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Abstract— Mathematical models of biochemical networks,
such as metabolic, signaling, and gene networks, have been
studied extensively and have been shown to provide accurate
descriptions of various cell processes. Nevertheless, their usage
is restricted by the fact that they are usually studied in isolation,
without feedback from the environment in which they evolve.
Integrating these models in a global framework is a promising
direction in order to increase both their accuracy and predictive
capacity. In this paper, we describe the integration of large-
scale metabolic and signaling networks with a regulatory gene
network. We focus on the response to infection in mouse
macrophage cells. Our computational framework allows to
virtually simulate any type of infection and to follow its effect on
the cell. The model comprises 3,507 chemical species involved
in 4,630 reactions evolving at the fast time scale of metabolic
and signaling processes. These interact with 20 genes evolving
at the slow time scale of gene expression and regulation. We
develop a simulator for this model and use it to study infections
with Porphyromonas gingivalis.

I. INTRODUCTION

Signal transduction pathways, such as the Toll-Like Re-
ceptor (TLR) signaling pathways, are an essential component
of the immune system, which they activate by detecting
pathogens and cytokines [1]. The TLRs are highly conserved
proteins and recognize specific molecules of bacterial and
viral origin. Once triggered, the TLRs initiate several signal-
ing cascades leading to the activation of transcription factors
(TFs) that regulate the expression of specific target genes.
Depending on the nature of the stimulus (i.e. bacterial/viral
infection, stress signal), different TFs are activated, which
then regulate the necessary response of the cell.

Many studies have emphasized the significance of the
TLRs within the immune system. Nevertheless, recent works
have shown that they could also provoke deleterious effects
in some infections [2], [3]. These infections can significantly
increase the concentration of inflammatory cytokines, which
produce harmful effects to the host. These studies have
suggested that a better response to infection can be obtained
in mice deficient in one of the TLRs. Targeting these
pathways can lead to a decrease in cytokine concentration
and an increase in survival rate. These results demonstrate
that targeting the TLRs pathways may prove to be beneficial
in fighting infections, and that accurate models of these
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pathways are necessary in order to find drug targets and to
follow the evolution of the response to infection.

Mathematical models of biochemical networks have been
used extensively to study the metabolism of bacteria and
mammals [4], signaling pathways involved in immunity [5],
[6], and gene regulatory interactions [7]. Within the systems
and control community, most of the previous works in this
area have focused on studying such networks in isolation
[8], [9], [10], [11], [12]. However, recent studies show
that the integration of mathematical models of different
types of biochemical networks, together with environmental
conditions, increases the accuracy of the models, as well as
their predictive capacity [13], [14].

In this paper, we integrate large-scale metabolic and
signaling networks with a regulatory gene network, with
the goal of creating a model capable of simulating the
response to infection in mouse macrophage cells. To perform
this integration, we first merge the iMM1415 [4] mouse
genome-scale metabolic model with the ihsTLR v1.0 model
of the TLR signaling pathways [6] to create a mathematical
model with “fast” dynamics. We combine these networks
with a regulatory gene network linked to the TLR pathways
that we have recently identified [15]. This network was
obtained by applying our reconstruction algorithm [16] to
gene expression data from [17] to construct a mathematical
model for the gene network in the form of a discrete-time
piecewise affine system with “slow” dynamics. The overall
integration exploits the difference in time-scales, and is based
on a stoichiometric steady-state model for the combined
metabolic and signaling networks. We use this computational
framework to study infections with P. gingivalis (P.g), a
common pathogen involved in periodontal disease.

To the best of our knowledge, this is the first attempt to
construct a large scale mathematical model for the response
to infection that incorporates metabolism, signaling, and gene
regulation. The model is not limited to P.g-infection and it
can be used to simulate virtually any type of infection by
triggering different combinations of TLRs. Our framework
allows to follow simultaneously the effects of an infection on
the signaling pathways of the immune system, metabolism,
and gene expression. It can also be used to assess the effects
of gene deletions in the response to infection.

The remainder of this paper is organized as follows. In
Sec. II, we provide a short overview of stoichiometric quasi-
steady state analysis. The mathematical models that we use
for the metabolic, signaling, and gene regulatory networks
are described in Sec. III and their integration is given in
Sec. IV. Simulation results are included in Sec. V.



