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Abstract— In this paper, a method is proposed for the design
of control laws for hybrid systems with continuous inputs. The
objective is to influence their behavior in such a way that
the discrete component of the closed-loop system satisfies a
given condition, described by a temporal logic formula. For
this purpose, a transition system is constructed, by abstracting
from the continuous dynamics of the hybrid system. It is shown
that a controller for this transition system, realizing the given
control objective, corresponds to a controller for the original
hybrid system, realizing the same objective, and vice versa.

I. I NTRODUCTION

Hybrid systems are dynamical systems with interacting
discrete-event and continuous dynamics. Many control sys-
tems have a hybrid character, and examples of hybrid control
systems are abundantly available, ranging from car engines,
air traffic and robot planning control to electric power
networks.

Within the field of hybrid systems the class of piecewise-
affine hybrid systems on polytopes has been studied quite
extensively. In the literature different approaches have been
proposed for the design of controllers for this class of
systems. One of them is based on the idea of control-to-facet
([8]). Assuming that the discrete switching is determined
by the facet through which the continuous state leaves a
polytope, the continuous input can be used to influence the
behavior of the discrete dynamics. In [9] this approach was
used to solve a reachability problem for hybrid systems with
safety constraints.

This paper may be considered as an extension of [9] in two
directions: (1) instead of a reach-avoid condition, the goal is
to achieve a control objective stated as a linear temporal
logic formula over the discrete modes of the hybrid system,
(2) instead of fixing the applied continuous feedback in each
discrete mode, a new dynamic hybrid feedback mechanism
is studied that allows the application of different continuous
feedbacks in one discrete mode. A crucial step is the con-
struction of a discrete transition system from a hybrid system,
by abstracting the continuous dynamics. It is shown that there
exists a control automaton that realizes the required control
objective for this transition system if and only if there exists
a so-called feedback control automaton that realizes the same
objective for the original hybrid system. Furthermore, it is
shown how this hybrid feedback mechanism can be obtained
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from the control automaton for the discrete transition system.
In the paper, the main emphasis is on the rigorous definition
of hybrid systems, hybrid automata and their semantics, and
on the introduction of the fundamental notion of feedback
control automata. The proofs of the results are omitted and
will be published elsewhere.

II. D EFINITION AND SEMANTICS OF HYBRID AUTOMATA

For the study and design of feedback control mechanisms
for hybrid systems with continuous inputs, one first needs
a formal definition of a hybrid system without inputs. In
this section we introduce these so-called hybrid automata
(see e.g. [11]), and describe their behavior, both in terms of
hybrid trajectories and in terms of the words generated by
these trajectories.

Throughout this paper we use the notationN for the
natural numbers without0, andN0 = N∪{0} for the natural
numbers, including0.

Definition 2.1: A hybrid automaton with arbitrary contin-
uous initial states is a tuple

HA = (Q, Q0, T, N, Inv, G,S), (1)

where

• Q is a finite set of discrete states (also called modes, or
locations),

• Q0 denotes the set of initial discrete states,
• T ⊆ Q × Q is a set of discrete transitions,
• N : Q → N is a map giving the dimensionNq of the

continuous state in each modeq ∈ Q,
• Inv : Q → 2R

Nq

is the invariant map, whereInv(q) is a
full dimensional closed convex subset ofR

Nq ,
• G is a guard that associates a subset of∂Inv(q) to each

transition(q, q′) ∈ T ,
• S = (hq)q∈Q is an assignment of Lipschitz continuous

vector fieldshq : Domq → R
Nq , (q ∈ Q), with for all

q ∈ Q, Domq an open set that containsInv(q).
Informally, a hybrid automaton is an automaton with a

continuous-time autonomous system at each discrete mode
q, governed by the differential equatioṅxq(t) = hq(xq(t)).
This differential equation remains valid as long asxq(t) is an
element of the invariant setInv(q). Exactly at the time-instant
that the continuous statexq leavesInv(q) by crossing a guard
G(q, q′), the discrete mode switches toq′, and the continuous
state x′q is restarted in an arbitrary pointxq′,0 ∈ Inv(q′)
and continues to evolve according to differential equation
ẋq′ (t) = hq′(xq′ (t)).

The departure set Dept(P, h) of a dynamical system on a
convex setP consists of all points in∂P through which the



continuous statex may leave the state setP :

Dept(P, h) = {x0 ∈ ∂P | ∃ε > 0 s.t. for all t ∈ (0, ε)

the solution ofẋ(t) = h(x(t)), with

x(0) = x0 satisfiesx(t) 6∈ P}. (2)

So, in modeq of a hybrid automaton,Dept(Inv(q), hq) is
the corresponding departure set. In order to guarantee thata
hybrid automaton isnon-blockingall points in this departure
set must belong to a guard (see e.g. [11]):

∀q ∈ Q ∀x ∈ Dept(Inv(q), hq) ∃q′ ∈ Q s.t.x ∈ G(q, q′).
(3)

In the sequel we will only consider non-blocking hybrid
automata. However, by abuse of terminology we will often
omit the adjective “non-blocking”, and just speak of hybrid
automata. Note that a non-blocking hybrid automaton may
be non-deterministic: if a point̂x ∈ Dept(Inv(q), hq) belongs
to more than one guard, e.g.x̂ ∈ G(q, q′) and x̂ ∈ G(q, q′′),
then both the transition toq′ and q′′ are enabled when the
continuous statexq leavesInv(q) through the point̂x.

Next we specify the semantics of a hybrid automaton in
a more formal way. Since in none of the discrete modes
the continuous initial state is specified, we combine the
behavioral approach (in the fashion of Willems, see e.g. [12],
[13]) with the notion of hybrid time trajectories ([11], [5]and
[6]) to describe the set of all hybrid state trajectories of a
hybrid automaton.

