
Control of Markov Decision Processes from PCTL specifications

M. Lahijanian, S. B. Andersson, and C. Belta

Abstract— We address the problem of controlling a Markov
Decision Process (MDP) such that the probability of satisfying a
temporal logic specification over a set of properties associated
to its states is maximized. We focus on specifications given
as formulas of Probabilistic Computation Tree Logic (PCTL)
and show that controllers can be synthesized by adapting
existing PCTL model checking algorithms. We illustrate the
approach by applying it to the automatic deployment of a
mobile robot in an indoor-like environment with respect to a
PCTL specification.

I. INTRODUCTION

Markov decision processes (MDPs) offer a mathematical
framework for modeling systems with stochastic dynamics.
These models provide an effective means for describing
processes in which sequential decision making is involved.
Applications can be found across an expansive array of fields,
including economics, biology, and engineering. In general,
the “solution” to an MDP is a control policy which minimizes
a particular cost defined with respect to the states in the MDP.
While powerful, there are many tasks and goals which could
be considered for an MDP that cannot easily be described
in terms of a cost function.

A more general, and perhaps more natural, approach to
describing a specification for a given model can be found
in the field of verification of stochastic systems. Under
these schemes, a temporal logic, such as probabilistic Linear
Temporal Logic (pLTL) [1] and Probabilistic Computation
Tree Logic (PCTL) [2], are used to describe a property over
the system. These properties are typically expressed over
the states of an MDP and may involve temporal conditions.
Examples specifications include “deadlock occurs with prob-
ability at most 0.01” and “find the maximum probability of
reaching an unstable state within k steps”. Model checking
algorithms are then used to calculate the probability that the
MDP will satisfy the given specification [3]–[7].

In the area of motion planning and robotics, recent works
have suggested the use of such temporal logics as motion
specification languages [8]–[12]. Their use enables increased
expressivity over “classical” methods involving only state-
to-state transfers. Algorithms inspired from model checking
[13], [14] or temporal logic games [15] are used to find
motion plans and control strategies from such specifications.
Under these schemes, the system is first abstracted to a

The authors are with the Department of Mechanical Engineering, Boston
University, MA, USA, E-mail: {morteza,sanderss,cbelta}@bu.edu.

This work is partially supported at Boston University by the NSF under
grants CNS-0834260 and CMMI-0928776, the ARO under grant W911NF-
09-1-0088, the AFOSR under grant FA9550-09-1-0209, and the ONR MURI
under grant N00014-09-1051.

M. Lahijanian is the corresponding author.

transition system. Most existing methods proceed based
on two main assumptions. First, that the transition system
is either purely deterministic (that is, each control action
enables a unique transition) or purely nondeterministic (that
is, each control action can enable multiple transitions with
no information as to their likelihoods) [16]. Second, the
current state of the system is known precisely. In realistic
applications, however, noisy sensors and actuators can cause
both of these assumptions to fail.

In order to develop an approach in which the system noise
is explicitly considered, in an earlier work we considered an
MDP model of a system and task specifications given in a
small segment of PCTL formulas, namely those containing
only a single instance of a particular temporal operator (“un-
til”) [17]. In this work, we develop a strategy for controlling
an MDP with respect to a specification given in the full
range of PCTL formulas. When applied to robotic systems,
our approach provides a framework for robotic control from
temporal logic specifications with probabilistic guarantees.
As a result, our approach will automatically determine a
control strategy that maximizes the probability of satisfy a
rich specification as well as the corresponding probability.
Examples of complex missions possible include “Eventually
reach A and then B with probability greater than 0.9 while
always avoiding the regions from which the probabilities of
converging to D is greater than 0.2”.

While the building blocks of our control synthesis algo-
rithm are based on an adaptation of existing PCTL model
checking algorithms [6], the synthesis approach to PCTL
formulas with more than one temporal operator and the
framework are, to the best of our knowledge, novel and quite
general. In short, given a specification as a PCTL formula,
the algorithm returns the maximum satisfaction probabil-
ity and the corresponding control strategy. Our algorithm
uses sub-algorithms corresponding to each temporal operator
(including the one presented in [17]) as building blocks
for construction of a control strategy from a formula with
multiple temporal operators. The most computationally ex-
pensive sub-algorithm requires solving a linear programming
problem.

To illustrate the method, we deployed a robot from PCTL
specifications by using our Robotic InDoor Environment
(RIDE) simulator [18]. This simulator mimics the motion
of an iRobot iCreate platform equipped with a laptop, RFID
reader, and laser range finder moving autonomously through
corridors and intersections. It includes models of sensor and
actuator noise which has been validated against the physical
system [17]. Through the simulator, we generated the MDP
model and tested the produced control strategies.

{Init}

{R3}

{R2}

a1

a1

a2

a4

a1 1

1

1

a41

1

0.5

0.4
q0 q1 q3

q2

0.1
a2

a3

a3

0.56

0.44

a40.8
0.2

Fig. 1. A four-state MDP.

