Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

WeB18.6

On the Computation of Minimal Cut Sets
in Genome Scale Metabolic Networks

Marcin Imielinski and Calin Belta

Abstract— A cut set for an objective reaction in a metabolic
network is a set of reactions whose knockout disables flux
through that reaction at steady state. Cut sets represent a
particular type of failure mode of a metabolic network and may
correspond to novel drug targets. In this paper, we demonstrate
how cut sets can be obtained from the computation of sub-
Elementary Modes (sub-EM). The sub-EM’s of a metabolic
network are the Elementary Modes (EM) of a submatrix of
the stoichiometry matrix formed by taking a subset of its
rows. Sub-EM’s emerge naturally in the intermediate steps of
the standard tableau algorithm for computation of EM, and
are thus obtainable for a network of any size. By employing
properties of the feasible flux cone, we show how cut sets for a
reaction can be constructed by enumerating minimal hitting sets
for the sub-EM’s containing that reaction. Though the resulting
cut sets are not guaranteed to be minimal, they can be reduced
to minimality via a second linear programming pruning step.
We demonstrate the applicability of this approach to a recent
genome scale metabolic model of E.coli.

I. INTRODUCTION

The metabolic network is the biochemical machinery with
which a cell transforms a limited set of nutrients in its
environment into the multitude of molecules required for
growth and survival. It consists of hundred to thousands
of small molecule species intricately linked by an even
larger set of biochemical reactions. The expansive and highly
connected nature of this important cellular system greatly
limits the degree of insight that may be gained from the
isolated study of a single component or module. The first
step towards systems-level understanding of metabolism is
the construction of a model that captures what is known
regarding an organism’s small molecule biochemistry and
its underlying genetics. The advent of sequencing technology
combined with general improvements in the organization of
biological information [9], [14] has allowed the building of
such genome-scale metabolic models for numerous microbial
organisms, including E. coli, S. cereviseae, H. pylori, and S.
aureus [17], [19], [4], [5], [15], [16], [10].

Current approaches to the study of genome-scale
metabolic networks employ an analysis of feasible and
optimal reaction fluxes through the network at steady state,
subject to structural, thermodynamic, and flux capacity con-
straints [14], [16]. Given these constraints, the flux configu-
ration through the network is limited to a polyhedral cone,
which can be checked for non-emptiness to characterize the
production capacity of the network [7], [8], analyzed via
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flux balance analysis (FBA) to find points that maximize
biomass production [21], [14], and probed using mixed-
integer linear programming to find minimal reaction sets that
support biomass production [3]. Alternatively, one can di-
rectly identify the elementary functional units of a metabolic
network using a convex decomposition of the polyhedral
cone representing feasible network states [18]. The most
prevalent notions of such units are elementary flux modes
(EM) and extreme pathways (EP) [20], [17], [13].

A gene or reaction is considered essential for a given
physiological function if its knockout abolishes that func-
tion. Relatively few metabolic genes or reactions can be
considered essential for growth of an organism in rich media.
However, a gene or reaction that that may not be essential
”alone” may be still be part of one or more “essential sets”.
Klamt and Gilles refer to such sets of reactions as minimal
cut sets, since knockout of that set of reactions abolishes (i.e.
“cuts”) the physiological function, while knock out of any
of its subsets preserves it [12]. Unlike minimal reaction sets
and EM / EP, which represent the basic functional subunits
of a metabolic network, minimal cut sets represent its most
simple “failure modes” [3], [11].

Though execution of a linear program can validate whether
a given reaction set is a cut set for an objective reaction,
use of linear programming for the design of novel cut sets
requires a brute force search through all reaction subsets
(i.e. brute force FBA). The latter approach is reasonable
for determining essential reactions (i.e. single reaction cut
sets) but scales poorly in the search for more complex (i.e.
higher cardinality) cut sets. For example, a network of 1000
reactions yields 1000 potential single knockouts, however the
set of potential double knockouts approaches 1 million, and
the set of potential triple knockouts approaches 1 billion.

