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Abstract— In this paper, a method is proposed for the design from the control automaton for the discrete transition exyst
of control laws for hybrid systems with continuous inputs. The  |n the paper, the main emphasis is on the rigorous definition
objective is to influence their behavior in such a way that of hybrid systems, hybrid automata and their semantics, and
the discrete component of the closed-loop system satisfies a . ! . ’
given condition, described by a temporal logic formula. For ©ON the introduction of the fundamental notion of fgedback
this purpose, a transition system is constructed, by abstting ~ Control automata. The proofs of the results are omitted and

from the continuous dynamics of the hybrid system. Itis show  will be published elsewhere.
that a controller for this transition system, realizing the given

control objective, corresponds to a controller for the orignal II. DEFINITION AND SEMANTICS OF HYBRID AUTOMATA
hybrid system, realizing the same objective, and vice versa ) )
For the study and design of feedback control mechanisms

. INTRODUCTION for hybrid systems with continuous inputs, one first needs
Hybrid systems are dynamical systems with interacting formal definition of a hybrid system without inputs. In
discrete-event and continuous dynamics. Many control sythis section we introduce these so-called hybrid automata
tems have a hybrid character, and examples of hybrid contr@ee e.g. [11]), and describe their behavior, both in terfns o
systems are abundantly available, ranging from car engindsybrid trajectories and in terms of the words generated by
air traffic and robot planning control to electric powerthese trajectories.
networks. Throughout this paper we use the notatidinfor the
Within the field of hybrid systems the class of piecewisenatural numbers without, andN, = NU{0} for the natural
affine hybrid systems on polytopes has been studied quitembers, including).
extensively. In the literature different approaches hasenb  Definition 2.1: A hybrid automaton with arbitrary contin-
proposed for the design of controllers for this class ofious initial states is a tuple
systems. One of them is based on the idea of control-to-facet
([8]). Assuming that the discrete switching is determined HA=(Q,Qo,T,N,Inv,G,S), 1)
by the facet through which the continuous state leaves Bhere
polytope, the continuous input can be used to influence the ) o _
behavior of the discrete dynamics. In [9] this approach was * Qis gflmte set of discrete states (also called modes, or
used to solve a reachability problem for hybrid systems with ~ locations), o
safety constraints. e Qo denotes.the set of |n|t|al dlscrete. §tates,
This paper may be considered as an extension of [9] intwo * 1 € @ x Q is a set of discrete transitions,
directions: (1) instead of a reach-avoid condition, thelgma * ~ : @ — N is a map giving the dimensiof, of the
to achieve a control objective stated as a linear temporal ~continuous state in each modee @, .
logic formula over the discrete modes of the hybrid system, * IN"V: Q — Z?R " is the invariant map, where(q) is a
(2) instead of fixing the applied continuous feedback in each ~ full dimensional closed convex subset®f’,
discrete mode, a new dynamic hybrid feedback mechanisme G is @ guard that associates a subsetlof/(q) to each

is studied that allows the application of different contins transition(q,¢') € T, o _
feedbacks in one discrete mode. A crucial step is the con-* S = (fig)eeq IS @n assignment of Lipschitz continuous
struction of a discrete transition system from a hybrideyst vector fieldsh, : Dom; — R™, (¢ € @), with for all

by abstracting the continuous dynamics. It is shown thaethe ¢ € @, Dom, an open set that contaifisv(q).
exists a control automaton that realizes the required obntr Informally, a hybrid automaton is an automaton with a
objective for this transition system if and only if there s continuous-time autonomous system at each discrete mode
a so-called feedback control automaton that realizes te sa¢: governed by the differential equatian(t) = hq(z4(?))-
objective for the original hybrid system. Furthermore,sit i This differential equation remains valid as longigst) is an
shown how this hybrid feedback mechanism can be obtain&ement of the invariant sétv(q). Exactly at the time-instant
that the continuous state, leavesinv(q) by crossing a guard
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continuous state may leave the state sét: The time instants{¢; | ¢ = 1,...,n} are the switching
times, i.e. the time instants on which a discrete transition

Dept(P h) = {zgcdP[3e>0stforallie(0,e)  occurs. Ifn is finite, then conditior(iii) implies thatz, ()
the solution ofi(t) = h(z(t)), with remains inlnv(q,,) forever. It may happen that , = ¢;
2(0) = z, satisfiesz(t) ¢ P}. (2) for somei € No. In that case there is a switch to mode

at timet;, but the corresponding continuous state is started

So, in modeq of a hybrid automatonDept(Inv(q),h,) is  in a pointz;(t;) € dInv(g;) with the property thate;(t;) €
the corresponding departure set. In order to guaranteathabept(Inv(g;), h,,) N G(gi, gi+1). SO at the same time-instant
hybrid automaton ision-blockingall points in this departure ¢, ; = ¢; the hybrid automaton will switch to statg, . In
set must belong to a guard (see e.g. [11]): this case, the discrete mode and corresponding continuous
state at time; = t;1 is not specified in a unique way.
Vg € Q Vx € Dep(Inv(q), hy) 3¢’ € Q s.t.z € G(q,q). i P q Y