II. STOICHIOMETRIC MODELING AND
QUASI-STEADY STATE ANALYSIS

In this section, we provide a short description of quasi-
steady state analysis of stoichiometric models. We represent
a mass-balanced network involving m species and r reactions
with a stoichiometric matrix S ∈ Rm×r. Each entry Sij spec-
ifies the stoichiometric coefficient for species i in reaction
j. Let M = {1, . . . ,m} and R = {1, . . . , r} denote the
set of all species and reactions in the network, respectively.
Let x(t) = (x1(t), . . . , xs(t)) and v(t) = (v1(t), . . . , vr(t))
denote the vectors of all species concentrations and all
reaction fluxes, respectively, at time t. The rates of change
of species concentrations are governed by:

ẋ = Sv, α ≤ v ≤ β, (1)

where α, β ∈ Rr are the lower and upper bounds of v.
Models of type (1) have been widely used for genome-
scale metabolic networks. For such systems, the set of
reactions is given by all known reactions of small molecule
biochemistry occurring inside the cell, including transport
and core metabolism. The set of species include external
(extracellular) metabolites such as oxygen, hydrogen, or
glucose, which are typically essential for cell survival and
require transport reactions to traverse cell membranes.

Flux Balance Analysis (FBA) is a method used extensively
in the study of metabolic networks [18]. FBA assumes that
(1) is in a quasi-steady state since metabolic reactions are
fast when compared to gene regulation dynamics [6], [19].
Under this assumption, (1) becomes:

Sv = 0, α ≤ v ≤ β. (2)

Let
K = {v ∈ Rr|Sv = 0, α ≤ v ≤ β} (3)

denote the set of all feasible fluxes, which can be easily
shown to be a polyhedral cone. A reaction o ∈ R is called
producible if and only if

∃v ∈ K s.t. vo > 0. (4)

The essence of FBA is the definition of a “biomass” reaction
(the flux through this reaction is usually denoted by µ) that
models the growth of the cell. In other words, a biomass
reaction takes as substrates all the small molecule species
that are necessary for the survival and growth of the cell.
The stoichimetric coefficients are their relative proportions. A
flux distribution through all the reactions in the network can
then be easily found by maximizing µ under the constraint
that the fluxes are feasible. Computationally, this leads to
a Linear Program (LP). The maximal growth assumption is
reasonable in bacteria, where it can be assumed that cells
tend to grow as fast as possible [13], [19]. Biomass functions,
and objective functions in general, are hard to formulate in
the case of multicellular organisms where cellular objectives
depend primarily on the cell type.

Dynamic Flux Balance Analysis (dFBA) is a method
which captures the use of a media by a population of cells
[19]. In brief, dFBA uses FBA over multiple iterations to

determine the consumption of external metabolites and the
growth of a cell population in time. Let E ⊂ M denote
the set of all external metabolites. We assume that there is
exactly one transport reaction for each external metabolite.
Therefore, E also denotes the set of transport reactions. Let
B(t) denote the cell concentration at time t. The equations
governing the cell concentration and extracellular metabolite
concentrations are given by:

Ḃ(t) = µB(t),
ẋe(t) = −veB(t), e ∈ E. (5)

Assuming that there are T time steps of equal length h in
the simulation, the algorithm proceeds as follows:

a) Initialization: B(0), xe(0),

βe(0) =
xe(0)

B(0)h
, e ∈ E; (6)

b) Iteration: At each time step n ∈ {0, . . . , T − 1},
FBA is performed to maximize µ. The solution will give
specific values for all the fluxes, including those of the
transport reactions. The general discrete-time form of (5)
during the time interval [nh, (n+ 1)h) is given by

B((n+ 1)h) = B(nh)eµh

xe((n+ 1)h) = xe(nh) +
veB(nh)

µ
(1− eµh), e ∈ E,

(7)
with B(nh) and xe(nh) known from the previous iteration
and ve determined from the solution to the FBA. B((n+1)h),
xe((n + 1)h), and βe((n + 1)h) = xe((n+1)h)

B((n+1)h)h , e ∈ E are
computed and the procedure is reiterated.

The time step h is typically several minutes [14], which is
in accordance with the growth dynamics. Since metabolism
is much faster, the quasi-steady state assumption is justified.

