0, 1, 2, 3 were chosen so that the state space is divided into
regions of interest, which could be though of “small”, “medium” and “large”
with respect to the corresponding specie concentrations. The numerical values
of these constants are given by by

θ0
1 = 0 θ1

1 = 10 θ2
1 = 50 θ3

1 = 100
θ0
2 = 0 θ1

2 = 1.9 θ2
2 = 23.8 θ3

2 = 100
θ0
3 = 0 θ1

3 = 10 θ2
3 = 50 θ3

3 = 100
ν1,max = 200 ν2,max = 200

(14)

and, by Equation (4),

a(q1q2q3) = (θq1−1
1 , θq2−1

2 , θq3−1
3 ), b(q1q2q3) = (θq1

1 , θq2

2 , θq3

3 ), q1,2,3 ∈ {1, 2, 3}

Following the notation introduced in Section 2, the system can be represented
as the simple graph in Figure 7. The dynamics in each of the 27 rectangles
R3(a

(q1q2q3), b(q1q2q3)) = I(q1q2q3) q1,2,3 ∈ {1, 2, 3} are given by:

ẋ = f (q1q2q3)(x) + Bν (15)

where

f (q1q2q3) =





k2x2 − k1x1x3 − bx1 + qr(q1q2q3)

k1x1x3 − k2x2

k2x2 − k1x1x3 − nx3 + pr(q1q2q3)



 , B =





s 0
0 0
0 n



 (16)

and

r(q11q3) =
(1 − l)x2

θ1
2

, r(q12q3) = 1−
l(θ2

2 − x2)

θ2
2 − θ1

2

, r(q13q3) = 1,

for q1, q2 = 1, 2, 3 and l = 0.2 (see Figure 6). The dynamics are everywhere
continuous, and, therefore, the vector fields on adjacent rectangles coincide on
the common facet. The significance of the state variables and parameters is
given in the following table:

x1 = protein LuxR (ml−3)
x2 = complex C (ml−3)
x3 = autoinducer Ai(ml−3)
k1 = binding rate constant (30 l3m−1t−1)
k2 = dissociation rate constant (10 t−1)
n = diffusion constant (10 t−1)
b = degradation constant for LuxR (3t−1)
p = formation of Ai due to lux gene activity (30ml−3t−1)
q = formation of LuxR due to lux gene activity (5ml−3t−1)
s = scaling constant (10 t−1)
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Figure 8: The oriented graph obtained by applying Algorithm 1 to the simple
graph in Figure 7.

5.1 Obtaining the infeasible set I by using MARP

Since the vector field given by (15), (16) with ν1 = ν2 = 0 is continuous, we
can simply apply Algorithm 1 to determine the orientation of the edges of the
graph given in Figure 7. The result is given in Figure 8.

Assume the property set P is given by the target rectangle (222). This
requires the execution of the repeat loop in Algorithm 2 four times:

• R := P = {(222)}

• R = {(222), (223), (322), (212)}

• R = {(222), (223), (322), (212), (213), (323), (312)}

• R = {(222), (223), (322), (212), (213), (323), (312), (313)}

The infeasible set I is the complement ofR, and it consists of the remaining 27−
8 = 19 rectangles. The biological significance of this result is that luminescence
(which is described by relatively high values of complex x2 and autoinducer x3)
can only be achieved if the initial level of autoinducer x3 is high.

5.2 Obtaining a feasible set F using the RRFT algorithm

In this section, we consider the construction of feasible set F for the system
with noise ν(t) using RRFT. In Figure 9, several sample trajectories illustrate
the computation of candidate trajectories corresponding to the (111) to (121)
transition, and the (121) to (111) transition. Each of these trajectories is the
result of planting a tree with a different seed. Thus the RRFT algorithm can
be used to obtain sample trajectories for edges in the directed graph in Figure
8.

Figure 10 illustrates the case when no solution can be found. We consider
the property set (313) and consider initial values from the rectange (111). Each
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Figure 9: Sample trajectories from 111 to 121 (left) and 121 to 111 (right).
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Figure 10: A tree with the specified initial condition, x0, from the (111) rectangle
(left) (∆t = 0.001). The coverage c(Tsi) for the tree (right). A new tree is started
when the growth rate slows below a specified threshold (ḡ = 1 × 10−6 used in
this example).

tree is grown until the growth rate is unacceptably low upon which a new tree
is seeded. The growth of a tree (left) and the converage of the tree c(Tsi) (right)
are shown in the figure. As new vertices are generated, c(Tsi ) and g(Tsi) decrease
(right). After reaching a specified threshold, the algorithm terminates the tree
and generates a new tree from a new seed. Figure 11 shows the coverage of the
seed set as new seeds are generated. Seeds are generated using Halton sequence.

Recall that the property set P is the rectangle (222). We first consider the
rectangle (111) to determine candidate points for the feasible set F . Figure
12 shows the forest of trees where a solution trajectory is found. Ten initial
seeds are generated and a forest starts to grow until a solution is found. The
solution trajectory, the modes and the transitions are shown in Figure 13. Figure
14 shows c(Tsi) for the tree corresponding to a solution. No new seeds are
generated beyond the initial set in this case. One of the ten trees is able to find
the trajectory.
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6 Conclusion

Hybrid systems are widely used in robotics to model the use of specific con-
trollers and estimators in different regimes, switches based on contact mechanics
of rolling or sliding, and also to take into account the interactions and messag-
ing in a multi-robot team. Hybrid systems also arise naturally as models of
genetic and metabolic networks. They capture the switching behavior that is
observed in phenomena such as transcription, protein-protein interactions, and
cell division and growth and also to provide global descriptions of biological
systems described locally around operating points. In this paper, we develop
computationally efficient techniques to analyze hybrid models of bio-molecular
networks by exploiting their specific structure. We defined the framework of
multi-affine rectangular hybrid systems, where the vector fields have product
type nonlinearities to capture the dynamics of chemical reactions and the in-
variants are rectangular, because different behaviors emerge as a function of
different ranges of concentrations of regulatory species. To prove qualitative
properties of such systems, which are biologically significant, we developed the
Multi-Affine Rectangular Partition (MARP) algorithm and the Rapidly Explor-
ing Random Forest of Trees (RRFT) algorithm, and illustrate their usefulness
by using as a case study, the phenomenon of luminescence production in the
marine bacterium V. fischeri. While the case study was deliberately chosen to
enable a low-dimensional model to facilitate graphical illustration through plots,
the techniques here are applicable to very high-dimensional systems [3]. Future
work is being directed towards developing tools for formal analysis of larger
classes of hybrid systems, which could capture more complicated biochemical
phenomena, and developing control laws for species in the network that can be
directly controlled from outside the cell.
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