) ) . 3) . In this paper we do not study the full behavior of a hybrid
In the sequel we will only consider non-blocking hybrid, somaton but confine ourselves to specifications described
automata. However, by abuse of terminology we will often, orms of the discrete locations that are visited by these

omit the adjective “non-blocking”, and just speak of hybridyy iy trajectories. For this we have to make a distinction
automata. Note that a non-blocking hybrid automaton M&Yatween locationgy € Q that are left in finite time, and

be non-deterministic: if a point Depf(an(Q); hq) beloggs locationsq € @ for which the continuous state remains in
to more than one guard, eg.c G(q,¢') andi € G(q,4"),  |ny(q) forever. LetQp be a set of symbols of the same
then both the transition t¢’ and ¢” are enabled when the cardinality asQ, such thatQ N Qi = @, and leté : Q —
continuous state;, leavesinv(q) through the point:. O be a bijective mapping. We defi@or := Q U Qiny.

) i ) _For any finite setS, we denote by.S| the cardinality ofS,
Next we specify the semantics of a hybrid automaton ”By 25 the set of subsets df, and byS* the set of infinite
a more formal way. Since in none of the discrete mOde§equences with elements frafh

the cqntinuous initiall state is §pecifieq, we combine the Definition 2.4: The word w
behavioral approach (in the fashion of Willems, see e.d], [12,[ ; ; Lo

) . L : . rajectory p is an infinite seq

[13]) with the notion of hybrid time trajectories ([11], [8hd : : : .

. : ! - defined in the following way:

[6]) to describe the set of all hybrid state trajectories of a i .

hybrid automaton (1) If p= (g, ti,z:)1, is afinite sequence, thew; := g;

Definition 2.2: Let  be a finite set of discrete states, and ) lifor Z_S 0<n _angw? = 5_(‘1]:})_for L>n. hom,

let Inv(q), (¢ € Q), be the closed convex set of continuous(?) 1f » = (ai,ti, :);Z, is aninfinite sequence, them; :=

states corresponding t@ A hybrid trajectoryis a finite or ¢i for all i € No. . . L
infinite sequence So the word generated by a hybrid trajectory is simply

the enumeration of the modes visited by that trajectonyh wit

(p) generated by a hybrid
uence = (w;)ien, € Qi

p = (g, ti, x:) g, infinitely many repetitions of the symbgl ¢, ) if the mode
. . ) ¢n is reached and then never left.
(i.e. eithern € Ny or n = o0), with ¢; € @, (£i)i_y @ noN-  pefinition 2.5: The set of all words that are generated

decreasing sequence B, andz; : [t;;ti11] — InV(¢;) @ py the hybrid trajectories in the behaviB(H.A) of hybrid

trajectory of the continuous state at locatign The number gytomatori{.A is called thdanguagegenerated by{.A, and
n, which may be infinite, is the number of discrete transitiong genoted by

in p. If n is finite, thenz,, : [t,, 00) — Inv(gy,).
A hybrid trajectoryp provides an exact description of both L(HA) = {w(p) | p € B(HA)}. (4)
the evolution of the discrete mode and of the corresponding The specifications that we want to accommodate in this
continuous state of one particular execution of a hybrigaper are "rich” temporal and logic statements about the
automaton. The set of all possible executions of a hybriteachability of discrete locations (modeg)c @ by the
automaton is called its behavior: hybrid trajectories of a hybrid automat@dA. In particular,
Definition 2.3: The behaviorB(H.A) of a hybrid automa- Wwe focus on specifications given as formulas of a fragment
ton H.A is the set ofall hybrid trajectorie that satisfy the of Linear Temporal Logic [4] over the set of symbalko:.

following conditions: For simplicity, we will call this logicLT L throughout the
() g0 € Qo paper. Informally, such formulas are recursively defined by
(i) For all 0 <i<n using the standard Boolean operataegy(,— (negation),v

(disjunction),A (conjunction)) and temporal operators, which
for all t € (t;,t:11) include U (”uptil”), O ("always”), < ("eventually”). Such
6 "i1)s formulas are interpreted over the words(xy,, as generated
2. wi(tiv1) € DepUinv(gi), h,) N G(gi gi41), by the hybrid automatof{.4, according to Definition 2.4. If
(iif) If the numbern of discrete transitions irp is finite ¢1 and ¢, are twoLT L formulas overQy, formulag, U ¢,
(iLe. n € No), thenz, is continuous onft,,c0) and  jntyitively means that (over some worg) will eventually
in(t) = hq, (zn(t)) for all t € (tn, 00). become true andg, is true until this happens. For alil'L