III. MODELS AND INTERACTIONS

In this section we describe the different models that we
use for metabolism, signaling, and gene regulation. The
starting point for our approach is the observation that gene
regulations are slow in comparison to metabolic and sig-
naling reactions. Indeed, metabolic and signaling reactions
take less than 1 sec, while transcriptional regulation and
receptor internalization take on the order of 102 sec [5].
This motivates the separation of the overall dynamics into
fast and slow dynamics (see Fig. 1). We first present the
metabolic and signaling networks and their integration into a
single model with fast dynamics. Then, we briefly review the
derivation of a mathematical model for the gene regulatory
network by applying our recently developed identification
method on the gene expression dataset from [17].

A. The fast dynamics: signaling and metabolism

Our metabolic model is based on the recently published
mouse iMM1415 metabolic model [4]. This model, which
consists of 2,775 metabolites involved in 3,727 reactions, is
a comprehensive description of the model metabolism, i.e. it
contains all the metabolic reactions that occur in mouse cells,
regardless of the cell type. The signaling part of our model
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Fig. 1. Schematic representation of the overall model. The fast dynamics
comprise reactions from the signaling pathways (TLR network) and from
the metabolic network. Metabolism produces energy that is used by the
TLR network. The waste produced by the phosphorylation reactions in
the signaling network is recycled by metabolism. In addition to producing
energy, metabolism forms all the precursors necessary for protein synthesis.
Gene expression is controlled by transcription factors (TFs) whose activation
depends on the outcome of the signaling pathways. In response, the gene
network synthesizes proteins used in both signaling and metabolic reactions.

is based on the ihsTLR v1.0 model of the TLR signaling
pathways [6]. This describes the reactions involved in the
transmission of a stimulus from the TLRs to the nucleus. The
system is triggered by 14 inputs and leads to the activation
of six different outputs: AP-1, CREB, IRF3, IRF7, Reactive
Oxygen Species (ROS), and NF-κB. With the exception of
ROS, the outputs are transcription factors (TFs) that regulate
the expression of several other genes. These compounds have
been shown to play a major role in the immune system [20].
The ihsTLR v1.0 model comprises 781 species involved in
963 reactions [6].

Since the metabolic and signaling networks have simi-
lar time scales [5], we merged the two networks into a
single combined metabolic/signaling (fast) network, which
consists of three types of reactions (i) reactions specific to
metabolism, (ii) reactions specific to signaling pathways, and
(iii) reactions shared by metabolic and signaling pathways.
Merging the two networks required some careful analysis in
order to be able to construct a coherent stoichiometric model
of the form given in Eqn. (2). Specifically, in the case of a
shared reaction, we only keep the metabolic reaction in order
to be able to use the flux bounds defined in the metabolic
model. If there are several signaling reactions which jointly
correspond to a metabolic reaction, we keep the signaling
reactions to preserve more signaling pathways, and delete the
metabolic reaction. We also delete several import reactions
specific to the signaling network.

As a result of the merging procedure, we obtained a
fast network described by a quasi-steady state stoichiometric
model of the form (2), where S has 3,507 rows and 4,630
columns. As it will become clear in Sec. IV, we use this
model as part of a modified dFBA procedure (see Sec. II),
which captures gene regulatory events in addition to exter-

nal metabolite availability and cell growth. In fact, since
macrophages do not grow, we have µ = 0, which implies
B(t) = B(0). As a result, Eqn. (7) reduces to:

xe((n+ 1)h) = xe(nh) + veBh, e ∈ E. (8)

The objective function that we maximize in the FBA
problem that we solve at each step is a combination of three
components: (1) a cell maintenance component, which uses
41 metabolites, such as amino acids and lipids [4], (2) a
signaling component, which maximizes a linear combination
of the signaling reactions producing active outputs, and (3)
a protein synthesis component, which captures the tran-
scription and translation processes, and which is modulated
according to the activity of the gene network.

B. The slow dynamics: gene regulation and expression

We first briefly review the gene network reconstruction al-
gorithm from [16] and its application to construct a discrete-
time piecewise linear mathematical model for a gene network
that interacts with the TLR signaling pathways [15].