The remainder of the paper is organized as follows. In
Sec. II, we formally define MDP, probability measure over
paths of MDP, and PCTL. In Sec. III, we formulate the
problem and state our approach. The MDP control synthesis
from PCTL formulas and the issues of conservatism and
complexity of the algorithms are discussed in Sec. IV. The
results of the simulation case studies are included in Sec. V.
The paper concludes with final remarks in Sec. VI.

II. PRELIMINARIES

A. Markov Decision Process

Given a set Q, let |Q| and 2Q denote its cardinality and
power set, respectively.

Definition 1 (MDP): An MDP is a tuple M =
(Q, q0, Act, Steps,Π, L) where:
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• Act is a set of actions;
• Steps : Q → 2Act×Σ(Q) is a transition probability

function where Σ(Q) is the set of all discrete probability
distributions over the set Q;

• Π is a finite set of atomic propositions;
• L : Q → 2Π is a labeling function assigning to each

state possibly several elements of Π;
The set of actions available at q ∈ Q is denoted by A(q).
The function Steps is often represented as a matrix with
|Q| columns and

∑|Q|−1
i=0 |A(qi)| rows. For each action

a ∈ A(qi), we denote the probability of transitioning from
state qi to state qj under the action a as σqi

a (qj) and the
corresponding probability distribution function as σqi

a . Each
σqi
a corresponds to one row in the matrix representation of
Steps.

To illustrate these definitions, a simple MDP is shown in
Fig. 1. The actions available at each state are A(q0) = {a1},
A(q1) = {a2, a3, a4}, and A(q2) = A(q3) = {a1, a4}. The
labels are L(q0) = {Init}, L(q2) = {R2}, and L(q3) =
{R3}. The matrix representation of Steps is given by

Steps =

q0; a1

q1; a2

q1; a3

q1; a4

q2; a1

q2; a4

q3; a1

q3; a4



0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 .

1

1

0.5

0.4

q0 q0q1

q0q1q1

q0q1q3

q0q1q1q2

q0q1q3q3

1q0q1q2 q0q1q2q0

0.1

q0q1q1q1

q0q1q1q3

0.1

0.5

0.4

Fig. 2. Fragment of DTMCs Dµ1 for control policy µ1.

B. Paths, Control Policies, and Probabilistic Measures

A path ω through an MDP is a sequence of states ω =

q0

(a0,σ
q0
a0

(q1))
−−−−−−−−→ q1

(a1,σ
q1
a1

(q2))
−−−−−−−−→ . . . qi

(ai,σ
qi
ai

(qi+1))
−−−−−−−−−→ qi+1 . . .

where each transition is induced by a choice of action at
the current step i. We denote the set of all finite paths by
Pathfin and of infinite paths by Path.

A control policy is a function µ : Pathfin → Act. That
is, for every finite path, a policy specifies the next action to
be applied. If a control policy depends only on the last state
of ωfin, it is called a stationary policy. Under a policy µ, an
MDP becomes a Markov chain, denoted Dµ. Let Pathµ ⊆
Path and Pathfinµ ⊆ Pathfin denote the set of infinite and
finite paths that can be produced under µ. Because there is
a one-to-one mapping between Pathµ and the set of paths
of Dµ, the Markov chain induces a probability measure over
Pathµ as follows.

First, define a measure Probfinµ over the set of finite paths
by setting the probability of ωfin ∈ Pathfinµ equal to the
product of the corresponding transition probabilities in Dµ.
Then, define C(ωfin) as the set of all (infinite) paths ω ∈
Pathµ with the prefix ωfin. The probability measure on the
smallest σ-algebra over Pathµ containing C(ωfin) for all
ωfin ⊂ Pathfinµ is the unique measure satisfying

Probµ(C(ωfin)) = Probfinµ (ωfin)∀ωfin ∈ Pathfinµ . (1)

To illustrate this measure, consider the MDP shown in Fig.
1 and the stationary control policy defined by the mapping

µ1(· · · q0) = a1, µ1(· · · q1) = a2,

µ1(· · · q2) = a4, µ1(· · · q3) = a1,

where · · · qi denotes any finite path terminating in qi. The
initial fragment of the resulting Markov chain is shown in
Fig. 2. From this fragment it is easy to see that the probability
of the finite path q0q1q2 is Probµ1(q0q1q2) = 0.5. Under µ1,
the set of all infinite paths with this prefix is

C(q0q1q2) = {q0q1q2, q0q1q2q0q1, q0q1q2q0q1q3, . . .}

where the sequence under the over-line is repeated infinitely.
According to (1), we have that Probµ1(C(q0q1q2)) =
Probµ1(q0q1q2) = 0.5.

C. Probabilistic Computation Tree Logic (PCTL)

We use PCTL [6] , a probabilistic extension of CTL that
includes a probabilistic operator P , to write specifications of
MDP.