A more systematic approach for generating cut sets is the
minimal cut set (MCS) algorithm of Klamt and Gilles [12],
which employs the elementary modes (EM) of a metabolic
network to determine minimal cut sets for a particular
objective reaction. Underlying the MCS algorithm is the
principle that a minimal cut set R for an objective reaction j
is a minimal hitting set for all j-containing EM [11]. As
a result, MCS can be enumerated for a network through
the simple application of a minimal hitting set algorithm to
the collection of j-containing EM. The main limitation of
this approach is the difficulty of calculating EM for large
networks (i.e. larger than 200 reactions) given current com-
puting resources and algorithms. This limitation prohibits
the application of Klamt and Gilles method to genome-scale
networks, rendering brute-force FBA the only current method
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available for genome-scale cut set computation.

In this paper, we demonstrate how cut sets can be obtained
from the computation of sub-elementary modes (sub-EM’s).
The sub-EM’s of a metabolic network are the elementary
modes of a submatrix of the stoichiometry matrix formed by
taking a subset of its rows. Alternatively stated, sub-EM’s
are flux configurations that place only a subset of species
in the system at steady state. Sub-EM’s naturally emerge
in the intermediate steps of the tableau algorithm for EM
computation [20], and are thus obtainable for a network of
any size. By employing properties of the feasible flux cone,
we show how cut sets for a reaction j can be constructed
by enumerating minimal hitting sets for j-containing sub-
EM’s. Though the resulting cut sets are not guaranteed to
be minimal, they can be reduced to minimality via a second
linear programming based step. As we show, this method
offers a practical approach for minimal cut set computation
in genome-scale metabolic networks.

We demonstrate the applicability of this approach to a
recent genome scale metabolic model E. coli iJR904 [16].
Our results reveal many complex (i.e. 2 or more reactions)
minimal cut sets for the biomass reaction in each model.
Knockouts of these reaction sets is predicted to be lethal by
the in silico model, while knockouts of any of their subsets
are predicted to be viable. These results lend insight into the
function and vulnerabilities of several microbial metabolic
networks. Furthermore, our results suggest important exper-
iments for model validation and represent potential targets
for drug design.

II. PROBLEM FORMULATION AND APPROACH

We represent a mass-balanced metabolic network of n
chemical reactions involving m metabolites in a stoichiom-
etry matrix S € R™*™ [14]. In our formulation, the
matrix S incorporates stoichiometric information about all
exchange reactions (uptake and secretion) and about the
maintenance and growth reactions. Each entry S;; specifies
the stoichiometric coefficient for metabolite ¢ in reaction j,
which is negative for substrates and positive for products.
We represent the flux distribution through the reactions of
the network by v € R™, where a component v; corresponds
to the flux of reaction complex passing through reaction j.
The concentrations of species in the system at time ¢ are
denoted by x(t) € RY". Finally, thermodynamic constraints
restrict a subset of reactions 7' C N to be irreversible. Under
these assumptions, the rate of change in time of species
concentrations is given by:

= Sv, vpr > 0. 1)

Metabolic reactions occur at a fast rate with respect to cell
regulatory and environmental changes. When modeling at the
slower time scale it is reasonable to apply the quasi-steady
state assumption, under which we have:

Sv =0, vr > 0. 2)
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A (steady state) metabolic network with stoichiometry S
and set of irreversible reactions 7" will be denoted for short
by (S,T). The set of all feasible fluxes

K={veR"|Sv=0, vpr >0} 3)

is a polyhedral cone in R™.
Definition 1: A set of reactions C' C N is a cut set for an
objective reaction j € N in system (S,T) if

ve=0—v; =0,Vv € K. @

A cut set C' is minimal if no proper subset of C'is a cut set.
In this paper we consider the following problem:
Problem 1: Compute minimal cut sets for a target reaction

j € N in a metabolic network (5, T).