1. z; is continuous offt;, t;11] and; (t) = h, (z;(t))



formula ¢, formula $¢ means thatp becomes eventually 3) Fori € {0,1,...,n—1}, z; leavesinv(g;) at timet; 1
true, wherea$l¢ indicates thatp is true at all positions of by crossing a facet” € Fac;, (gi+1)-

a word. More expressiveness can be achieved by combinifigcomparison with the definition of a hybrid automaton, the

the mentioned operators. For example,lp means thaty  5ssignmenEac replaces both the set of transitiofisand the

will eventually become true and then remains true foreveget of guardss. In particular it is assumed that a switch from

while [J¢¢ means that is true infinitely often. discrete modey; to ¢, occurs, if stater; leavesinv(g;) by
Definition 2.6: A hybrid automaton{.4 with discrete crossing a faceF € Fac, (¢i+1), and that this transition

state set) is said to satisfy ar.T'L formula¢ over Qur, if  completely depends on the facet that is crossed.

all wordsw € L(HA) satisfy ¢. In the sequel we will often omit the adjectives “piecewise-

Remark 2.7:In the Iiter_ature, the definition of a hybrid affine” and “over polytopes” for systems of the form (5), and
automaton usually containsraset map that describes the just speak of hybrid systems.

relation between the final continuous state in the old discre Next we define what a controller is in this hybrid context,

mode and the initial continuous state in the new discretgnd how hybrid feedback should be interpreted.
mode. So, the corresponding behaviors and languages APefinition 3.2: A feedback control automatdor a hybrid
more restrictive, and ahT L formula is more easily satisfied. systemHsS is a tuple

Unfortunately, incorporation of reset maps often leads to

decidability problems. In the approach presented in thiepa F=(5,Q,s0,7,7,K), (7)
undecidable problems are avoided at the cost of obtaining
more conservative results. where
ll. PIECEWISE-AFFINE HYBRID SYSTEMS AND « S s the set of discrete states of automatbn
FEEDBACK CONTROL AUTOMATA « () is the discrete input set, equal to the set of discrete

locations of HS,

o sp is the (fixed) initial state of the deterministic automa-
ton F,

e 7:5 %@ — S is the memory update function,

o K = Ugegk, where for eachy € @, K, is a set of
affine mappings froninv(q) to U.

e m:S5x@Q — K is the output function, with the property
that for alls € S andq € Q: 7 (s, q) € K,.

The main object of study in this paper are hybrid systems
with continuous inputs. The main difference with hybrid au-
tomata is that the continuous input may be used to influence
the evolution of the hybrid trajectories. For this purpos®a
called feedback control automaton is introduced. In clesed
loop with a hybrid system, this yields a hybrid automaton.
Given an LT L-formula ¢, the problem is to construct a

feedback control automaton that guarantees that the lgegua A feedback control automaton may be considered as an

genergt.e.d by th.e coqtrolleq hyb”.d system_ satisfies automaton with inputs and outputs. Given a (finite or infinite

Definition 3.1: A piecewise-affine hybrid system over. .

) . . . . input trajectoryqo, q1, g2, - - -, the automaton produces a state

polytopeswith m continuous inputs and arbitrary continuous_ " , -

" . trajectorysy, s1, so, . .. defined by the transitions
initial states is a tuple

HS = (Q,Qo, N, Inv,Fac, S, U), (5) Si+1 = T(8i, i),
where: and a corresponding output sequericg,, K, , Kg,, ... of
« @ is a finite set of discrete states, affine mappings, withi(,, = 7(s;, ¢;)-
o (o denotes the set of initial discrete states, Given a hybrid systert{S, a feedback control automaton
e N : @ — Nis a map giving the dimensiofy, of the for HS describes a state feedback law for this hybrid system
continuous state in each modec @, in the following way. The hybrid systefS starts at time,
o Inv: Q — 28" is the invariant map, wherv(g) is a in discrete locationyy € Qq, and with arbitrary continuous
closed full dimensionapolytopein RMq, initial state zo(ty) = z) € Inv(qo); the feedback control
« Fac = (Fag,),cq is an assignment of mapsac, : automaton is initialized in discrete statg. For everyi
FT(Inv(q)) — Q, ¢ € Q, where FT (Inv(q)) denotes {0,1,...,n} (with eithern € Ny or n = oo) the continuous
the set of facets of polytopkav(q), state evolves according to the affine differential equation

o § = (Ay, By, aq)qeq is an assignment of affine sys- 0
tems, with4, € RN«*Ne, B, € RNo*m anda, € RNe,  &i(t) = Agi(t) + By, Ko, (2i(t)) +ag,,  wi(ti) = z7, (8)

« U is the input setlU is a polytope inR™.

This definition is interpreted in the following way. Let
u : [to,00) — U be an input trajectory. Thefy;,t;, z;)},
(with eithern € Ny or n = 00) is a corresponding hybrid
trajectory of HS if

with K,, = m(s;,¢;) andz? an arbitrary element inv(g;).
If at time ¢,1; the continuous state trajectomny(¢) crosses
facet F' € F7(Inv(g;)), then an instantaneous transition to
locationFag,, (F) of hybrid systenfHS occurs. At the same
1) 0 €O time instant, the control automaton switches to statg =
0= =0 _ 7(si,q;), and the affine systertA,, . ,, By,.,,a,,.,) at lo-
2) Foralli € {0,1,...,n} the function; : [t;, tiy1] — cétionq)iﬂ is governed by ther(;g}f(ilnta1 fegd+blacli Teli%zml =
Inv(q;) satisfies the affine differential equation (5541, gis1). Again, the continuous initial States 1 (1)
#;(t) = Agzi(t) + Bg,u(t) + aq,, (6) is assumed to be an arbitrary elementiof(g;11). In this



way, the interconnection of hybrid systekiS and feedback o S, = (h(gs))(q,5)coxs IS the assignment of affine
control automator turns out to be a hybrid automaton. vector fieldsh, ) : InV(q) — RN, ((¢,5) € Q x 9),
whereh, ) (z) = Agz + By (s, q)(x) + aq,