Definition 2 (Syntax of PCTL): PCTL formulas are state
formulas, which can be recursively defined as follows:

φ ::= true | π | ¬φ | φ ∧ φ | P./ p[ψ] state formulas
ψ ::= Xφ | φU≤k φ | φU φ path formulas

where π ∈ Π is an atomic proposition, ./∈ {≤, <, ≥, >
}, p ∈ [0, 1], and k ∈ N. State formulas φ are evaluated over
states of MDP while path formulas ψ are assessed over paths
and only allowed as the parameter of the P./ p[ψ] operator.
Intuitively, a state q satisfies P./ p[ψ] if the probability of
taking a path from q satisfying ψ is in the range ./ p.
Temporal logic operators X (“next”), U≤k (“bounded until”),
and U (“until”) are allowed in path formulas.

Definition 3 (Semantics of PCTL): For any state q ∈ Q,
the satisfaction relation � is defined inductively as follows:
• q � true for all q ∈ Q,
• q � π ⇔ π ∈ L(q),
• q � (φ1 ∧ φ2)⇔ q � φ1 ∧ q � φ2,
• q � ¬φ⇔ q 2 φ,
• q � P./p[ψ]⇔ pqµ ./ p

where pqµ is the probability of all the infinite paths that start
from q and satisfy ψ under policy µ. Moreover, for any path
ω ∈ Path:
• ω � Xφ⇔ ω(1) � φ;
• ω � φ1U≤kφ2 ⇔ ∃i ≤ k, ω(i) � φ2∧ω(j) � φ1∀j < i;
• ω � φ1 U φ2 ⇔ ∃ k ≥ 0, ω � φ1 U≤k φ2.

III. PROBLEM FORMULATION AND APPROACH

In this paper, we consider the following problem:
Problem 1: Given a Markov decision process model M

and a PCTL specification formula φ over Π, find a control
policy that maximizes the probability of satisfying φ.

Our control synthesis algorithm takes a PCTL formula φ
and an MDPM, and returns both the optimal probability of
satisfying φ and the corresponding control policy. The basic
algorithm proceeds by constructing the parse tree for φ and
treating each operator in the formula separately. The method
of control synthesis for each temporal operator is presented in
Sec. IV-A, IV-B, and IV-C. These algorithms are inspired by
model checking [6] with a few modifications such as finding
all the satisfying actions for the “next” operator and pro-
ducing a stationary policy for the “bounded until” operator.
Moreover, we make the connection between these algorithms
and the Maximum Reachability Probability problem [19].
In Sec. IV-D, we show how to construct a control strategy
from a PCTL formula with nested P-operators using the
algorithms shown in Sec. IV-A, IV-B, and IV-C. It should be
noted that in general we are interested in finding the control
policy that produces the maximum/minimum probability of
satisfying the given specification. Such PCTL formulas have
the form Pmax=?[ψ] and Pmin=?[ψ]. For PCTL formulas
of the form P./p[ψ], we still use the algorithms that return

optimal policies (with the exception of the case discussed
in Sec. IV-D). For these formulas, we first find the control
policy µ and then check whether pqµ(φ) satisfies the bound ./
p. For the case ./∈ {>,≥}, we use the policy that maximizes
the probability of satisfaction. Similarly, we determine the
policy corresponding to minimum probability when ./∈ {<
,≤}.

IV. PCTL CONTROL SYNTHESIS

A. Next Operator

For the “next” temporal operator, we present two algo-
rithms. One finds the optimal control strategy, and the other
determines all the satisfying policies. For PCTL formulas
that include only one P-operator, the optimal control strategy
algorithm is always used. For nested P-operator formulas,
both algorithms are used. This becomes clear in Sec. IV-D.

1) Next (Optimal) - φ = Pmax=?[Xφ1]: For this operator,
we need to determine the action that produces the maximum
probability of satisfying Xφ1 at each state. Thus, we only
need to consider the immediate transitions at each state.
Therefore, the problem reduces to the following:

x∗qi
= max
a∈A(qi)

∑
qj∈Sat(φ1)

σqi
a (qj),

µ∗(qi) = arg max
a∈A(qi)

∑
qj∈Sat(φ1)

σqi
a (qj),

where x∗qi
denotes the optimal probability of satisfying φ at

state qi ∈ Q, Sat(φ1) is the set of states that satisfy φ1, and
µ∗ represents the optimal policy.

To solve the above maximization problem, we define a
state-indexed vector φ1 with entries φ1(qi) equal to 1 if qi �
φ1 and 0 otherwise. To compute the maximum probability,
first, the matrix Steps is multiplied by φ1. The result is a
vector whose entries are the probability of satisfying Xφ1

where each row corresponds to a state-action pair. Then, the
maximization operation is performed on this vector which
selects the maximum probabilities and the corresponding
actions at each state. The resulting control strategy is station-
ary, and the complexity of achieving it is one vector-matrix
multiplication followed by a one dimensional search.

To demonstrate this method, consider the MDP in Fig. 1
and the formula φ = Pmax=?[X(¬R3)]. The property (¬R3)
is satisfied at states q0, q1, and q2; thus, ¬R3 = (1 1 1 0)T .
Then, Steps · ¬R3 =

q0; a1

q1; a2

q1; a3

q1; a4

q2; a1

q2; a4

q3; a1

q3; a4



0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 1

1
1
0

 =



1
0.6
0.56
1
1
1
0
1

 .