Definition 2.2: Let Q be a finite set of discrete states, and
let Inv(q), (q ∈ Q), be the closed convex set of continuous
states corresponding toq. A hybrid trajectory is a finite or
infinite sequence

ρ = (qi, ti, xi)
n
i=0,

(i.e. eithern ∈ N0 or n = ∞), with qi ∈ Q, (ti)
n
i=0 a non-

decreasing sequence inR, and xi : [ti, ti+1] → Inv(qi) a
trajectory of the continuous state at locationqi. The number
n, which may be infinite, is the number of discrete transitions
in ρ. If n is finite, thenxn : [tn,∞) → Inv(qn).

A hybrid trajectoryρ provides an exact description of both
the evolution of the discrete mode and of the corresponding
continuous state of one particular execution of a hybrid
automaton. The set of all possible executions of a hybrid
automaton is called its behavior:

Definition 2.3: ThebehaviorB(HA) of a hybrid automa-
ton HA is the set ofall hybrid trajectoriesρ that satisfy the
following conditions:

(i) q0 ∈ Q0,
(ii) For all 0 ≤ i < n:

1. xi is continuous on[ti, ti+1] andẋi(t) = hqi
(xi(t))

for all t ∈ (ti, ti+1),
2. xi(ti+1) ∈ Dept(Inv(qi), hqi

) ∩ G(qi, qi+1),

(iii) If the numbern of discrete transitions inρ is finite
(i.e. n ∈ N0), then xn is continuous on[tn,∞) and
ẋn(t) = hqn

(xn(t)) for all t ∈ (tn,∞).

The time instants{ti | i = 1, . . . , n} are the switching
times, i.e. the time instants on which a discrete transition
occurs. Ifn is finite, then condition(iii) implies thatxn(t)
remains inInv(qn) forever. It may happen thatti+1 = ti
for somei ∈ N0. In that case there is a switch to modeqi

at time ti, but the corresponding continuous state is started
in a pointxi(ti) ∈ ∂Inv(qi) with the property thatxi(ti) ∈
Dept(Inv(qi), hqi

)∩G(qi, qi+1). So at the same time-instant
ti+1 = ti the hybrid automaton will switch to stateqi+1. In
this case, the discrete mode and corresponding continuous
state at timeti = ti+1 is not specified in a unique way.

In this paper we do not study the full behavior of a hybrid
automaton but confine ourselves to specifications described
in terms of the discrete locations that are visited by these
hybrid trajectories. For this we have to make a distinction
between locationsq ∈ Q that are left in finite time, and
locationsq ∈ Q for which the continuous state remains in
Inv(q) forever. Let Qinv be a set of symbols of the same
cardinality asQ, such thatQ ∩Qinv = ∅, and letξ : Q −→
Qinv be a bijective mapping. We defineQtot := Q ∪ Qinv.
For any finite setS, we denote by|S| the cardinality ofS,
by 2S the set of subsets ofS, and bySω the set of infinite
sequences with elements fromS.

Definition 2.4: The word w(ρ) generated by a hybrid
trajectoryρ is an infinite sequencew = (wi)i∈N0

∈ Qω
tot,

defined in the following way:

(1) If ρ = (qi, ti, xi)
n
i=0 is a finite sequence, thenwi := qi

for i ≤ 0 ≤ n andwi := ξ(qn) for i > n.
(2) If ρ = (qi, ti, xi)

∞
i=0 is an infinite sequence, thenwi :=

qi for all i ∈ N0.
So the word generated by a hybrid trajectory is simply

the enumeration of the modes visited by that trajectory, with
infinitely many repetitions of the symbolξ(qn) if the mode
qn is reached and then never left.

Definition 2.5: The set of all words that are generated
by the hybrid trajectories in the behaviorB(HA) of hybrid
automatonHA is called thelanguagegenerated byHA, and
is denoted by

L(HA) := {w(ρ) | ρ ∈ B(HA)}. (4)
The specifications that we want to accommodate in this

paper are ”rich” temporal and logic statements about the
reachability of discrete locations (modes)q ∈ Q by the
hybrid trajectories of a hybrid automatonHA. In particular,
we focus on specifications given as formulas of a fragment
of Linear Temporal Logic [4] over the set of symbolsQtot.
For simplicity, we will call this logicLTL throughout the
paper. Informally, such formulas are recursively defined by
using the standard Boolean operators (e.g.,¬ (negation),∨
(disjunction),∧ (conjunction)) and temporal operators, which
include U (”until”), � (”always”), ♦ (”eventually”). Such
formulas are interpreted over the words inQω

tot, as generated
by the hybrid automatonHA, according to Definition 2.4. If
φ1 andφ2 are twoLTL formulas overQtot, formulaφ1Uφ2

intuitively means that (over some word)φ2 will eventually
become true andφ1 is true until this happens. For anLTL



formula φ, formula ♦φ means thatφ becomes eventually
true, whereas�φ indicates thatφ is true at all positions of
a word. More expressiveness can be achieved by combining
the mentioned operators. For example,♦�φ means thatφ
will eventually become true and then remains true forever,
while �♦φ means thatφ is true infinitely often.

Definition 2.6: A hybrid automatonHA with discrete
state setQ is said to satisfy anLTL formulaφ overQtot, if
all wordsw ∈ L(HA) satisfyφ.

Remark 2.7:In the literature, the definition of a hybrid
automaton usually contains areset map, that describes the
relation between the final continuous state in the old discrete
mode and the initial continuous state in the new discrete
mode. So, the corresponding behaviors and languages are
more restrictive, and anLTL formula is more easily satisfied.
Unfortunately, incorporation of reset maps often leads to
decidability problems. In the approach presented in this paper
undecidable problems are avoided at the cost of obtaining
more conservative results.