Before we can define the closed-loop automaton in a .« 7, C S, x S, the set of discrete transitions
formal way, we first have to specify what the exact meaning . ,
of crossing a facetis. This is not completely obvious in T, = g%q, SI):’ (?_,s/)) th;é’ XFSf |5 :hT(S’q) and
those cases where the exit point is an element of a lower € Fac; (¢) s.LESE, In(g), hy,5)) # 2},
dimensional face of the state polytope, and belongs to . GuardsG, associating the union of exit sets
more than one facet. We resolve this issue by adopting the

terminology and approach described in [9, Section IV.B]. Gp((g,9),(d,s) = | ESFIV(g) b))
Definition 3.3: Let P be a full dimensional closed convex FeFac;~(a")
polytope inR™, and leth : R — R™ be an affine mapping. to each transitior{(q, s), (¢, s")) € Tp.
Let I be a facet ofP. Note that the discrete part of the closed-loop system is
(i) The exit setof F' with respect to the affine dynamics obtained by taking the product of the automata describing
z(t) = h(z(t)) on polytopeP is defined by the discrete switching ofHS and F, respectively. The

o T continuous open-loop dynamics is simply copied fréhS.
ESE, P, h) = cl{z € F' | nph(z) > 0}, ©) The discrete state of F only plays a role in the choice of

wheren denotes the outward unit normal vectorfof the affine control lawr (s, ¢). This opens the possibility to

w.r.t. polytopeP. apply different feedback laws on the continuous dynamics at

(i) A trajectoryz : [to, 1] — P that satisfies the differen- On€ discrete location of the hybrid systes.
tial equation(¢) = h(z(t)) is said to leave polytope According to Definition 2.4 the words generated by the

P at timet; by crossingfacet F if hybrid trajectories((g;, si), ti, zi)i=o of CL(HS,F) are
elements of(Q x S)y;. Since we want to influence the
x(t1) € Dep{P,h) N ESF, P, h). (10) words generated by the hybrid systé#s by application of

According to [9, Lemma 4.7] every poititc Dep{P,h) a feedback control automataf, only the first component
belongs to the exit set of at least one facet. It may happgfrom Q) in every element of these words is of interest.
that a point € Dept(P, h) on a lower dimensional face of  Definition 3.6: Let p = ((¢, s:), ti, z:)", be a hybrid
P belongs to the exit sets of more than one facet. It is alspajectory of the closed-loop of hybrid systefS and feed-
possible that such a point belongs to a faEebut is not an back control automatorF. Then the wordwe (p) generated
element ofESF, P, h). by p w.r.t. to the closed-loop system is an infinite sequence

Assumption 3.41f a trajectory of the continuous state of wq(p) = (w;)ien, € Q% defined in the following way:

a piecewise-affine hybrid automaton leaves polytbp&q) (1) If p = ((qi,5:),t:, 7:)", is a finite sequence, then

by crossingthe facetsFi, ..., I}y, then the discrete mode w; = q; for i <0 < n andw; := &(gy) for i > n.
will switch instantaneously to a mode that belongs to thgo) If » = ((q;, s,), t;, 2:)3, is aninfinite sequence, then
set{Fac,(F;) | i = 1,...,k}. l.e. for all¢,¢' € Q, guard w; = q; for all i € No.
G(q,q') is given by Definition 3.7: Let HS be a piecewise-affine hybrid sys-
N tem, and letF be a feedback control automaton f&fS.
Gla,d) = FeFachJ ( )ESF’ nv(q), hg)- (11) Then the language generated BS in closed-loop withF
— q/

Assumption 3.4 induces some non-determinism in thi$ defined by

switching behavior of the underlying automaton. If a tra- (1S CL(HS, F)) := {wa(p) | p € B(CL(HS, F))}
jectory leavednv(q) by crossing several facets at the same (12)

time, then the induced transition is not uniquely determine  Hence, £(HS, CL(HS, F)) is the projection of the full
The previous considerations lead to the following congjosed-loop languag&(CL(H.S, F)) from (Q x 5)%, to Q%,.

struction of the closed-loop of a hybrid systeftS and a  |n this paper we study how feedback control automata can
feedback control automataA. be used to influence the language of a hybrid system:

Definition 3.5: The closed-loop of a piecewise-affine  proplem 3.8: Let HS be a piecewise-affine hybrid system
hybrid system HS = (Q,Qo,N,Inv,Fac,5,U) and wjth discrete state sef), and let¢ be an LT L-formula
feedback control automaton® = (5,Q,s0,7,7,K)  overQ that describes the control objective that we want to
for 'HS is the hybrid automaton QIHS,F) = achieve. The problemis to find a feedback control automaton
(Sps Sp.0, Tp, Np, IV, G, Sp,) With F for HS such that alw € L(HS, CL(HS, F)) satisfy ¢.

e S, =@ x S the finite set of discrete states,

e Sp0 = Qo x {so} the set of initial discrete states,

e N,:S, — Nis the map(q,s) — N,, describing the  Instead of solving Problem 3.8 directly, we translate it
dimension of the continuous state in mo@des) € S,, from a hybrid into a purely discrete-event setting, and first

e lnv, : S, — oRY" ic the invariant map, with consider the same control problem for discrete event system

Inv, (g, s) = Inv(q) for all (g, s) € S, with inputs.