A 7brute force” approach commonly used to solve the
latter problem involves using flux balance analysis (FBA)
to test every possible reaction combination to determine
whether it “cuts” the objective reaction j. To determine all
minimal cut sets of cardinality one (essential reactions), one
has to decide the non-emptiness of the set {v|v € K,v; =
0,vj # 0} for all ¢ € N, i # j, which can be achieved by
solving linear programs. For example, if the solution to both
linear programs max, v; and min, v; with constraint set
{v|v € K, v; = 0} is zero, then this is equivalent to i being
an essential reaction for 7 (minimal cut set of cardinality
1). To determine all minimal cut sets of cardinality two, all
pairwise combinations {i,k} € N (i # k # j # %) not
containing essential reactions have to be considered. Again,
{3, k} is a minimal cut set for j if and only if the solution to
both linear programs max, v; and min, v; with constraint
set {v|v € K,v; = v = 0} yields 0. The procedure
continues for higher cardinality combinations.

Though applicable to the study of single and double
knockouts, the brute-force FBA approach fails to be use-
ful for generation of higher order cut sets in genome-
scale metabolic models, which generally have greater than
1000 reactions. The solution we propose in this paper is
a “rational” approach for discovering cut sets that employs
computation of generators of a polyhedral cone and the
subsequent application of a minimum hitting set algorithm.
The idea is not new - this approach was proposed by Klamt
and Gilles in [12], [11]. However, because of limitations
due to complexity, their approach also cannot be applied to
genome scale metabolic models. In this paper, we propose
a two step procedure. In a first step, we determine cut
sets based on the computation of generators for polyhedral
cones over-approximating K. In the second, we use linear
programming to prune these sets and make them minimal.
We cannot guarantee that we compute all the minimal cut
sets for j with our approach. However, as shown in Section
V, our approach leads to the computation of a large set of
non-trivial minimal cut sets at genome scale.

ITII. PRELIMINARIES
A. Tableau algorithm for elementary mode computation

The tableau algorithm described in [20] is the standard
approach for computing generators of polyhedral cones as-
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sociated with metabolic networks. In this case, the generators
are called elementary modes (EM). This algorithm is a
modification of the classical Gaussian elimination algorithm
used to compute the null space of a matrix. Here we give
a brief description of the algorithm, which is necessary to
understand the rest of the paper.

The tableau algorithm takes as arguments the matrix S €
R™*™ and the index set 7' C N, and returns a set of
elementary modes F(K) of K, corresponding to a collection
of rays and lines that generate K. If T = N, the output
corresponds to the extreme rays of K.

The tableau algorithm proceeds in an iterative fashion by
computing generators E(K*) for a series of cones K* C R",
i €{0,...,m} given by:

K'={v|Syuv=0, vr >0, 4, CM, [M;| =i} (5

The algorithm is seeded with the initial cone K° = {v €
R™ | vy > 0}. The initial collection of generators E(KY)
consists of rays pointing in the directions of Euclidean
basis vectors ¢/ € R™ j € T and lines corresponding
to the remaining Euclidean basis vectors. At each iteration
i € {1,...,m}, the generators E(K*) are computed from
the analysis of rays and lines in E(K‘~1) in three steps. In
the first step, each ray / line in E°~! is tested to determine
whether it belongs to the hyperplane S;v = 0. Rays and
lines in E(K*~!) that belong to this hyperplane are added
to the collection F(K®). In the second step of iteration
i, the remaining rays and lines in E(K'"!) are paired to
compute intersections of cone K'~! with the hyperplane
S;v = 0. The final step of each iteration involves pruning of
”decomposable” or dependent generators from E(K*). This
step ensures minimality or near-minimality of the set E(K*)
as a V-representation for the cone K°.

Following iteration m, the tableau algorithm terminates,
having computed a set of rays and lines (elementary modes)
that generate the polyhedral cone K = K™. The costliest
part of the tableau algorithm is the pruning step applied at the
end of each iteration. Furthermore, the memory requirements
of this algorithm are prohibitive for application to large
metabolic networks, given the large number of generators
for many polyhedral cones [6].

B. Minimal hitting set for a collection of lines and rays

In combinatorics, a hitting set of a collection of sets C,
each taken from a discrete universe of items U, is a set
H C U that intersects every set in C. H is a minimal hitting
set if none of its subsets are hitting sets of C.