1) Gene network reconstruction algorithm: Assume we
are given experimental data for the genes in a set G as time-
series expression data at N +1 time points in the form xg,n,
g ∈ G, n = 0, . . . , N . Our goal is to construct a mathematical
model for the gene network dynamics that is compatible with
the gene expression data. We focus on a particular class of
discrete time systems of the following form

xg((n+ 1)H) = xg(nH) +H

[∑
k∈GR

g
fg,k(xk(nH))

−λgxg(nH)

]
,

(9)
where xg(nH) denotes the concentration of protein ex-
pressed from gene g ∈ G at time nH , λg ≥ 0 is its
decay rate, GRg is the set of regulators for gene g, fg,k(·)
is a function describing the regulation of gene g by gene
k, and H is the time step. We assume that each function
fg,k(·), g ∈ G and k ∈ GRg , is continuous, non-negative, and
monotone. The time step H is chosen in accordance with
the slow time scales of gene regulation. As it will become
clear in Sec IV, H will be an integer multiple of the time
step h from Eqn. (8).

The set of regulator genes GRg for all g ∈ G are identified
by checking the feasibility of a Linear Programming (LP)
problem. From an implementation viewpoint, it is more
efficient to reformulate the LP as a Quadratic Programming
(QP) problem based on the definition of slack variables
ε := (εf, ε∆) (see [16] for detailed LP and QP formulations).

It is important to note that, as a byproduct of the QP
problem, we get numerical values for the decay rates λg and
the regulation functions fg,k at the time points corresponding
to the experimental data. Given that the gene expression data
is over the same time points, the latter can be easily converted
to a finite number of values for each function fg,k(xk). By
simple linear interpolation of these values, we can construct
a piecewise linear model of the form given in Eqn. (9).
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Fig. 2. Reconstructed genetic regulatory network [15]. The 8 genes in the
upper region and the 12 genes in the lower region correspond to the genes
in GI and GO , respectively.

2) Application of the gene network reconstruction algo-
rithm: We describe in [15] the application of the reconstruc-
tion algorithm to reconstruct a gene network that interacts
with the TLR signaling pathways. Briefly, the first step for
the construction of the gene network shown at the bottom
of Fig. 1 is the selection of the set of genes G. This is,
in fact, an iterative process. By using the KEGG database
(http://www.genome.jp/kegg/) and the ihsTLR v1.0 model,
we selected a set of 9 genes that are directly regulated by
the TFs that are activated as part of the TLR signaling
network. This set of genes form the “input layer” GI of
our gene network. Similarly, we identified a set of 31
“output layer” genes GO that code for proteins involved in
the TLR signaling pathways. Our goal is to connect each
gene in the input layer to at least one gene in the output
layer through regulation interactions, possibly using some
other intermediate genes. As noted in [15], we considered
regulation of the output genes by (sets of) input genes.

Fig. 2 shows the result of the reconstruction of the gene
regulatory network [15]. We can see that each gene in GI
is connected to at least one gene in GO. A total of 12
output genes are linked to the input layer. The discrete-time
piecewise affine model is omitted due to space constraints.

IV. INTEGRATED FRAMEWORK

A. Network Interconnections

The integrated overall model combines the fast dynamics
of the metabolic and signaling pathways with the slow
dynamics of the gene regulatory network. The interactions
among these networks occur at four levels (see Fig. 1).

1) Metabolism to Signaling: Metabolism creates energy
in the form of molecules of ATP, which is an essential
metabolite in signaling pathways. ATP is most often used
during phosphorylation events. These reactions produce ADP
as a by-product, which is recycled by metabolism to create
new molecules of ATP. The combined metabolic/signaling
network integrates theses connections.

2) Metabolism to Gene regulation: In addition to cre-
ating energy, metabolism uses nutrients to produce all the
necessary building blocks of the cell. These components
are essential for protein synthesis. The demand of these
precursors fluctuates according to the expression of the genes

in the regulatory network. The objective function used during
FBA analysis takes this demand into consideration.

3) Signaling to Gene regulation: The overall goal of the
signaling pathways is to transmit external stimuli to the
nucleus. This is done through the activation of TFs, which
regulate the expression of target genes. If TFo enhances the
expression of gene g ∈ GI , then:

ẋg(t) =

{
ρ+ ρ0 − λgxg(t) if δTFo > 0

ρ0 − λgxg(t) if δTFo ≤ 0,
(10)

where ρ and ρ0 are the production and basal production rates
of g, respectively, and λg is its decay rate. These parameters
can be easily determined from the gene expression data
from [17]. δTFo is positive if the rate of activation of TFo
increases through time, negative if it decreases. The direction
of the inequalities is reverted if TFo represses g. In our
implementation, we use a discretized version of (10).