Thus, xqi
= 1 for i = 0, . . . , 3 and the optimal stationary

policy is µ∗(q0) = a1, µ∗(q1) = a4, µ∗(q2) = a1 or a4, and
µ∗(q3) = a4.

2) Next (All) - P./p[Xφ1]: Here, we are interested in
finding all the policies that satisfy the formula. The algorithm
is the same as the one for Optimal Next (Sec. IV-A.1) up to
the maximization step. After obtaining the vector Steps ·φ1,
which includes the probabilities of satisfying Xφ1 for each
state-action pair, we eliminate the state-action pairs whose
probabilities are not in the range of ./ p. This operation
determines all the states, actions, and their corresponding
probabilities that satisfy P./p[Xφ1]. It should be noted that
this algorithm is only used in nested formulas (Sec. IV-D).

To illustrate this algorithm, consider the example in Sec.
IV-A.1 with the formula φ = P≥0.6[X(¬R3)]. All satisfying
actions at states q0, q1, q2, and q3 are {a1}, {a2, a4},
{a1, a4}, and {a4} respectively.

B. Bounded Until Operator

For this operator, we also introduce two algorithms: opti-
mal and stationary. The optimal algorithm produces a history
dependent control policy. The stationary algorithm results in
a stationary policy and is used only for nested formulas.

1) Bounded Until (Optimal) - φ = Pmax=?[φ1U≤kφ2]:
To find the probabilities pqmax(φ1U≤kφ2), we first group the
MDP states into three subsets: states that always satisfy the
specification Qyes, states that never satisfy the specification
Qno, and the remaining states Q?.

Qyes = Sat(φ2),
Qno = Q \ (Sat(φ1) ∪ Sat(φ2)),

Q? = Q \ (Qyes ∪Qno).

Trivially, the probabilities of the states in Qyes and in Qno

are 1 and 0 respectively. The probabilities for the remaining
states qi ∈ Q? are defined recursively. If k = 0, then
pqi
max(φ1U≤kφ2) = 0 ∀qi ∈ Q?. For k > 0,

xkqi
= max
a∈A(qi)

∑
qj∈Q?

σqi
a (qj)xk−1

qi
+

∑
qj∈Qyes

σqi
a (qj)∀qi ∈ Q?

µ∗
k

(qi) = arg max
a∈A(qi)

∑
qj∈Q?

σqi
a (qj)xk−1

qi
+

∑
qj∈Qyes

σqi
a (qj)

∀qi ∈ Q?,

where xkqi
and µ∗

k

(qi) denote the probability of satisfying
φ and the corresponding optimal action at state qi ∈ Q? at
time step k respectively.

Thus, the computation of pqmax(φ1U≤kφ2) can be carried
out in k iterations, each similar to the process described
for Optimal Next (Sec. IV-A.1). The additional step here
is that after each maximization operation, the entries of the
resultant vector corresponding to states Qyes and Qno are
replaced with 1 and 0 respectively. This step is performed
to guarantee that the state-indexed vector always carries the
correct probabilities.The complexity of this algorithm is k
matrix-vector multiplication and k maximization operations.
The overall policy is time dependent. that is for each time
index k, an action is assigned to each satisfying state.

To illustrate the optimal algorithm for “bounded until”,
again consider the MDP in Fig. 1 and the PCTL formula

φ = Pmax=?[trueU≤2R3]. By inspection, we have Qyes =
{q3}, Qno = ∅, and Q? = {q0, q1, q2}. By following the
method presented above, we compute x1 = (0 0.44 0 1)T

and µ∗
1
(q1) = a3. This means that there exits only one state

in Q? that satisfies the formula in one step or less, q1 with
probability 0.44 and action a3. Another iteration results in
x2 = (0.44 0.444 0 1)T and µ∗

2
(q0) = a1 and µ∗

2
(q1) =

a2. Thus, q1 satisfies the formula with maximum probability
of 0.444 in two steps or less with selection of actions a2 and
a3 in the first and second time steps, respectively. Moreover,
q0 satisfies the formula with probability 0.44 in two steps
with the selection of actions a1 at q0 in the first time step
and a3 at q1 in the second time step.

2) Bounded Until (Stationary) - φ = P./p[φ1U≤kφ2]:
Here, we introduce a sub-optimal algorithm for U≤k operator
which produces a stationary control policy. This algorithm
is used for control synthesis of nested formulas where a
stationary policy is required.

The algorithm is essentially the same as the one for
Optimal Bounded Until (Sec. IV-B.1) with the exception that
the optimal actions determined at each iteration are fixed for
the remaining iterations. For instance, consider the example
in Sec. IV-B.1 with the formula P>0.4[♦≤2R3]. After the
first iteration, we find x1 = (0 0.44 0 1)T and µ(q1) = a3.
For the next iteration, we only use action a3 at q1 which
results in x2 = (0.44 0.44 0 1)T with policy µ(q0) = a1 and
µ(q1) = a3. Thus, the states q0 and q1 satisfy the formula
with the stationary policy µ(q0) = a1 and µ(q1) = a3.