In this paper, we refer to hitting sets H C N of a collection
of elementary modes £ C R™ [11].

Definition 2: A set H C N is a hitting set for for a
collection of elementary modes I C R™ if H intersects
NZ(r) for every r € E. In addition, H is a minimal hitting
set for E if none of its subsets are hitting sets.

Algorithm 1, a modification of the Berge algorithm for
hypergraph traversal, provides a simple and fast procedure
for computing the set H of all minimal hitting sets of

WeB18.6

cardinality % or less of a collection E of generating vectors
(i.e. EM or sub-EM) [2].

Algorithm 1 H = MinHit(E, k)

[+ Input: E = {r' ... rIFI}, a collection of lines and/or
rays in R" x/
/x Output: H, a collection of minimal hitting sets of F
with cardinality k or lessx/
/* H is initialized with the empty set.x/
H={0}
forall jc1,...,|E|do
for all  for which 7! # 0 do
/* Expand sets in H so that they hit” nonzero */
/* components of ray / line j of E x/
for all H € H for which i ¢ H do
replace H with H U {i} in H
end for
end for
/+ Prune duplicate, non-minimal, and high cardinality
sets from H =/
for all H € 'H do
if |[H| > k OR there exists H € H for which H C H
then
remove H from H
end if
end for
end for

IV. COMPUTATION OF MINIMAL CUT SETS

Klamt and Gilles [12], [11] showed that a minimal hitting
set C C N for a collection of elementary modes E (see
Definition 2) with positive entry in position j (such an
elementary mode is said to contain reaction 7) is a minimal
cut set for reaction j in system (S, T") (see Definition 1).

In this section, we demonstrate how application of Klamt
and Gilles’ cut set criteria to intermediate results of the
tableau algorithm for EM computation (described in Section
III-A) allows identification of cut sets for (S, 7).

At each iteration ¢ € M, the tableau algorithm determines
a collection of generators F(K%) C R" for the cone K’
in equation (5). E(K") corresponds to a collection of non-
decomposable lines and rays that obeys the quasi steady state
assumption for a subset A; C M of species in the system.
K can also be seen to correspond to the feasible flux cone
of the system (Sa4,,T) with elementary modes E(K*). The
rays and lines in E(K") are therefore called sub-elementary
modes (sub-EM).

By applying Klamt and Gilles’ criteria to E(K*), a mini-
mal hitting set R for the collection of j-containing sub-EM
in E(K") is a minimal cut set for j in the system (Sq4,,7T).
This means that R is a minimal set of reactions satisfying
the relation:

vp=0 = v; =0, Ywe K’ (6)
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However, from Equations (3) and (5), it is clear that K’
over-approximates K, i.e.

K C K'. (7)

R thus also satisfies equation (4) and is a cut set for j in the
full system (S,T"). As a result, the application of MinHit
(Algorithm 1) to a collection of j-containing sub-EM taken
from any iteration ¢ of the tableau algorithm is guaranteed
to yield valid cut sets for an objective reaction j.

Algorithm 2 MCS = BruteCut(H,j,5,T)

/* Input: H, a collection of cut sets for reaction j in
system (S,T) */
/x Output: MC'S, a collection of minimal cut sets for j
*
/
MCS = empty collection
push sets in H onto stack T'oDo
while T'oDo is not empty do
H = pop set from T'oDo
/+ Run linear programs (i.e. flux balance analysis) or
check lookup table to find any subsets of H that are
also cut sets for j x/
D = collection of size |H| — 1 subsets of H that are
cut sets for j in system (5,7
if D is empty then
add H to collection MC'S
else if D contains one set then
add sole set in D to MCS
else
push sets in D onto stack T'oDo
end if
end while

A collection of sub-EM arises from an incomplete analysis
of the metabolic network, and thus only contain partial
information about its dynamics. As a result, analysis of
sub-EM leads to a sufficient but not necessary criterion
for determining whether a reaction set C' constitutes a cut
set for reaction j. This results in two caveats regarding
the “quality” of cut set obtained from the analysis of pre-
elementary modes: 1) not all cut sets are guaranteed to be
found and 2) cut sets that are found are not guaranteed to
be minimal.