IV. TRANSITION SYSTEMS AND CONTROL AUTOMATA



Definition 4.1 (Transition system)A finite (non- Again, since control automatorl is the object to be
deterministic) transition system is a tugle= (@, Qo, %,96), designed, we are primarily interested in the wouds Q*,
where( is a finite set of state€)y C @ is the set of initial that are generated by the transition systépinterconnected
states,Y. is a finite input alphabet, anl: Q@ x ¥ — 29 is  with control automator.

a (non-deterministic) transition function. Definition 4.5: The languageC(7,IC(7,.A)) of all state

WheneverQ), is not specified, we assume th@h = (). words that are generated by transition systdm after
For a given statg € @, the set of available (feasible) inputsinterconnection with control automato#, is defined by
is denoted byX,, i.e. X, = {c € ¥ | |d(¢,0)] > 1}. In

L(T,IC(T, A)) == {(gi)ien, € Q[ I(si)ien, € 5¥sit.

the sequel we assume thaf # @ for all ¢ € Q. If at \
stateq € Q an inputo € 3, is applied, then the state will (90, 50) € Sp.0,andVi € No = (i+1, si+1) € 9p(ai, Si)}('l3)

switch to an element of the séfg, o). Obviously, a transition
systen’ is deterministidf it has only one initial state and its
transition function satisfiegi(¢,0)| =1, Vg € Q, 0 € X,.

Definition 4.2: Let 7 = (Q,Qo,%,d) be a transition
system, and letv = (¢;)ien, € Q¥ ando = (0y)ien, € B¢
be infinite sequences of states and inputs, respectivegn Th
o is called anadmissible input wordor the (state) wordw
if the following conditions are satisfied:

(i) VieNg: g; € Ygis

(II) Vi € Ny : gi+1 € 5(qi,ai).
The language£(7) of all state words generated by transition
system7 is given by L(7) = {w € Q¥ | wy €
Qo, and there exists an admissible input weréor w}.

A control objective for a transition systei may be
formulated as a requirement on the set of all (state) word
E.g., given anLT L-formula ¢ over J, one may want to
guarantee that all wordswy € L£(7) satisfy formula ¢.
Usually, the realization of such a control objective regsir
the design of an automaton that generates suitable inputLet g be one particular discrete mode of a piecewise-affine
valueso; € %, based on knowledge of the finite statehybrid systen?{S. If at modeq an admissible affine control
sequencey, g1, g2, - - - , gi. law K : Inv(q) — U is applied to the continuous staig,

Definition 4.3 (Control automaton)A control automaton then the set of possible transitions from maegis restricted
A for a transition systenT = (Q, Qo, %, 0) is a tupleA = by the behavior of the closed-loop dynamics
(S, Q, so, 7,7, %), with:

In the setting of transition systems and control automata,
Problem 3.8 corresponds to:

Problem 4.6:Let T = (@, Qo, X, ) be a transition sys-
tem, and lety be anLT L-formula over@. Find a control
automatonA = (S, Q, so, 7, ™, X) such that all wordsv €
L(T,IC(T, A)) satisfy ¢.

For solving Problem 4.6, constructive methods exist, based
on interconnection with a suitable Buchi automaton ([2]).
The main idea of this paper is to transform hybrid control
Problem 3.8 into Problem 4.6 for a related transition system
obtained by abstraction, to design a control automaton in
the discrete-event setting, and to transform this control
automaton back into a suitable feedback control automaton
Eor the original hybrid system.

V. ABSTRACTION OF A HYBRID SYSTEM TO A CONTROL
TRANSITION SYSTEM

. S is a finite set of states, Tq(t) = hq(zq (1)), (14)

. 501S the _(determlnlstlc) |_n|t|al state, on the polytopenv(q), whereh,(z) = A,z + B, K (z) + aq

« Q is the input set, and is equal to the set of states Qfenotes the affine vector field of the closed-loop system.
7T, . . In particular, the set of possible transitions depends @n th

« 7:5x @ — S is the memory update function, set of exit sets that are intersected by the departure set

o Y is the output set, and is equal_ to th_e input se?of Depi(Inv(¢), h,). We define the seNextStaté;, K) as the
« m:5xQ — Yis the output function, with the property set of all discrete states to which the system may switch
that(s,q) € 3 for all (s,q) € 5 x Q. if controller K is applied to the continuous dynamics at