4) Gene regulation to Signaling and Metabolism: The
regulatory constraints from the gene network are incorpo-
rated in the fast dynamics through an incidence matrix. This
matrix was first defined in [14] as a Boolean matrix of size
r × T , with r the number of reactions in the fast network
and T the number of time steps in the simulation. Each entry
I(j, n) specifies if reaction j ∈ R is enabled or not at the
n-th time step. At time step n, the value in I(j, n) is used
to constraint the lower and upper bounds of vj :

αjI(j, n) ≤ vj ≤ βjI(j, n). (11)

I(j, n) = 0 is equivalent to removing reaction j. I is
updated at every iteration according to the state of the gene
network. In this paper, we extend the framework from [14]
by considering an incidence matrix with entries varying in
a continuous range from 0 to 1. This extension is necessary
to account for the continuous changes in the expressions of
the genes from the regulatory network. Let J ⊆ R denote
the set of reactions enabled by a gene. A gene enables a
reaction j if it codes for a protein, typically an enzyme, used
in j. In our model, a reaction is only enabled by a single
gene. Therefore, J also denotes the set of genes enabling
reactions. The expression of gene j directly influences the
activity of reaction j. To capture this constraint, we consider
the normalized gene expression of gene j:

I(j, n+ 1) =
xj(n)− xminj

xmaxj − xminj

, j ∈ J, (12)

where xminj and xmaxj are the minimum and maximum
expression values for gene j, respectively, derived from the
expression data in [17]. Using (11), a low gene expression
for gene j does not completely shut down reaction j, but
rather diminishes its maximum capacity. For all reactions
j ∈ R \ J , I(j, n) = 1 at all time steps.

B. Overall simulation algorithm

The framework for the integration follows the procedure
from [14]. Our implementation differs from this approach
by considering gene expression as a continuous variable. A
schematic representation of the framework is shown in Fig. 3.
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Fig. 3. Integrated framework: 1) The simulation starts by initializing
the biomass B, the extracellular metabolite concentrations xe, and the
gene expression levels of the regulatory network xg . 2) The biomass and
the extracellular metabolite concentrations are used to compute the upper
bounds βe for the transport reactions. The gene expression levels determine
the incidence matrix I at the current time step. I is used to constrain the
lower and upper bounds of all reactions in the metabolic/signaling network.
3) FBA is performed to obtain flux values for all the signaling and metabolic
reactions; in particular, it gives flux values for the transport reactions and
for the outputs of the signaling pathways. 4) The fluxes of the transport
reactions give the new external metabolite concentrations. 5) The outputs
of the signaling pathways determine the expression levels of the input genes
(i.e. the genes in GI ). 6) The output genes (i.e. the genes in GO) are updated
according to the state of the input genes. The update is done with some delay
τ . 7) The new extracellular metabolite concentrations and expression levels
are used to constrain the metabolic/signaling network for the next iteration.

a) Initialization: B, xe(0), βe(0) = xe(0)
Bh , e ∈ E,

xming , xmaxg , g ∈ G. xg(0) are either specified or generated
randomly. In the latter case, an expression value is arbitrarily
chosen between xming and xmaxg . I(j, 0) =

xj(0)−xmin
j

xmax
j −xmin

j
, j ∈

J . FBA is performed at time 0 on the unstimulated model
(i.e. without infection) to determine the “baseline” flux value
vTFo(0) for each output o of the signaling pathways.

b) Iteration: At each time step n ∈ {0, . . . , T − 1}:
1) Constrain the fast dynamics: The regulatory con-

straints defined in I are included in the fast dynamics using
(11). An infection is modeled by constraining the input
reactions of the signaling pathways: the flux of an input i is
constrained to 1 ≤ vi ≤ β for a predefined duration. If no
infection is present, we apply the constraint vi = 0.

2) FBA: FBA is performed to maximize the objective
function described in section III-A.

3) Update the concentrations of external metabolites:
xe((n+ 1)h), e ∈ E is computed with (8). βe((n+ 1)h) =
xe((n+1)h)

Bh , e ∈ E. The biomass remains unchanged since
macrophages do not grow.