III. P IECEWISE-AFFINE HYBRID SYSTEMS AND

FEEDBACK CONTROL AUTOMATA

The main object of study in this paper are hybrid systems
with continuous inputs. The main difference with hybrid au-
tomata is that the continuous input may be used to influence
the evolution of the hybrid trajectories. For this purpose aso-
called feedback control automaton is introduced. In closed-
loop with a hybrid system, this yields a hybrid automaton.
Given an LTL-formula φ, the problem is to construct a
feedback control automaton that guarantees that the language
generated by the controlled hybrid system satisfiesφ.

Definition 3.1: A piecewise-affine hybrid system over
polytopes, with m continuous inputs and arbitrary continuous
initial states is a tuple

HS = (Q, Q0, N, Inv, Fac,S, U), (5)

where:
• Q is a finite set of discrete states,
• Q0 denotes the set of initial discrete states,
• N : Q → N is a map giving the dimensionNq of the

continuous state in each modeq ∈ Q,
• Inv : Q → 2R

Nq

is the invariant map, whereInv(q) is a
closed full dimensionalpolytopein R

Nq ,
• Fac = (Facq)q∈Q is an assignment of mapsFacq :

FT (Inv(q)) → Q, q ∈ Q, whereFT (Inv(q)) denotes
the set of facets of polytopeInv(q),

• S = (Aq, Bq, aq)q∈Q is an assignment of affine sys-
tems, withAq ∈ R

Nq×Nq , Bq ∈ R
Nq×m andaq ∈ R

Nq .
• U is the input set;U is a polytope inR

m.
This definition is interpreted in the following way. Let

u : [t0,∞) → U be an input trajectory. Then(qi, ti, xi)
n
i=0

(with either n ∈ N0 or n = ∞) is a corresponding hybrid
trajectory ofHS if

1) q0 ∈ Q0,
2) For all i ∈ {0, 1, . . . , n} the functionxi : [ti, ti+1] →

Inv(qi) satisfies the affine differential equation

ẋi(t) = Aqi
xi(t) + Bqi

u(t) + aqi
, (6)

3) Fori ∈ {0, 1, . . . , n−1}, xi leavesInv(qi) at timeti+1

by crossing a facetF ∈ Fac←qi
(qi+1).

In comparison with the definition of a hybrid automaton, the
assignmentFac replaces both the set of transitionsT and the
set of guardsG. In particular it is assumed that a switch from
discrete modeqi to qi+1 occurs, if statexi leavesInv(qi) by
crossing a facetF ∈ Fac←qi

(qi+1), and that this transition
completely depends on the facet that is crossed.

In the sequel we will often omit the adjectives “piecewise-
affine” and “over polytopes” for systems of the form (5), and
just speak of hybrid systems.

Next we define what a controller is in this hybrid context,
and how hybrid feedback should be interpreted.

Definition 3.2: A feedback control automatonfor a hybrid
systemHS is a tuple

F = (S, Q, s0, τ, π,K), (7)

where

• S is the set of discrete states of automatonF ,
• Q is the discrete input set, equal to the set of discrete

locations ofHS,
• s0 is the (fixed) initial state of the deterministic automa-

ton F ,
• τ : S × Q → S is the memory update function,
• K = ∪q∈QKq where for eachq ∈ Q, Kq is a set of

affine mappings fromInv(q) to U .
• π : S×Q → K is the output function, with the property

that for all s ∈ S andq ∈ Q: π(s, q) ∈ Kq.
A feedback control automaton may be considered as an

automaton with inputs and outputs. Given a (finite or infinite)
input trajectoryq0, q1, q2, . . ., the automaton produces a state
trajectorys0, s1, s2, . . . defined by the transitions

si+1 = τ(si, qi),

and a corresponding output sequenceKq0
, Kq1

, Kq2
, . . . of

affine mappings, withKqi
= π(si, qi).

Given a hybrid systemHS, a feedback control automaton
for HS describes a state feedback law for this hybrid system
in the following way. The hybrid systemHS starts at timet0
in discrete locationq0 ∈ Q0, and with arbitrary continuous
initial state x0(t0) = x0

0 ∈ Inv(q0); the feedback control
automaton is initialized in discrete states0. For everyi ∈
{0, 1, . . . , n} (with eithern ∈ N0 or n = ∞) the continuous
state evolves according to the affine differential equation

ẋi(t) = Aqi
xi(t)+Bqi

Kqi
(xi(t))+aqi

, xi(ti) = x0
i , (8)

with Kqi
= π(si, qi) andx0

i an arbitrary element inInv(qi).
If at time ti+1 the continuous state trajectoryxi(t) crosses
facet F ∈ FT (Inv(qi)), then an instantaneous transition to
locationFacqi

(F ) of hybrid systemHS occurs. At the same
time instant, the control automaton switches to statesi+1 =
τ(si, qi), and the affine system(Aqi+1

, Bqi+1
, aqi+1

) at lo-
cationqi+1 is governed by the affine feedback lawKqi+1

=
π(si+1, qi+1). Again, the continuous initial statexi+1(ti+1)
is assumed to be an arbitrary element ofInv(qi+1). In this



way, the interconnection of hybrid systemHS and feedback
control automatonF turns out to be a hybrid automaton.

Before we can define the closed-loop automaton in a
formal way, we first have to specify what the exact meaning
of crossing a facetis. This is not completely obvious in
those cases where the exit point is an element of a lower
dimensional face of the state polytope, and belongs to
more than one facet. We resolve this issue by adopting the
terminology and approach described in [9, Section IV.B].