As may be intuitively expected, the quality of cut sets
directly depends on the “quality” of sub-EM. The latter, in
turn, depends on the iteration ¢ of the tableau algorithm from
which the sub-EM are gathered, and the row order employed
by the tableau algorithm (see Section III-A). A general rule
of thumb for the quality of sub-EM is that later iterations
yield “higher quality” sub-EM; in other words, “naive” sub-
EM gathered from an early iteration of the algorithm will
yield fewer cut sets that are farther from being minimal,
while “mature” sub-EM gathered from a later iteration will
yield larger numbers of cut sets that are closer to being
minimal.

Since minimality of cut sets obtained from sub-EM is
not guaranteed, we propose a brute-force post processing
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algorithm for 1) checking minimality of cut sets and 2)
reducing them to their minimal subsets if they are not
minimal. The procedure is iterative (Algorithm 2). For a
given cut set H, subsets of cardinality |H| — 1 are tested to
see if they are cut sets. If none is found, then the initial cut set
H is minimal (see Definition 1). Otherwise, the new found
cut sets are tested for minimality in the same way. To check
whether a set H C N is a cut set for reaction 5 € N, we need
to check the feasibility of the set {v € K |vyg = 0,v; # 0},
for which we can use linear programming (i.e. flux balance
analysis) as described in Section II.

V. RESULTS

We use the computational framework developed in this
paper to compute minimal cut sets for biomass production
in the E. coli iJR904 genome scale model [16], which has
761 metabolites involved in 1835 chemical reactions (i.e., the
stoichiometry matrix S in equation (3) is 761 x 1835). These
reactions represent the inflow, outflow, and inter-conversion
of small-molecule chemical species in an E. coli cell grown
in a rich nutrient media. For each species in the model, there
exists a ’sink” reaction that represents its dilution during
growth and consumption by macromolecular processes. Of
the 761 species, 49 correspond to “biomass components”
that are considered to be essential substrates for survival and
growth [16]. In this model, knock out of biomass production
(and thus growth and survival) corresponds to “cutting” flux
through at least one of the sinks corresponding to an essential
biomass component.

We computed sub-EM’s using the tableau algorithm and
applied a local greedy optimization strategy at each iteration
to minimize computation as described by Bell et al. [1]. Sub-
EM’s were collected once progress in the algorithm reached
memory limit or suffered very significant slow down. Cut
sets for each biomass component sink j were computed by
applying the MinH1it (Algorithm 1) to the collection of j
containing sub-EM. For computational ease and biological
relevance we limited MinHit to generating cut sets of size
10 or below. Minimal cut sets for each j were computed
by applying algorithm BruteCut (Algorithm 2) to the
output of MinH7it. To solve the linear programs involved in
BruteCut, we used the semidefinite programming package
SeDuMi (http://sedumi.mcmaster.ca/).

In a preliminary computation, we used brute-force FBA
to determine that there are 92 “essential” reactions whose
knockout disables production of at least one biomass com-
ponent in rich media (i.e. single reaction cut sets).

Execution of the tableau algorithm to iteration 709 (of
761) on E. coli 1JR904 in rich media yields 157207 sub-EM.
1375 complex MCS of cardinality 2 to 10 emerged from the
application of MinHit and BruteCut to these results. In
this process, execution of BruteCut involved only 79,328
linear optimization steps. In comparison, brute force FBA
required over 1.2 million linear optimizations just to generate
minimal cut sets of cardinality 2. The number required to
compute larger cardinality sets would likely be exponentially
higher.
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Subsystem involvement of 1375 complex MCS for rich media production of E. coli biomass. MCS employ reactions from a wide variety of

subsystems to target specific biomass components. Each column in this figure represents a unique pattern of E. coli subsystems targeted by one or more of
the 1375 MCS. The row of numbers below the figure specifies how many cut sets obey the given subsystem pattern. Reactions subsystem grouping taken

from the E. coli iJR904 model annotation [16].