For PCTL formulas of the form φ = P./p[φ1U≤kφ2], it
is theoretically possible to find all the satisfying policies.
This becomes important for completeness of the solution
for nested formulas (Sec. IV-D). However, it only can be
achieved by enumerating every satisfying path, leads to
exponential growth in the complexity of the algorithm. Thus,
for large MDPs and time index k, finding all the satisfying
policies might be impracticable. For this reason, we only use
the optimal and stationary algorithms shown above for U≤k.

C. Until Operator - φ = Pmax=?[φ1Uφ2]

Here, we are interested in computing probabilities
pqmax(φ1Uφ2) over all policies and finding the control strat-
egy that gives rise to these optimal probabilities. To solve
this problem, again begin by dividing Q into the three subsets
Qyes (states satisfying the formula with probability 1), Qno

(states satisfying the formula with probability 0), and Q? (the
remaining states).

The computation of optimal probabilities for the states in
Q? is in fact the Maximal Reachability Probability Problem
[19]. Thus, we can compute these probabilities by solving
the following linear programming problem.

Minimize
∑
qi∈Q?

xqi
subject to:

xqi
≥

∑
qj∈Q?

σqi
a (qj) . xqj

+
∑

qj∈Qyes

σqi
a (qj),

for all qi ∈ Q? and (a, σa) ∈ Steps(qi).

The problem admits a unique optimal solution, and the
actions that give rise to this optimal solution at every
state can be identified. Hence, the stationary control policy
that produces the maximum probability that satisfies the
specification can be obtained. The above linear programming
problem can be solved using classical techniques such as the
Simplex method, ellipsoid method, or value iteration. The
complexity is polynomial in the size of the MDP.

To illustrate this method, again consider the MDP in Fig. 1
with the specification Pmax=? [¬R3 U R2]. Since state q2 is
the only one satisfying the formula with probability one and
q3 is the only one that fails the formula with probability one,
we have the Qyes = {q2}, Qno = {q3}, and Q? = {q0, q1}.
From this we have that xq2 = 1 and xq3 = 0. The solution
to the linear optimization problem can be found to be xq0 =
xq1 = 0.56 under the policy µ(q0) = a1 and µ(q1) = a3.

D. Nesting P-operators

Since each probabilistic operator is a state formula itself,
it is possible to combine these operators by nesting one
inside another. Such a combination of P-operators allows
more expressivity in PCTL formulas.

It should be noted that we require all inner P-operators to
be of the form P./p[ψ] as opposed to being Pmax=?[ψ]. This
is required because each nested probabilistic operator needs
to identify a set of satisfying states. Generally, the nested
formulas can be written in one of the following forms:

φ = Pmax=?[XφR], (2)
φ = Pmax=?[φLU≤kφR], (3)
φ = Pmax=?[φLUφR], (4)

where φR in formula (2) and at least one of φL and φR in
formulas (3) and (4) include a P-operator. Subscripts L and
R stand for to the Left and Right of the temporal operator
respectively.

Our method of producing a control strategy treats each
probabilistic operator individually and proceeds as follows.
First, we find the set of initial states QφR

, from which
φR is satisfied. The corresponding control policy µφR

is
also determined. This is achieved by applying the optimal
algorithms shown in Sec. IV-A.1, IV-B.1, and IV-C.

Next, φL is considered. The set of initial states QφL
and

the corresponding control policy µφL
are determined. For φL,

it is desired to find all the satisfying stationary policies. This
is important for completeness of our solution. The PCTL
formulas (3) and (4) require to reach a state in QφR

only by
going through QφL

states. Thus, at QφL
states, all and only

the actions that satisfy φL are to be considered. Nevertheless,
finding all satisfying policies is only feasible for the temporal
operator X (Sec. IV-A.2). For operators U≤k and U in φL,
we use the stationary and optimal algorithms shown in Sec.
IV-B.2 and IV-C, respectively, to find µφL

.
Then, we construct a new MDP M′ ⊆M by eliminating

the actions that are not allowed by µφL
from states QφL

. In
other words, we remove all the action choices at states QφL

except those allowed by µφL
in M. This step is performed

to ensure the satisfaction of the path formula in φL. If this
process results in states with no outgoing transition (blocking
states), a self-transition is added to each of these states. This
guarantees a new non-blocking MDP. In the last step, the
optimal control algorithm is applied for the outer-most P-
operator on the modified MDPM′ to find the optimal control
policy µφ and its corresponding probability value p0 from
initial state q0.