Definition 3.3: Let P be a full dimensional closed convex
polytope inR

n, and leth : R
n −→ R

n be an affine mapping.
Let F be a facet ofP .

(i) The exit setof F with respect to the affine dynamics
ẋ(t) = h(x(t)) on polytopeP is defined by

ES(F, P, h) := cl{x ∈ F | nT
F h(x) > 0}, (9)

wherenF denotes the outward unit normal vector ofF
w.r.t. polytopeP .

(ii) A trajectoryx : [t0, t1] → P that satisfies the differen-
tial equationẋ(t) = h(x(t)) is said to leave polytope
P at time t1 by crossingfacetF if

x(t1) ∈ Dept(P, h) ∩ ES(F, P, h). (10)
According to [9, Lemma 4.7] every point̂x ∈ Dept(P, h)

belongs to the exit set of at least one facet. It may happen
that a pointx̂ ∈ Dept(P, h) on a lower dimensional face of
P belongs to the exit sets of more than one facet. It is also
possible that such a point belongs to a facetF , but is not an
element ofES(F, P, h).

Assumption 3.4:If a trajectory of the continuous state of
a piecewise-affine hybrid automaton leaves polytopeInv(q)
by crossing the facetsF1, . . . , Fk, then the discrete mode
will switch instantaneously to a mode that belongs to the
set {Facq(Fi) | i = 1, . . . , k}. I.e. for all q, q′ ∈ Q, guard
G(q, q′) is given by

G(q, q′) =
⋃

F∈Facq
←(q′)

ES(F, Inv(q), hq). (11)

Assumption 3.4 induces some non-determinism in the
switching behavior of the underlying automaton. If a tra-
jectory leavesInv(q) by crossing several facets at the same
time, then the induced transition is not uniquely determined.

The previous considerations lead to the following con-
struction of the closed-loop of a hybrid systemHS and a
feedback control automatonF .

Definition 3.5: The closed-loop of a piecewise-affine
hybrid system HS = (Q, Q0, N, Inv, Fac,S, U) and
feedback control automatonF = (S, Q, s0, τ, π,K)
for HS is the hybrid automaton CL(HS,F) =
(Sp, Sp,0, Tp, Np, Invp, Gp,Sp) with

• Sp = Q × S the finite set of discrete states,
• Sp,0 = Q0 × {s0} the set of initial discrete states,
• Np : Sp → N is the map(q, s) 7→ Nq, describing the

dimension of the continuous state in mode(q, s) ∈ Sp,
• Invp : Sp → 2R

Nq

is the invariant map, with
Invp(q, s) = Inv(q) for all (q, s) ∈ Sp,

• Sp = (h(q,s))(q,s)∈Q×S is the assignment of affine
vector fieldsh(q,s) : Inv(q) → R

Nq , ((q, s) ∈ Q × S),
whereh(q,s)(x) = Aqx + Bqπ(s, q)(x) + aq,

• Tp ⊂ Sp × Sp the set of discrete transitions

Tp =
{((q, s), (q′, s′)) ∈ Sp × Sp | s′ = τ(s, q) and
∃F ∈ Fac←q (q′) s.t.ES(F, Inv(q), h(q,s)) 6= ∅},

• GuardsGp associating the union of exit sets

Gp((q, s), (q
′, s′)) =

⋃

F∈Facq
←(q′)

ES(F, Inv(q), h(q,s))

to each transition((q, s), (q′, s′)) ∈ Tp.
Note that the discrete part of the closed-loop system is

obtained by taking the product of the automata describing
the discrete switching ofHS and F , respectively. The
continuous open-loop dynamics is simply copied fromHS.
The discrete states of F only plays a role in the choice of
the affine control lawπ(s, q). This opens the possibility to
apply different feedback laws on the continuous dynamics at
one discrete location of the hybrid systemHS.

According to Definition 2.4 the words generated by the
hybrid trajectories((qi, si), ti, xi)

n
i=0 of CL(HS,F) are

elements of(Q × S)ω
tot. Since we want to influence the

words generated by the hybrid systemHS by application of
a feedback control automatonF , only the first component
(from Qtot) in every element of these words is of interest.

Definition 3.6: Let ρ = ((qi, si), ti, xi)
n
i=0 be a hybrid

trajectory of the closed-loop of hybrid systemHS and feed-
back control automatonF . Then the wordwcl(ρ) generated
by ρ w.r.t. to the closed-loop system is an infinite sequence
wcl(ρ) = (wi)i∈N0

∈ Qω
tot defined in the following way:

(1) If ρ = ((qi, si), ti, xi)
n
i=0 is a finite sequence, then

wi := qi for i ≤ 0 ≤ n andwi := ξ(qn) for i > n.
(2) If ρ = ((qi, si), ti, xi)

∞
i=0 is an infinite sequence, then

wi := qi for all i ∈ N0.
Definition 3.7: Let HS be a piecewise-affine hybrid sys-

tem, and letF be a feedback control automaton forHS.
Then the language generated byHS in closed-loop withF
is defined by

L(HS, CL(HS,F)) := {wcl(ρ) | ρ ∈ B(CL(HS,F))}
(12)

Hence,L(HS, CL(HS,F)) is the projection of the full
closed-loop languageL(CL(HS,F)) from (Q×S)ω

tot to Qω
tot.

In this paper we study how feedback control automata can
be used to influence the language of a hybrid system:

Problem 3.8:Let HS be a piecewise-affine hybrid system
with discrete state setQ, and let φ be an LTL-formula
overQtot that describes the control objective that we want to
achieve. The problem is to find a feedback control automaton
F for HS such that allw ∈ L(HS, CL(HS,F)) satisfyφ.