Given initial states, € S and applying the words = |gcation . Again we distinguish two cases: switching to
(4i)ien, € L(T), the automaton produces a staté Wortyy gther location in finite time, and remaining in the same
(si)ien, satisfyingsiy; = 7(si,q;). If the corresponding |5cation forever. Formally statedyextStateis a mapping
output word(ci)ien, € X given byo; = m(si,¢:), SEIVeS from () ({g} x K,) to 2%t defined by
as an admissible input word fav € £(7), we obtain the 9€Q !

following interconnection off and A: Forq' € Q : ¢ € NextStat&y, K) if and only if
Definition 4.4: TheinterconnectiorlC(7, .A) of the (non- JF € Fac; (¢') s.t.ESF,Inv(q), hq) # &,
deterministic) transition systerfi = (Q, Qo, %, d) and the
control automatond = (S, Q, so, 7,7, %) is defined as the Forq' € Qinv : ¢’ € NextStatéy, K) if and only if
non-deterministic automato(®,, Sp.0, d,), where ¢’ = &(q) and3z) € Inv(q) s.t. solutionz,(t) of
e S, =Q x S is the finite state set, (14) with initial statez,(to) = = satisfies
e Spo = Qo x{so} is the set of initial states, z4(t) € Inv(q) for all t > ¢,.
e 0, : S, — 2% is the (non-deterministic) transi- (15)

tion function d,(¢,s) = {(4,8) € @ xS | ¢ € Note thatES F, Inv(q), h,) # @ if and only if there exists
0(g,7(s,q)) ands = 7(s,q)}. of a solution of differential equation (14) that leaves(q)



by crossing face#'. Hence,NextStaté;, K) is a honempty An element (equivalence clasg), ; of K,/ ~, is called
subset ofQ U {£(q)}. minimalif for all E,, € K,/ ~, we have

The functionNextStatas an important building block for
the abstraction of a hybrid system to a transition system.
In this setting, the exact form of the applied affine controkincex,/ ~, is a finite and partially ordered set, it follows
law is not important. Instead one is interested in the set (ﬂf]at }Cq/ ~q has a nonempty subset of minimal elements

discrete states to which the system can switch in exactly ongee e.qg. [7, p. 39]), denoted By, min. A feedback control
step. This observation may be used to restrict the choice gfitomatonF = (S, Q, so, 7, 7, K) is calledminimal if

possible feedbacks to a finite number of feedbacks: if two (or
more) different feedbacks lead to the same discrete behavio Vs € SVq € Q3E(g) € Kgmin = 7(s,q) € E(qs).-

it is sufficient to consider only one of these feedback laws. Corollary 5.4: Let HS be a piecewise-affine hybrid sys-

Formally, one may describe this by the following partialtem, and lety be anLT L formula. If there exists a feedback

Ofde”,”g-_ _ control automaton¥ that solves Problem 3.8, then there
Definition 5.1: Let ¢ € @ and letK; and K be tWo 554 exists aninimalfeedback control automaton that solves

admissible feedback laws for system (14)lam(q). Then Problem 3.8.

() K1 =, K, iff NextStatey, K1) C NextStatgy, K»), Apparently, it is sufficient to restrict the attention in

(i) Ki~q Ko iff K1 <, K2 and Ky =<, K. location ¢ to continuous control laws from the equivalence
For the solution of Problem 3.8 it is sufficient to consideclasses inC, min.

only controllers that are minimal with respect to the péartia

Eq2 2qg Eqqn = Eg2 =Eq1.

ordering=,. Given a hybrid systen{S we now define a transition
Proposition 5.2:Let HS be a piecewise-affine hybrid system corresponding t&(S by applying a state feedback
system, and letF; = (S,Q,so,7,7,K) and 7, = to the continuous dynamics in each discrete location, and

(S,Q, so, T, 2, K) be two feedback control automata fglS  subsequently abstracting from the continuous dynamics.
with the same discrete behavior (but with different outhuts Definition 5.5: Let HS be a piecewise-affine hybrid sys-

Then tem with discrete state s&p. Then thecontrol transition
system CT&{S) corresponding toHS is defined as the
Vg€ Q,Vs e S:mi(s,q) 24 m(s,q), (16) transition system
=

CTS(HS) = (Q'[Otv Qo, ]émina A)’

whereQ: = QUQiny is the finitg set of discrete state3, C
In particular, if condition (16) is satisfied and all wordsc () is the set of initial states, anftmin := (Uyeoq,min) U{€e}
L(HS,CL(HS, F2)) satisfy the LT L-formula ¢, then all is the set of all inputs. Her&, min is the set of all feasible

L(HS,CL(HS, F1)) € L(HS,CL(HS, F)).

wordsw € L(HS,CL(HS, F1)) satisfy ¢. inputs for state; € ), and the symbot is the only feasible
Corollary 5.3: If in the setting of Proposition 5.2 input for states; € Qiny. Finally, A : Qot X Kmin — 2@t is
the (non-deterministic) transition function given by
VQEQ7VS€S:T(1(&Q) ~q 772(£;Q)7 .
{¢} if ¢ € Qiny andFE =,
then hybrid systemS generates in closed-loop with; the Alg, E) = NextStatey, K) if ¢ € @ andE € Ky min,
same set of words as in closed-loop with, i.e. ’ with K an arbitrary element of,
I} otherwise.
L(HS,CL(HS, F1)) = L(KS,CL(KS, F2)). (17)