4) Determine the activity of the TFs: δTFo =
vTFo((n + 1)h) − vTFo(0). δTFo being positive, zero, or
negative corresponds to an increased, stable, or decreased
rate of activation of TFo, respectively.

5) Update gene expression levels: The time scale H
of the gene network is much larger than the time step h
used during dFBA [14]. Nevertheless, the gene network
must capture the events of the signaling network, i.e. the
activations of the TFs, which happen at the small time step.
Gene expression is thus updated at every time step h. Each

gene g ∈ GI is updated using the discrete-time version
of (10), with h as the constant integration time step. The
expression level of the genes g ∈ GO is updated using (9).
We introduce a delay during the update procedure to account
for the gene slow dynamics (i.e. H). The state of each gene
is updated with some delay τ , where τ is the number of time
steps required for a regulator to change the expression level
of a target gene. The time scale H in (9) is then expressed
as H = τh.

6) Update I: I is updated according to (12) for all
reactions j ∈ J , and the procedure is reiterated.

V. SIMULATIONS OF INFECTIONS WITH
Porphyromonas gingivalis

We first simulated the system without infection to check
whether or not the system could reach a steady state. We
ran 10 simulations with T = 1, 000, h = 6 minutes, and
τ = 30 (H = τh = 3 hours). Gene expression was initialized
randomly. Most of the genes reached a steady state value
after 150 iterations. Interestingly, in all the runs, the systems
reached the same steady state after the 1,000 time steps. The
values corresponding to this steady state were used as initial
conditions for all further simulations. As a sanity check,
we started a simulation at the steady state. Gene expression
levels stayed unchanged throughout the simulation.

P.g is known to engage the TLR1/TLR2, TLR2, TLR4,
and TLR2/TLR6 dimers [21], [22]. To simulate an infection,
we forced the fluxes through the reactions activating these
receptors to be greater than 1. During the simulations, P.g
infections were able to increase the activation rates of AP-1,
CREB, and NF-κB. As a consequence, these TFs enhance
the expression of TNF-α. Our observations partially match
previous studies which have reported increased activation of
AP-1, NF-κB, and production of TNF-α [23]. Nevertheless,
instead of observing an increase of ROS production, as it
is usually the case in P.g infections [24], the simulated
infection provoked a decrease of ROS. This discrepancy may
arise from the objective function considered during the FBA
optimization. This function maximizes the production of all
outputs, and it appears that it becomes more “efficient” to
increase the production of NF-κB at the expense of ROS.
This is a clear limitation of the FBA model.

Fig. 4 shows the time course of TNF-α expression in
our simulated data and in the experimental data from [17].
Both simulations and experiments produced similar results.
The expression level of TNF-α increased shortly after the
initiation of the infection. Both expression levels reached a
comparable plateau. The infection remained active in our
simulation for 10 hours. Once the infection was removed,
the expression level of TNF-α quickly returned to its original
steady state value. This step took 1.5 hours in our simulation,
compared to ∼20 hours in the biological experiments. This
difference suggests that the decay rate in our simulations
might have been too large.

We next assessed the effect of the deletion of MyD88
on the response to P.g infections. MyD88 is known to be a
critical gene involved in the response to infection. It has been



Fig. 4. Expression levels of TNF-α. The top plot shows the expression
of the gene as present in the experimental data in [17]. The bottom plot
presents the expression as obtained in our simulation. The same trend is
observed in both cases.

reported that its deletion disrupts major cell responses [23].
In our simulation, the knockout of MyD88 disrupted several
pathways from the TLR network: the deletion rendered the
reactions activating the TLR1/TLR2, TLR4, and TLR2/TLR6
inputs non-producible. Among the four inputs triggered by
P.g, only TLR2 remained producible after the deletion of
MyD88. In addition, the network could no longer sustain
the activation of AP-1.

VI. CONCLUSION

We described a computational framework for the integra-
tion and simulation of the TLR signaling network with the
mouse genome scale metabolic network and a gene network
that regulates the expression of some genes involved in
the TLR pathways. The mathematical model for the gene
regulatory network was obtained through a new identification
method applied to a recently published gene expression data
set for mouse immune cells. Our tool can simulate any type
of infection. We present simulation results for infection with
P.g, which are similar to biological observations.
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