IV. T RANSITION SYSTEMS AND CONTROL AUTOMATA

Instead of solving Problem 3.8 directly, we translate it
from a hybrid into a purely discrete-event setting, and first
consider the same control problem for discrete event systems
with inputs.



Definition 4.1 (Transition system):A finite (non-
deterministic) transition system is a tupleT = (Q, Q0, Σ, δ),
whereQ is a finite set of states,Q0 ⊆ Q is the set of initial
states,Σ is a finite input alphabet, andδ : Q × Σ → 2Q is
a (non-deterministic) transition function.

WheneverQ0 is not specified, we assume thatQ0 = Q.
For a given stateq ∈ Q, the set of available (feasible) inputs
is denoted byΣq, i.e. Σq = {σ ∈ Σ | |δ(q, σ)| ≥ 1}. In
the sequel we assume thatΣq 6= ∅ for all q ∈ Q. If at
stateq ∈ Q an inputσ ∈ Σq is applied, then the state will
switch to an element of the setδ(q, σ). Obviously, a transition
systemT is deterministicif it has only one initial state and its
transition function satisfies|δ(q, σ)| = 1, ∀q ∈ Q, σ ∈ Σq.

Definition 4.2: Let T = (Q, Q0, Σ, δ) be a transition
system, and letw = (qi)i∈N0

∈ Qω andσ = (σi)i∈N0
∈ Σω

be infinite sequences of states and inputs, respectively. Then
σ is called anadmissible input wordfor the (state) wordw
if the following conditions are satisfied:
(i) ∀i ∈ N0 : σi ∈ Σqi

,
(ii) ∀i ∈ N0 : qi+1 ∈ δ(qi, σi).
The languageL(T ) of all state words generated by transition
system T is given by L(T ) = {w ∈ Qω | w0 ∈
Q0, and there exists an admissible input wordσ for w}.

A control objective for a transition systemT may be
formulated as a requirement on the set of all (state) words.
E.g., given anLTL-formula φ over Q, one may want to
guarantee that all wordsw ∈ L(T ) satisfy formula φ.
Usually, the realization of such a control objective requires
the design of an automaton that generates suitable input
values σi ∈ Σqi

based on knowledge of the finite state
sequenceq0, q1, q2, . . . , qi.

Definition 4.3 (Control automaton):A control automaton
A for a transition systemT = (Q, Q0, Σ, δ) is a tupleA =
(S, Q, s0, τ, π, Σ), with:
• S is a finite set of states,
• s0 is the (deterministic) initial state,
• Q is the input set, and is equal to the set of states of

T ,
• τ : S × Q → S is the memory update function,
• Σ is the output set, and is equal to the input set ofT ,
• π : S×Q → Σ is the output function, with the property

that π(s, q) ∈ Σq for all (s, q) ∈ S × Q.
Given initial states0 ∈ S and applying the wordw =

(qi)i∈N0
∈ L(T ), the automaton produces a state word

(si)i∈N0
satisfying si+1 = τ(si, qi). If the corresponding

output word(σi)i∈N0
∈ Σω given byσi = π(si, qi), serves

as an admissible input word forw ∈ L(T ), we obtain the
following interconnection ofT andA:

Definition 4.4: The interconnectionIC(T ,A) of the (non-
deterministic) transition systemT = (Q, Q0, Σ, δ) and the
control automatonA = (S, Q, s0, τ, π, Σ) is defined as the
non-deterministic automaton(Sp, Sp,0, δp), where
• Sp = Q × S is the finite state set,
• Sp,0 = Q0 × {s0} is the set of initial states,
• δp : Sp → 2Sp is the (non-deterministic) transi-

tion function δp(q, s) = {(q̂, ŝ) ∈ Q × S | q̂ ∈
δ(q, π(s, q)) andŝ = τ(s, q)}.

Again, since control automatonA is the object to be
designed, we are primarily interested in the wordsw ∈ Qω,
that are generated by the transition systemT , interconnected
with control automatonA.

Definition 4.5: The languageL(T , IC(T ,A)) of all state
words that are generated by transition systemT , after
interconnection with control automatonA, is defined by

L(T , IC(T ,A)) := {(qi)i∈N0
∈ Qω | ∃(si)i∈N0

∈ Sω s.t.
(q0, s0) ∈ Sp,0, and∀i ∈ N0 : (qi+1, si+1) ∈ δp(qi, si)}.

(13)
In the setting of transition systems and control automata,

Problem 3.8 corresponds to:
Problem 4.6:Let T = (Q, Q0, Σ, δ) be a transition sys-

tem, and letφ be anLTL-formula overQ. Find a control
automatonA = (S, Q, s0, τ, π, Σ) such that all wordsw ∈
L(T , IC(T ,A)) satisfyφ.

For solving Problem 4.6, constructive methods exist, based
on interconnection with a suitable Büchi automaton ([2]).
The main idea of this paper is to transform hybrid control
Problem 3.8 into Problem 4.6 for a related transition system,
obtained by abstraction, to design a control automaton in
the discrete-event setting, and to transform this control
automaton back into a suitable feedback control automaton
for the original hybrid system.