It should be noted that, by the nature of the PCTL formu-
las, the execution of the optimal policy µφ only guarantees
satisfaction of a formula φ which specifies that the system
should reach a state in QφR

through the states in QφL
. Hence,

the path formula specified in φR is not satisfied by µφ unless
µφR

is also executed. To ensure the execution of all the
specified tasks in φ and φR, we construct a history dependent
control policy of the following form:
µ : “Apply policy µφ until a state in QφR

is reached. Then,
apply policy µφR

.”
For the same reason as state above, the returned prob-

ability value p0 is the maximum probability of satisfying
φ (reaching a state in QR through states of QL) under µφ
from initial state q0. The probability of satisfying the path
formula in φR from q0 by executing policy µ cannot be
found directly because it is not known which state in QR is
reached first. However, since the probability of satisfying
φR from each state in QR is available, a bound on the
probability of satisfying φ and then φR from q0 can be
defined. The lower and upper limits of this bound are p0p

min
φR

and p0p
max
φR

, respectively, where pminφR
and pmaxφR

denote the
minimum and maximum probabilities of satisfying φR from
QφR

respectively.
To illustrate the control synthesis algorithm of nested

formulas, consider again the MDP shown in Fig. 1 with
the formula Pmax=?[P≤0.50[X R2]U≤2 R3]. Since there is
no P-operator on the right side of U≤2, the algorithm
proceeds with finding the all initial states and actions for
φL = P≤0.55[X R2]. By applying the All Next algorithm
(Sec. IV-A.2), we find the satisfying actions {a1} at q0,
{a2, a4} at q1, {a4} at q2, and {a1, a4} at q3. Next, a
new MDP M′ is constructed by eliminating action a3 at
q1 and a1 at q2 which do not satisfy φL. By performing the
optimal control algorithm for “bounded until” (Sec. IV-B.1)
on M′, we find the maximum probability of satisfying φ
to be x̄1 = (0 0.4 0 1)T with the policy µ1(q1) = a2 and
x̄2 = (0.4 0.44 0 1)T with µ2(q0) = a1 and µ2(q1) = a2.
Thus, the maximum probability of satisfying φ from initial
states q0 is 0.4 with the policy µ(q0) = a1 and µ(q1) = a2.

E. Correctness, Completeness, and Complexity

Our solution to Problem 1 is correct by construction but
conservative for nested formulas. As mentioned above, for
completeness of the solution, we need to consider all the
actions that satisfy φL at each state of QφL

. However, due to
computational complexity, we use the stationary and optimal
algorithms for U≤k and U operators, respectively, which
return only the optimal actions as opposed to all satisfying
actions. Hence, our solution for the formulas whose φL

include “bounded until” or “until” operators is not complete.
In fact, for these formulas, the algorithm may return a
suboptimal policy or may not find a solution at all even
though one might exist.

Nevertheless, our solution for the group of nested PCTL
formulas where φL does not include U≤k or U is complete.
This group of specifications is useful in robotic applications.
In these applications, tasks such as “Eventually reach A and
then reach B while always avoiding C” or “Eventually reach
A through regions from which the probability of convergence
to C is less than 0.30” are of interest.

The overall time complexity for PCTL control synthesis
for an MDP from a formula φ is linear in the size of the
formula and polynomial in the size of the model. That is
because each operator is treated separately. Moreover, the
most expensive case is the “until” operator, for which we
must solve a linear optimization problem of size of the
model, |M|. Using, for example, the ellipsoid method, this
can be done in polynomial time. For MDPs, we define the
size of the model to be

∑
qi∈Q |A(qi)|, the total number of

actions available at each state.

V. CASE STUDY

In this section, we apply the method described above to
the provably-correct deployment of a mobile robot with noisy
sensors and actuators using a simulator.

For this problem, we considered the environment whose
topology is schematically shown in Fig. 3. It consists of
corridors of various widths and lengths (C1, . . . , C13) and
intersections of several shapes and sizes (I1, . . . , I8). There
are six properties of interest about the regions: Safe (the
robot can safely drive through a corridor or intersection with
this property), Relatively safe (the robot can pass through
the region but should avoid it if possible), Unsafe (the
corresponding region should be avoided), Medical supply 1
and 2 (there are medical supplies of type 1 and 2 in the
regions associated with these properties respectively), and
Destinations 1 and 2 (regions to be visited).

For deployment of the robot, we first considered a set of
feedback control primitives for the robot. Due to the presence
of input-output noise, the outcome of each control primitive
is characterized probabilistically. Assuming that the robot can
determine exactly its current region in the environment, then
the primitives and the transition probabilities yield an MDP
model of the motion of the robot in the environment (see
[17] for a detailed discussion on creating such models).

With this MDP and a PCTL formula expressed over
properties of the regions of the environment, we used the
framework described in this paper to determine a control
strategy to satisfy the formula. Note that a control strategy
is an assignment of a control primitive to each region of
the environment that the robot visits given the history of the
visited regions.

A. Simulation Tool

For the construction of the MDP and deployment of the
mobile robot, we used our RIDE Simulator (Fig. 4). As

Fig. 3. Schematic representation of an indoor environment. Each region
has a unique identifier (C1, . . . , C13 for corridors and I1, . . . , I8 for
intersections, respectively). The properties satisfied at the regions are shown
between curly brackets inside the regions: S = Safe, R = Relatively safe, U
= Unsafe, M1 = Medical supply type 1, M2 = Medical supply type 2, D1 =
Destination 1, and D2 = Destination 2.

shown in [17], the simulator mimics the motion of an iRobot
iCreate platform with a Hokoyu URG-04LX laser range
finder, and APSX RW-210 RFID reader in an indoor envi-
ronment. Specifically, it emulates experimentally measured
response times, sensing and control errors, and noise levels
and distributions in the laser scanner readings.