Obviously, ~, describes an equivalence relation on the Transition functionA in (17) is well-defined. Ifg € Qinyv
set K, of admissible controllers for the affine systemthis is obvious, and iy € Q and E € Ky min, then for every
(A4, By, aq) on polytopelnv(g). The number of equivalence pair of admissible feedback laws;, K> € E we know that
classes is bounded above By?I*!, the cardinality of the K; ~4 K>, henceNextStatéy, K1) = NextStatéy, K»). Fur-
set of subsets of) U {£(q)}. Note however that subsetsthermore, transition system CTBS) satisfies the condition
Q of Q U {£(q)} may exist, for which the correspondingthat for allg € Qi the set of feasible inpufs, is nonempty.
equivalence class does not exist, because th¢/set K, | In the dynamics of control transition system QF&S),
NextStatey, K) = Q} is empty. the discrete states i®in, only play a limited role: they have

The partial ordering<, may be extended in a straight- only one admissible input which results in a self transition.
forward way to the set of equivalence class€g/ ~,. ThereforeQi,, may be considered as a cemetery: once a
So, if EqC|,(K;), @ = 1,2 denotes the equivalence clasdocation in Qi is reached, it is impossible to leave it.

{K € K, | NextStatéy, K) = NextStatég;, K;)} of control

law K;, then EqC)(K1) =, EqCl,(K>) if and only if In the next section we will state the main results of this
paper. They describe the relationship between the control
VK € EqCl (K1)VL € EqCl, (K2) : of a hybrid systemHS (by a feedback control automaton)

NextStatéy, K') C NextStatéy, L). and the control of its corresponding control transitiornteys



CTS(HS) (by a control automaton): given a control objectivea given control automaton for control transition system
in terms of anLT L-formula ¢, Control Problem 3.8 for CTS(HS) is transformed into a minimal feedback control
hybrid systent{S is solvable if and only if Control Problem automaton for the original hybrid systerS.
4.6 for control transition system CTHS) is solvable. Definition 6.3: Let HS be a piecewise-affine hybrid sys-
Furthermore, we will describe how a feedback control auem, with discrete state sef), and let CT$HS) be
tomaton forHS solving Control Problem 3.8 may be usedthe corresponding control transition system. Ldt =
to construct a control automaton solving Control ProbleniS, Qt, so,r,w,lﬁmin) be a control automaton for CTHS),
4.6 and vice versa. andp = (pq)qeq atuple of selection functions, : g min —
Kq with the property thap,(E) € E for all E € Ky min.
Then the minimalfeedback control automaton FCA, p)
for HS corresponding ta4 and p is defined by

Let HS be a piecewise-affine hybrid system, with corre-
sponding control transition system CI&S). First we de- FCA(A, p) := (S, Q, s0,91(7), g2(), K),
scribe the construction of a control automaton for CHS)
from a minimal feedback control automaton fé{S.

Definition 6.1: Let F = (5, Q, so, 7, 7, K) be a minimal (
feedback control automaton for piecewise-affine hybrid sysql(
tem HS, and let CT$HS) be the control transition system 92
corresponding toHS. The control automatonCA(F) for g2(m) : S X Q — K ga(m)(s,q) = pg(n(s,q)). (22)
CTS(HS) corresponding taF is defined as

VI. TEMPORAL LOGIC CONTROL FOR HYBRID SYSTEMS
AND CONTROL TRANSITION SYSTEMS

with state setS, deterministic initial statesg, input set@,

memory update functiog,(7) : S x @ — S, given by
7)(s,q) = 7(s,q), output setk, and output function
) given by

5 The feedback control automaton FCA p) is well-
CA(F) = (S, Qrot, 50, f1(7T), f2(7), Kmin), (18) defined, because for evety, ¢) € S x Q, the feedback law

where S denotes the state se is the initial stateQ =  92(7)(s; q) belongs toC,. The next result can be considered
QUQiny is the input set, andlmiy is the output set, and with as a reflection of Theorem 6.2. _ _ _
memory update functiorf; (7) : S x Qwt — S given by Theorem 6.4:Let HS be a piecewise-affine hybrid sys-
, tem, and let CTEHS) be the control transition system cor-
F1(7)(s,q) = { 7(s,q) i e, (19) responding t&4S. If A s a control automaton for CTH.S),
s it q € Qin, and p = (p,)qcq is a is a tuple of selection functions
and output functionfy () : S X Qut — Kmin given by pq : Kqmin — K, with the property thatp,(E) € E for
all E € Kqmin, then
EqCI s, if € Q,
fa(m)(s,q) = ¢ 1Ch{rto2) if Z € %W. (20) L(HS,CL(HS,FCA(A, p))) = (23)
Note that CAF) is a well-defined control automaton L(CTYHS),IC(CTYHS), A)).