V. A BSTRACTION OF A HYBRID SYSTEM TO A CONTROL

TRANSITION SYSTEM

Let q be one particular discrete mode of a piecewise-affine
hybrid systemHS. If at modeq an admissible affine control
law K : Inv(q) → U is applied to the continuous statexq,
then the set of possible transitions from modeq is restricted
by the behavior of the closed-loop dynamics

ẋq(t) = hq(xq(t)), (14)

on the polytopeInv(q), wherehq(x) = Aqx+BqK(x)+ aq

denotes the affine vector field of the closed-loop system.
In particular, the set of possible transitions depends on the
set of exit sets that are intersected by the departure set
Dept(Inv(q), hq). We define the setNextState(q, K) as the
set of all discrete states to which the system may switch
if controller K is applied to the continuous dynamics at
location q. Again we distinguish two cases: switching to
an other location in finite time, and remaining in the same
location forever. Formally stated,NextStateis a mapping
from

⋃

q∈Q({q} × Kq) to 2Qtot defined by






































For q′ ∈ Q : q′ ∈ NextState(q, K) if and only if
∃F ∈ Fac←q (q′) s.t.ES(F, Inv(q), hq) 6= ∅,

For q′ ∈ Qinv : q′ ∈ NextState(q, K) if and only if
q′ = ξ(q) and∃x0

q ∈ Inv(q) s.t. solutionxq(t) of
(14) with initial statexq(t0) = x0

q satisfies
xq(t) ∈ Inv(q) for all t ≥ t0.

(15)
Note thatES(F, Inv(q), hq) 6= ∅ if and only if there exists

of a solution of differential equation (14) that leavesInv(q)



by crossing facetF . Hence,NextState(q, K) is a nonempty
subset ofQ ∪ {ξ(q)}.

The functionNextStateis an important building block for
the abstraction of a hybrid system to a transition system.
In this setting, the exact form of the applied affine control
law is not important. Instead one is interested in the set of
discrete states to which the system can switch in exactly one
step. This observation may be used to restrict the choice of
possible feedbacks to a finite number of feedbacks: if two (or
more) different feedbacks lead to the same discrete behavior,
it is sufficient to consider only one of these feedback laws.
Formally, one may describe this by the following partial
ordering.

Definition 5.1: Let q ∈ Q and let K1 and K2 be two
admissible feedback laws for system (14) onInv(q). Then

(i) K1 �q K2 iff NextState(q, K1) ⊆ NextState(q, K2),
(ii) K1 ∼q K2 iff K1 �q K2 andK2 �q K1.

For the solution of Problem 3.8 it is sufficient to consider
only controllers that are minimal with respect to the partial
ordering�q.

Proposition 5.2:Let HS be a piecewise-affine hybrid
system, and letF1 = (S, Q, s0, τ, π1,K) and F2 =
(S, Q, s0, τ, π2,K) be two feedback control automata forHS
with the same discrete behavior (but with different outputs).
Then

∀q ∈ Q, ∀s ∈ S : π1(s, q) �q π2(s, q), (16)

=⇒

L(HS, CL(HS,F1)) ⊆ L(HS, CL(HS,F2)).

In particular, if condition (16) is satisfied and all wordsw ∈
L(HS, CL(HS,F2)) satisfy theLTL-formula φ, then all
wordsw ∈ L(HS, CL(HS,F1)) satisfyφ.

Corollary 5.3: If in the setting of Proposition 5.2

∀q ∈ Q, ∀s ∈ S : π1(s, q) ∼q π2(s, q),

then hybrid systemHS generates in closed-loop withF1 the
same set of words as in closed-loop withF2, i.e.

L(HS, CL(HS,F1)) = L(HS, CL(HS,F2)).

Obviously, ∼q describes an equivalence relation on the
set Kq of admissible controllers for the affine system
(Aq, Bq, aq) on polytopeInv(q). The number of equivalence
classes is bounded above by2|Q|+1, the cardinality of the
set of subsets ofQ ∪ {ξ(q)}. Note however that subsets
Q̃ of Q ∪ {ξ(q)} may exist, for which the corresponding
equivalence class does not exist, because the set{K ∈ Kq |
NextState(q, K) = Q̃} is empty.

The partial ordering�q may be extended in a straight-
forward way to the set of equivalence classesKq/ ∼q.
So, if EqClq(Ki), i = 1, 2 denotes the equivalence class
{K ∈ Kq | NextState(q, K) = NextState(q, Ki)} of control
law Ki, then EqClq(K1) �q EqClq(K2) if and only if

∀K ∈ EqClq(K1)∀L ∈ EqClq(K2) :
NextState(q, K) ⊆ NextState(q, L).

An element (equivalence class)Eq,1 of Kq/ ∼q is called
minimal if for all Eq,2 ∈ Kq/ ∼q we have

Eq,2 �q Eq,1 =⇒ Eq,2 = Eq,1.

SinceKq/ ∼q is a finite and partially ordered set, it follows
that Kq/ ∼q has a nonempty subset of minimal elements
(see e.g. [7, p. 39]), denoted byKq,min. A feedback control
automatonF = (S, Q, s0, τ, π,K) is calledminimal if

∀s ∈ S ∀q ∈ Q ∃E(q,s) ∈ Kq,min : π(s, q) ∈ E(q,s).

Corollary 5.4: Let HS be a piecewise-affine hybrid sys-
tem, and letφ be anLTL formula. If there exists a feedback
control automatonF that solves Problem 3.8, then there
also exists aminimal feedback control automaton that solves
Problem 3.8.

Apparently, it is sufficient to restrict the attention in
location q to continuous control laws from the equivalence
classes inKq,min.

Given a hybrid systemHS we now define a transition
system corresponding toHS by applying a state feedback
to the continuous dynamics in each discrete location, and
subsequently abstracting from the continuous dynamics.

Definition 5.5: Let HS be a piecewise-affine hybrid sys-
tem with discrete state setQ. Then thecontrol transition
system CTS(HS) corresponding toHS is defined as the
transition system

CTS(HS) = (Qtot, Q0, K̂min, ∆),

whereQtot = Q∪Qinv is the finite set of discrete states,Q0 ⊂
Q is the set of initial states, and̂Kmin := (∪q∈QKq,min)∪{ǫ}
is the set of all inputs. HereKq,min is the set of all feasible
inputs for stateq ∈ Q, and the symbolǫ is the only feasible
input for statesq ∈ Qinv. Finally, ∆ : Qtot × K̂min → 2Qtot is
the (non-deterministic) transition function given by

∆(q, E) =















{q} if q ∈ Qinv andE = ǫ,
NextState(q, K) if q ∈ Q andE ∈ Kq,min,

with K an arbitrary element ofE,
∅ otherwise.