The robot is able to execute one of the following four
controllers (actions) - FollowRoad, GoRight, GoLeft, and
GoStraight. These controllers utilize data from the laser
scanner to steer the robot according to the descriptive title.
Due to noise in the actuators and sensors, however, the
resulting motion may be different than intended. Details can
be found in [17].

B. Construction of the MDP model

Each state of the MDP is a collection of regions such
that the Markovian property is satisfied (i.e., the result of an
action at a state depends only on the current state). The set of
actions available at a state is the set of controllers available
at the last region in the set of regions corresponding to the
state. More details on the construction of the MDP are given
below.

The environment (Fig. 3) consists of 13 corridors, within
which only the controller FollowRoad is available. There are
also two 4-way and six 3-way intersections in the environ-
ment. The controllers available at 4-way intersections are
GoRight, GoLeft, and GoStraight, while at the 3-way inter-
sections only GoRight and GoLeft controllers are available.
Through extensive trials, we concluded that, by grouping two
adjacent regions (a corridor and an intersection) in a state,
we achieve the Markovian property, for all pairs of adjacent
regions. For example, the connecting regions of C1-I2 repre-
sent one state of the MDP, which has transitions to states I2-
C3, I2-C4, and I2-C6 enabled by actions GoRight, GoLeft,

Fig. 4. Snapshots from the RIDE simulator. The robot is represented as a
white disk. The arrow inside the white disk shows the robot’s heading. The
inner circle around the robot represents the “emergency” radius (if there is
an obstacle within this zone, the emergency controller is used). The outer
circle represents the radius within which the forward speed of the robot
varies with the distance to the nearest obstacle. If there are no obstacles in
this area, the robot moves at maximum speed. The yellow dots are the laser
readings used to define the target angle. (a) The robot centers itself on a
stretch of corridor by using FollowRoad; (b) The robot applies GoRight in
an intersection; (c) The robot applies GoLeft.

and GoStraight. When designing the robot controllers, we
also made sure that the robot never gets stuck in a region,
i.e., the robot can only spend a finite amount of time in each
region. Thus, the states are of the form intersection-corridor
and corridor-intersection (states such as Ii-Ii or Ci-Ci do
not exist). The resulting MDP for the environment shown in
Fig. 3 has 52 states. The set of actions available at a state
of the MDP is the set of controllers available at the second
region of the state. For example, when in state C1-I2 only
those actions from region I2 are allowed.

To obtain transition probabilities, we performed a total of
500 simulations for each controller available in each MDP
state. In each trial, the robot was initialized at the beginning
of the first region of each state. If this region was a corridor,
then the FollowRoad controller was applied until the system
transitioned to the second region of the state. If the first
region was an intersection then the controller most likely to
transition the robot to the second region was applied. Once
the second region was reached, one of the allowed actions
was applied and the resulting transition was recorded. The
results were then compiled into the transition probabilities.

The set of properties of the MDP was defined to be Π =
{S,R,U,M1,M2,D1,D2}, where S = Safe, R = Relatively
safe, U = Unsafe, M1 = Medical supply type 1, M2 = Medical
supply type 2, D1 = Destination 1, and D2 = Destination 2.
Each state of the MDP was mapped to the set of properties
that were satisfied at the second region of the state (Fig. 3).

C. Case Studies

Consider the RIDE configuration and the following three
motion specifications:

Specification 1: “Reach Destination 1 by always avoid-
ing Unsafe regions.”

Specification 2: “Reach Destination 1 by going through
the regions from which the probability of converging to a
Relatively safe region is less than 0.50 and always avoiding
Unsafe regions.”

Specification 3: “Reach Destination 1 by avoiding
Unsafe and Relatively safe regions if Medical supply 1 is
not available at such regions, and then reach Destination 2
by driving through regions that are Safe or at which Medical
supply 2 is available with probability greater than or equal
to 0.50.”
Given that we are interested in the policy that produces
the maximum probability of satisfying each specification,
Specifications 1, 2, and 3 translate naturally to the PCTL
formulas φ1, φ2, and φ3, respectively, where

φ1 : Pmax=? [¬UU D1] (5)
φ2 : Pmax=? [(P<0.50[X R] ∧ ¬U)U D1] (6)
φ3 : Pmax=? [¬U ∧ ¬(R ∧ ¬M1)U (D1 ∧

P≥0.50[(S ∨M2)U D2])] (7)

Assuming that the robot is initially in C1-I2 (so that
physically it is in C1 and oriented towards I2), we used
the computational framework described in this paper to find
control strategies maximizing the probabilities of satisfying
the above specifications. The maximum probabilities for
Specifications 1 and 2 were 0.862 and 0.152 respectively.
The maximum probability of Specification 3 was 0.451, and
the probability of reaching the second destination determined
in this specification was 0.269. It should be noted that we
were able to produce an exact number instead of a bound
for the probability of satisfaction of the nested formula (7)
because even though two states satisfy D1 (I8-C13 and I7-
C13) only one (I8-C13) is reachable from the initial state.
To confirm these predicted probabilities, we performed 500
simulation for each of the control strategies. The simulations
showed that the probabilities of satisfying φ1 and φ2 were
0.838 and 0.118 respectively. The rate of successful runs for
the strategy obtained from φ3 was 0.435 to reach destination
1 and 0.244 to reach destination 1 and then 2. The small
discrepancy between the theoretical values and simulation
results is likely due to remaining non-Markovian behavior
of the transitions.