for CTS(HS). Since the feedback control automatdh By combining Theorem 6.2 and Theorem 6.4, the design
is minimal, we know that for all(s,q) € S x Q the of a minimal feedback control automaton for a hybrid system

feedback lawr(s, ¢) is an element of the equivalence clasgtS May be reduced to the design of a control automaton
EQCl, (7 (s, q)) € Kq.min, SO fa(m)(s,q) = EqC, (w(s,q)) € for the control transition system CTBS) corresponding to
Kqmin is a feasible input to control transition systemHS- ] . i )
CTS(HS) at stateq € Q. Similarly, if (s,q) € S X Qiny Theorem 6.5:Let HS be a piecewise-affine hybrid sys-

then fo(n(s,q)) = e is a feasible input to CT$) at state €M with d_iscrete state s@_@_, and let CT$HS) be the
7 € Qiny. corresponding control transition system. lgebe anLT L-

formula over Qi that specifies the control objective. Let
The first main result states that the application of feedSPe¢¢) denote the subset ¢fi,, that contains all sequences
back control automatorF on hybrid systent(S yields the (4i)ien, € Qi that satisfyLT L-formula ¢.
same closed-loop language as the interconnection of dontr¢i) There exists a feedback control automatgn for

transition system CT@{S) with control automaton CAF). HS such that L(HS,CL(HS,F)) C Speco) if
Theorem 6.2:Let HS be a piecewise-affine hybrid sys- and only if there exists a control automatoh for
tem, and let CTEHS) be the control transition system the control transition system CTBS) such that

corresponding t&{S. Let F be a minimal feedback control L(CTS(HS),IC(CTYSHS, A))) C Speco).
automaton forHS, and let CAF) be the corresponding (i) If the minimal feedback control automatort is
control automaton for CT@S). Then such thatL(HS,CL(HS,F)) C Spe¢s), then the
L(HS,CL(HS, F)) = interconnection of CTE{S) and CAF) satisfies
LICTSIHS) IC(CTS(HS), CA(F))). (21) L(CTS(HS), IC(CTSHS, CA(}_))))-C Speoﬁq&_).

In Theorem 6.2 a control automaton for transition systerh€t p = (pq)qcq@ be a tuple of selection functiong, :
CTS(HS) is constructed, based on a minimal feedbackygmin — Kq-
automaton¥ for hybrid systemHS. It is also possible to (iii) If control automaton A  guarantees that
proceed in the opposite direction. In the next definition, L(CTS(HS),IC(CTSHS, A))) C Spec¢o),



then application of the minimal feedback controla deterministicBlichi automaton, it may be interconnected
automaton FCAA, p) to hybrid systemHS vyields with the (non-deterministic) control transition systemn O
L(HS,CL(HS,FCA(A, p))) C Spec¢o). this product automaton a so-called Buchi game has to be
solved. If a winning strategy exists, then the original coht
Theorem 6.5 can be applied to translate Control Probleproblem is solvable. Furthermore, based on the winning
3.8 for hybrid systemHS into the purely discrete-event strategy, a control automaton for the control transitiostem
Control Problem 4.6 for control transition system GF&). CTS(HS) may be constructed.
In general, the latter will be easier to solve, and any teqimi  The implementation issues mentioned above will be elab-
that is available in the discrete-event setting may be usegrated in more detail in a different paper on hybrid feedback
Once a suitable control automatghfor CTS(HS) has been control. There a complete construction will be given for the
found, Theorem 6.5 describes how it can be transformaglass of piecewise-affine hybrid systems on simplices.
into a feedback control automaton FCA p) for HS, that
realizes the required control objective in the hybrid seti VIl. CONCLUDING REMARKS
Remark 6.6:If Control Problem 4.6 for CTEHS) is In this paper we have developed a strategy for solving
not solvable, it is obvious that the corresponding Controtontrol problems on piecewise-affine hybrid systems with
Problem 3.8 for hybrid systefiS with arbitrary continuous continuous inputs, for which the control objective is sfiedi
initial states is not solvable either. However, if the conbus by an LT L-formula on the words generated by the system.
initial states of HS are fixed by reset maps (cf. Remark The main idea was to abstract the hybrid system to a control
2.7), it may happen that there still exists a feedback contrtransition system, try to solve the control problem in this
automaton for this modified situation, because the languageirely discrete setting, and to translate the control aatom
generated by a hybrid automaton with fixed continuouthat was obtained for the abstraction, into a feedback obntr
initial states is a subset of the language of the same hgutomaton for the original hybrid system. In this paper, the
brid automaton with arbitrary continuous initial statekisT emphasis was on exact specification of different types of
conservativeness is inherent to our approach based ondhybsiystems, their behavior, the language generated by these
systems witharbitrary continuous initial states. On the othersystems, and feedback interconnections of systems. In a
hand, any solution for the case of arbitrary continuousgahit different paper the authors plan to elaborate this straitegy
states remains a solution if the continuous initial stares aa constructive algorithm, and to provide some illustraioh
fixed by reset maps. its applicability.
Note that the solution strategy proposed in this paper will
only work if the following two issues are resolved:
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