(17)
Transition function∆ in (17) is well-defined. Ifq ∈ Qinv

this is obvious, and ifq ∈ Q andE ∈ Kq,min, then for every
pair of admissible feedback lawsK1, K2 ∈ E we know that
K1 ∼q K2, henceNextState(q, K1) = NextState(q, K2). Fur-
thermore, transition system CTS(HS) satisfies the condition
that for allq ∈ Qtot the set of feasible inputsΣq is nonempty.

In the dynamics of control transition system CTS(HS),
the discrete states inQinv only play a limited role: they have
only one admissible inputǫ, which results in a self transition.
ThereforeQinv may be considered as a cemetery: once a
location inQinv is reached, it is impossible to leave it.

In the next section we will state the main results of this
paper. They describe the relationship between the control
of a hybrid systemHS (by a feedback control automaton)
and the control of its corresponding control transition system



CTS(HS) (by a control automaton): given a control objective
in terms of anLTL-formula φ, Control Problem 3.8 for
hybrid systemHS is solvable if and only if Control Problem
4.6 for control transition system CTS(HS) is solvable.
Furthermore, we will describe how a feedback control au-
tomaton forHS solving Control Problem 3.8 may be used
to construct a control automaton solving Control Problem
4.6 and vice versa.

VI. T EMPORAL LOGIC CONTROL FOR HYBRID SYSTEMS

AND CONTROL TRANSITION SYSTEMS

Let HS be a piecewise-affine hybrid system, with corre-
sponding control transition system CTS(HS). First we de-
scribe the construction of a control automaton for CTS(HS)
from a minimal feedback control automaton forHS.

Definition 6.1: Let F = (S, Q, s0, τ, π,K) be a minimal
feedback control automaton for piecewise-affine hybrid sys-
temHS, and let CTS(HS) be the control transition system
corresponding toHS. The control automatonCA(F) for
CTS(HS) corresponding toF is defined as

CA(F) = (S, Qtot, s0, f1(τ), f2(π), K̂min), (18)

whereS denotes the state set,s0 is the initial state,Qtot =
Q∪Qinv is the input set, and̂Kmin is the output set, and with
memory update functionf1(τ) : S × Qtot → S given by

f1(τ)(s, q) =

{

τ(s, q) if q ∈ Q,
s if q ∈ Qinv,

(19)

and output functionf2(π) : S × Qtot → K̂min given by

f2(π)(s, q) =

{

EqClq(π(s, q)) if q ∈ Q,
ǫ if q ∈ Qinv.

(20)

Note that CA(F) is a well-defined control automaton
for CTS(HS). Since the feedback control automatonF
is minimal, we know that for all(s, q) ∈ S × Q the
feedback lawπ(s, q) is an element of the equivalence class
EqClq(π(s, q)) ∈ Kq,min, so f2(π)(s, q) = EqClq(π(s, q)) ∈
Kq,min is a feasible input to control transition system
CTS(HS) at stateq ∈ Q. Similarly, if (s, q) ∈ S × Qinv

then f2(π(s, q)) = ǫ is a feasible input to CTS(H) at state
q ∈ Qinv.

The first main result states that the application of feed-
back control automatonF on hybrid systemHS yields the
same closed-loop language as the interconnection of control
transition system CTS(HS) with control automaton CA(F).

Theorem 6.2:Let HS be a piecewise-affine hybrid sys-
tem, and let CTS(HS) be the control transition system
corresponding toHS. Let F be a minimal feedback control
automaton forHS, and let CA(F) be the corresponding
control automaton for CTS(HS). Then

L(HS, CL(HS,F)) =
L(CTS(HS), IC(CTS(HS), CA(F))).

(21)

In Theorem 6.2 a control automaton for transition system
CTS(HS) is constructed, based on a minimal feedback
automatonF for hybrid systemHS. It is also possible to
proceed in the opposite direction. In the next definition,

a given control automaton for control transition system
CTS(HS) is transformed into a minimal feedback control
automaton for the original hybrid systemHS.

Definition 6.3: Let HS be a piecewise-affine hybrid sys-
tem, with discrete state setQ, and let CTS(HS) be
the corresponding control transition system. LetA =
(S, Qtot, s0, τ, π, K̂min) be a control automaton for CTS(HS),
andρ = (ρq)q∈Q a tuple of selection functionsρq : Kq,min →
Kq with the property thatρq(E) ∈ E for all E ∈ Kq,min.
Then the minimalfeedback control automaton FCA(A, ρ)
for HS corresponding toA and ρ is defined by

FCA(A, ρ) := (S, Q, s0, g1(τ), g2(π),K),

with state setS, deterministic initial states0, input setQ,
memory update functiong1(τ) : S × Q −→ S, given by
g1(τ)(s, q) = τ(s, q), output setK, and output function
g2(π) given by

g2(π) : S × Q −→ K : g2(π)(s, q) = ρq(π(s, q)). (22)

The feedback control automaton FCA(A, ρ) is well-
defined, because for every(s, q) ∈ S ×Q, the feedback law
g2(π)(s, q) belongs toKq. The next result can be considered
as a reflection of Theorem 6.2.