MCS were successfully obtained for 34 to 49 of the
biomass component sinks, which includes 17 components
that are immune to attack by any of the 92 single reaction
knockouts of biomass. These MCS range in cardinality
between 2 and 10 and employ 223 reactions in the E. coli
genome scale metabolic network (in contrast with the 92
essential reactions). These results show that though relatively
few reactions are essential for biomass production in rich
media, many more emerge as potential targets for knockout
when included in the context of a multi-pronged attack.

For further analysis of MCS mechanisms, we used linear
programming to determine the spectrum of reactions knocked
out by each MCS. Despite the fact that most MCS (1235
of 1375) consist of 6 or more reactions, we find that the
vast majority (1317 of 1375) of the corresponding knockouts
appear to carry out a ’surgical strike” on biomass production,
disabling the producibility of only a single biomass compo-
nent (e.g. L-threonine, lipolysaccaride, GTP).

Reactions contribution to the 1375 MCS span 20 reaction
subsystems (compared to only 10 subsystems spanned by
the 92 single knockouts). Not surprisingly, a vast major-
ity of the MCS discovered employ transporter reactions
(subsystems “Transport, Extracellular” and “Putative Trans-
porter”). Expression of MCS in terms of reaction subsystems
yields 38 unique “cut set patterns”, shown in Figure 1.
The predominant two patterns (35 and 36, comprising 1160
of 1375 MCS) amongst the collection of cut sets consists
of least one reaction from each of the following reac-
tion subsystems: “Transporter, Extracellular” or “Putative
Transporter”, ”Cell Envelope Biosynthesis”, Threonine and
Lysine metabolism”, and ”Alternate Carbon Metabolism”.
Other subsystems significantly represented amongst the MCS
are "Nucleotide Salvage Pathways” (78 minimal cut sets),
“Purine and Pyrimidine Biosynthesis” (35 cut sets), and
”Arginine and Proline Metabolism” (31 minimal cut sets).
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VI. CONCLUDING REMARKS

This study illustrates the first genome-scale application of
the “rational” approach to minimal cut set (MCS) compu-
tation outlined by Klamt and Gilles [12]. We achieve this
application by extending Klamt and Gilles’ theoretical results
to intermediate outputs of the elementary mode algorithm,
which we refer to as sub-EM. With application to a genome-
scale model of E. coli, we demonstrate that we are able
to generate large numbers of genome-scale cut sets for
a given metabolic objective. Though our method employs
linear programming in a post-processing step, the number of
optimizations required to compute large cardinality minimal
cut sets with our approach (80K) is extremely small in
comparison to brute-force FBA (O(103)). However, since
our method is not guaranteed to find all minimal cut sets
of a given cardinality, it can be seen as complementary to
brute-force FBA for certain applications.

Our results show that though E. coli is robust to single
reaction deletion in the context of rich media, it is suscep-
tible to compromise via higher-order knockouts. Complex
MCS provide an approach to undermine this robustness
through a multi-pronged attack. As a result, MCS can be
potentially used to identify novel targets for drug design. In
additional to pharmaceutical applications, each MCS makes
a number of important experimentally verifiable assertions
regarding the viability of an organism; namely, it asserts
that knockout of the MCS is lethal, while the knockout of
each of its subsets should be viable. From a model validation
perspective, the biological insight offered from knockout of
immediate subsets of MCS, i.e. sub-minimal cut sets, may
be the most important. In each such mutant, the metabolic
network is forced to use a particular route to complete a
metabolic function that is normally distributed among a set of
redundant pathways. The study of such mutants can be used
characterize the function of individual enzymes whose role
is normally obscured by network redundancy. In particular,
the performance of a sub-minimal cut set can determine how
well a given enzyme can handle the entire load of flux for
a given cell function. This experimental approach can be
more generally applied to determine the role of enzyme pairs,
triplets, etc. It also gives a novel use for higher order MCS
(i.e. containing 5 or more reactions) that may be impractical
as pharmaceutical targets.
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