Snapshots from a movie showing a motion of the
robot produced by the control strategy maximizing
the probability of satisfying Specification 3 is shown
in Fig. 5. With reference to the notation defined in
Fig. 3, it can be seen that the robot follows the route
C1I2C3I1C5I4C8I5C9I6C12I8C13I7C10I4C8I5C9I6C7I3.
It can be easily seen that this run satisfies Specification
3 (φ3 in (7)) because ¬U ∧ ¬(R ∧ ¬M1) is true until D1
is satisfied and then (S ∨ M2) is true before D2 becomes

Fig. 5. Snapshots (to be read left-to-right and top-to-bottom) from a movie showing a robot motion produced by applying the control strategy maximizing
the probability of satisfying Specification 3 (φ3 in (7)).

true. This movie, together with other movies of simulation
trials obtained by applying the above control strategies are
available for download from [18].

VI. CONCLUSION

We presented a computational framework for control
synthesis for an MDP that maximizes the probability of
satisfying a Probabilistic Computation Tree Logic (PCTL)
formula. The approach provides a rich specification language
and probabilistic guarantees on the system performance.
The method was demonstrated through simulations of a
mobile robot being deployed from PCTL specifications in
a partitioned environment.

ACKNOWLEDGEMENTS

The authors would like to thank K. Ryan and B. Chang-
Yun Hsu from Boston University for their help with the
development of the RIDE simulator.

REFERENCES

[1] C. Baier, “On algorithmic verification methods for probabilistic sys-
tems,” Ph.D. dissertation, University of Mannheim, Germany, 1998.

[2] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, pp. 102–111, 1994.

[3] C. Courcoubetis and M. Yannakakis, “Markov decision processes and
regular events,” IEEE Trans. on Automatic Control, vol. 43, no. 10,
pp. 1399–1418, 1998.

[4] J. Barnat, L. Brim, I. Cern, M. Ceka, and J. Tumov, “Distributed
qualitative ltl model checking of markov decision processes,” in In
Proceedings of 5th International Workshop on Parallel and Distributed
Methods in verifiCation, Bonn, Germany, 2006, pp. 1–15.

[5] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis, “Multi-
objective model checking of Markov decision processes,” Logical
Methods in Computer Science, vol. 4, no. 4, pp. 1–21, 2008.

[6] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, P.
Panangaden and F. van Breugel (eds.), ser. CRM Monograph Series.
American Mathematical Society, 2004, vol. 23.

[7] C. Baier and M. Kwiatkowska, “Model checking for a probabilistic
branching time logic with fairness,” Distributed Computing, vol. 11,
pp. 125–155, 1998.

[8] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in Proceedings
of the IEEE Conference on Decision and Control, 2004.

[9] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 2004, pp. 4417–4422.

[10] H. K. Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in IEEE Conference on
Robotics and Automation, Rome, Italy, 2007.

[11] G. E. Fainekos, S. G. Loizou, and G. J. Pappas, “Translating tem-
poral logic to controller specifications,” in Proceedings of the IEEE
Conference on Decision and Control, 2006.

[12] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[13] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[14] E. A. Emerson, Handbook of Theoretical Computer Science: Formal
Models and Semantics. North-Holland Publishing Company and MIT
Press, 1990, vol. B, ch. Temporal and Modal Logic, pp. 995–1072.

[15] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in VMCAI, Charleston, SC, 2006, pp. 364–380.

[16] M.Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Hybrid Systems: Computation and Control: 11th Interna-
tional Workshop, ser. Lecture Notes in Computer Science, M. Egerstedt
and B. Mishra, Eds. Springer Berlin / Heidelberg, 2008, pp. 287–300.

[17] M. Lahijanian, J. Wasniewski, S. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees,,” in IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, 2010.

[18] “Robotic indoor environment (ride).” [Online]. Available: hyness.bu.
edu/ride/

[19] L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanfod University, 1994.

hyness.bu.edu/ride/
hyness.bu.edu/ride/

	Introduction
	Preliminaries
	Markov Decision Process
	Paths, Control Policies, and Probabilistic Measures
	Probabilistic Computation Tree Logic (PCTL)

	Problem Formulation and Approach
	PCTL Control Synthesis
	Next Operator
	Next (Optimal) - = Pmax=?[X1]
	Next (All) - P-3mup[X1]

	Bounded Until Operator
	Bounded Until (Optimal) - = Pmax=?[1 Uk 2]
	Bounded Until (Stationary) - = P-3mup[1 Uk 2]

	Until Operator - = Pmax=?[1 U 2]
	Nesting P-operators
	Correctness, Completeness, and Complexity

	Case study
	Simulation Tool
	Construction of the MDP model
	Case Studies

	Conclusion
	References