Theorem 6.4:Let HS be a piecewise-affine hybrid sys-
tem, and let CTS(HS) be the control transition system cor-
responding toHS. If A is a control automaton for CTS(HS),
and ρ = (ρq)q∈Q is a is a tuple of selection functions
ρq : Kq,min → Kq with the property thatρq(E) ∈ E for
all E ∈ Kq,min, then

L(HS, CL(HS, FCA(A, ρ))) =
L(CTS(HS), IC(CTS(HS),A)).

(23)

By combining Theorem 6.2 and Theorem 6.4, the design
of a minimal feedback control automaton for a hybrid system
HS may be reduced to the design of a control automaton
for the control transition system CTS(HS) corresponding to
HS.

Theorem 6.5:Let HS be a piecewise-affine hybrid sys-
tem with discrete state setQ, and let CTS(HS) be the
corresponding control transition system. Letφ be anLTL-
formula overQtot that specifies the control objective. Let
Spec(φ) denote the subset ofQω

tot, that contains all sequences
(qi)i∈N0

∈ Qω
tot that satisfyLTL-formulaφ.

(i) There exists a feedback control automatonF for
HS such that L(HS, CL(HS,F)) ⊂ Spec(φ) if
and only if there exists a control automatonA for
the control transition system CTS(HS) such that
L(CTS(HS), IC(CTS(HS,A))) ⊂ Spec(φ).

(ii) If the minimal feedback control automatonF is
such thatL(HS, CL(HS,F)) ⊂ Spec(φ), then the
interconnection of CTS(HS) and CA(F) satisfies
L(CTS(HS), IC(CTS(HS, CA(F)))) ⊂ Spec(φ).

Let ρ = (ρq)q∈Q be a tuple of selection functionsρq :
Kq,min → Kq.

(iii) If control automaton A guarantees that
L(CTS(HS), IC(CTS(HS,A))) ⊂ Spec(φ),



then application of the minimal feedback control
automaton FCA(A, ρ) to hybrid systemHS yields
L(HS, CL(HS, FCA(A, ρ))) ⊂ Spec(φ).

Theorem 6.5 can be applied to translate Control Problem
3.8 for hybrid systemHS into the purely discrete-event
Control Problem 4.6 for control transition system CTS(HS).
In general, the latter will be easier to solve, and any technique
that is available in the discrete-event setting may be used.
Once a suitable control automatonA for CTS(HS) has been
found, Theorem 6.5 describes how it can be transformed
into a feedback control automaton FCA(A, ρ) for HS, that
realizes the required control objective in the hybrid setting.

Remark 6.6:If Control Problem 4.6 for CTS(HS) is
not solvable, it is obvious that the corresponding Control
Problem 3.8 for hybrid systemHS with arbitrary continuous
initial states is not solvable either. However, if the continuous
initial states ofHS are fixed by reset maps (cf. Remark
2.7), it may happen that there still exists a feedback control
automaton for this modified situation, because the language
generated by a hybrid automaton with fixed continuous
initial states is a subset of the language of the same hy-
brid automaton with arbitrary continuous initial states. This
conservativeness is inherent to our approach based on hybrid
systems witharbitrary continuous initial states. On the other
hand, any solution for the case of arbitrary continuous initial
states remains a solution if the continuous initial states are
fixed by reset maps.

Note that the solution strategy proposed in this paper will
only work if the following two issues are resolved:

1) Construction of control transition system CTS(HS)
from hybrid systemHS. Although Definition 5.5
contains a formal description, it is not completely
constructive, because in every locationq ∈ Q full
knowledge of the setKq,min of minimal equivalence
classes inKq/ ∼q is required. The question is, how this
information can be obtained from an implementation
of the functionNextState.

2) A constructive solution to the discrete-event Control
Problem 4.6 is needed.

Ad 1: For given q ∈ Q and K ∈ Kq, the set
NextState(q, K) is easily computed: it suffices to check the
direction of the affine vector field of the closed-loop system
at the vertices of polytopeInv(q) and to check for a fixed
point in Inv(q) (see e.g. [8],[9]). However, ifKq contains
infinitely many elements is is impossible to carry out these
computations for all admissible affine feedbacks. Instead one
has to verify for each subset̃Q of the finite setQ ∪ {ξ(q)},
whether there exists a continuous control lawK ∈ Kq

such thatNextState(q, K) = Q̃. This question is a so-called
control-to-facet problem (see [9]), that has been solved for
piecewise-affine systems on simplices. Also for other types
of dynamics (partial) solutions exist (see e.g. [3]).

Ad 2: Let φ be anLTL-formula that describes the control
objective for control transition system CTS(HS). Then there
exists a so-calledBüchi automatonB ([2]) that accepts words
w ∈ Qω if and only if w satisfiesLTL-formula φ. If B is

a deterministicBüchi automaton, it may be interconnected
with the (non-deterministic) control transition system. On
this product automaton a so-called Büchi game has to be
solved. If a winning strategy exists, then the original control
problem is solvable. Furthermore, based on the winning
strategy, a control automaton for the control transition system
CTS(HS) may be constructed.

The implementation issues mentioned above will be elab-
orated in more detail in a different paper on hybrid feedback
control. There a complete construction will be given for the
class of piecewise-affine hybrid systems on simplices.

VII. C ONCLUDING REMARKS

In this paper we have developed a strategy for solving
control problems on piecewise-affine hybrid systems with
continuous inputs, for which the control objective is specified
by anLTL-formula on the words generated by the system.
The main idea was to abstract the hybrid system to a control
transition system, try to solve the control problem in this
purely discrete setting, and to translate the control automaton
that was obtained for the abstraction, into a feedback control
automaton for the original hybrid system. In this paper, the
emphasis was on exact specification of different types of
systems, their behavior, the language generated by these
systems, and feedback interconnections of systems. In a
different paper the authors plan to elaborate this strategyinto
a constructive algorithm, and to provide some illustrations of
its applicability.
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