
1 

 

 

 

A Manual of Audapter 

 

Version 2.1.5 

 

Shanqing Cai 

shanqing.cai@gmail.com 

Speech Laboratory, 
Department of Speech, Language and Hearing Sciences, 
Sargent College of Health and Rehabilitation Sciences, 

Boston University 

 

February 2014 

Updated by Elaine Kearney, Alfonso Nieto-Castañón, Liz Heller Murray, & Frank Guenther, September 

2022 

 

  

mailto:shanqing.cai@gmail.com


2 

 

1. Overview: What is Audapter?1 

Audapter, previously known as TransShiftMex, is a software package for 

configurable real-time manipulation of acoustic parameters of speech that runs on general-

purpose computers. It is designed for research on auditory-motor interactions in speech 

production, but may also be of use for certain speech signal processing applications. The 

current version of Audapter supports manipulation (i.e., perturbation) of the following 

acoustic parameters: 

1) Formant frequencies (F1 and F2), in both static and time-varying ways 

2) Fundamental frequency (F0, or pitch) 

3) Local timing, through time-warping 

4) Local intensity 

5) Global time delay (delayed auditory feedback) 

6) Global intensity 

These types of perturbation types can be automatically gated in on specific preselected 

parts of a given utterance, through a set of heuristic rules for online status tracking (OST, 

see Sect. 7). Certain combinations of perturbation types can be delivered simultaneously 

or sequentially, in the same speech utterance.  

As a package, Audapter includes both the core algorithms for real-time speech 

signal processing and MATLAB wrap-arounds supporting psychophysical experiments. 

The real-time signal processing algorithms are coded in C++ and implemented as a MEX 

interface for MATLAB. A set of MATLAB scripts and programs are available for calling 

Audapter and utilizing it in various types of auditory feedback perturbation (AFP) 

experiments. These include graphical user interfaces for stimulus presentation, 

experimental workflow control, data preprocessing, as well as basic analyses of the data. 

Although Audapter has been thoroughly used and tested only on Windows PCs (both 32- 

and 64-bit), it should be portable to other platforms, including Mac.  

Audapter has been developed at the Speech Communication Group, Research 

Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT) as well as 

the Speech Laboratory of Boston University. Marc Boucek (Boucek 2007) and Satrajit 

Ghosh originated the MEX C++ project. This code was partly based on algorithms written 

on DSP platforms by Virgilio Villacorta and Kevin J. Riley in earlier AFP experiments. 

Since the year 2007, Shanqing Cai, the author of this document, made extensive 

modifications to Audapter and added many new functions. Cai is currently the primary 

maintainer of this software package. 

This manual serves as a general guide to the usage of Audapter. If you are 

interested only in using Audapter to perform relatively simple psychophysical or MRI AFP 

experiments (e.g., simple formant or pitch perturbation), you can proceed directly to 

Section 9, 10 and 11. However, if you would like to gain a thorough understanding of the 

 
1 List of abbreviations: AF – Auditory feedback; AFP – Auditory feedback perturbation; ASR – Automatic speech 

recognizer; DAF – Delayed auditory feedback; F0 – fundamental frequency; F1- 1st formant frequency; F2 – 2nd 

formant frequency; FF – Forgetting factor; LP – Linear prediction; OST – Online status tracking; PCF – 

Perturbation configuration; P.I. – Principal investigator; RMS – Root mean square. 



3 

 

MATLAB interface for Audapter and potentially design your own AFP paradigms, the 

other sections should give you useful guidance.   

 

1.1. How to cite Audapter? 

To cite the Audapter as a software package, use the following references: 

Cai S, Boucek M, Ghosh SS, Guenther FH, Perkell JS. (2008). A system for 

online dynamic perturbation of formant frequencies and results from 

perturbation of the Mandarin triphthong /iau/. In Proceedings of the 

8th Intl. Seminar on Speech Production, Strasbourg, France, Dec. 8 

- 12, 2008. pp. 65-68. 

Tourville JA, Cai S, Guenther FH (2013) Exploring auditory-motor 

interactions in normal and disordered speech. Proceedings of Meeting 

on Acoustics. 9:060180. Presented at the 165th Meeting of the 

Acoustical Society of America, Montreal, Quebec, Canada, June 2 – 

June 7, 2013. 

Published experimental studies based on Audapter from the MIT Speech Communication 

Group and Boston University Speech Lab include: 

Cai S, Beal DS, Ghosh SS, Guenther FH, Perkell JS. (2014). Impaired timing 

adjustments in response to time-varying auditory perturbation during 

connected speech production in persons who stutter. Brain Lang. 

129:24-9. 

Cai S, Ghosh SS, Guenther FH, Perkell JS. (2010). Adaptive auditory feedback 

control of the production of the formant trajectories in the Mandarin 

triphthong /iau/ and its patterns of generalization. J. Acoust. Soc. 

Am. 128(4):2033-2048. 

Cai S, Ghosh SS, Guenther FH, Perkell JS. (2011). Focal manipulations of 

formant trajectories reveal a role of auditory feedback in the online 

control of both within-syllable and between-syllable speech timing. 

J. Neurosci. 31(45):16483-16490. 

Cai S, Beal DS, Ghosh SS, Tiede MK, Guenther FH, Perkell JS. (2012). Weak 

responses to auditory feedback perturbation during articulation in 

persons who stutter: Evidence for abnormal auditory-motor 

transformation. PLoS ONE. 7(7):e41830. 

When appropriate, the above references can be cited as well. 

 

2. Getting Started - Running Offline Demos 

The Audapter package comes with a set of demo scripts that show you the basic 

capacity of the software as well as serve as examples for programming your own Audapter 

applications.  



4 

 

Details on how to obtain the code can be found in Appendix 1. If you opt to build 

the core MEX program of Audapter from scratch, instructions on how to do this in 

Microsoft Visual C++ can be found in Appendix 2. Alternatively, you can download the 

compiled binary from the author’s website. In addition to setting up the MATLAB and 

MEX code of Audapter, you will need to install at least one ASIO sound card driver on 

your computer, in order to ensure the successful execution of the Audapter MEX program 

in MATLAB. This is necessary even if you plan to use Audapter only in the offline mode. 

Installing the ASIO driver does not require that you have the actual sound card hardware. 

You can download MOTU’s universal audio installer for free at: 

http://www.motu.com/download. Alternatively, you can try ASIO4ALL: 

http://www.asio4all.com/. 

To set up the environment properly, you need to add path to the folder containing 

Shanqing Cai's MATLAB toolkit commonmcode, audapter_matlab, and the Audapter 

MEX file. Enter in MATLAB a command such as the following:  

addpath(genpath('c:/audapter')); 

The drive letter and directory may vary depending on where you’ve put the code 

repositories. You can check that the path to the Audapter MEX program has been set up 

correctly by entering command: 

which Audapter; 

If the output says “Audapter not found”, you may need to set the path to the 

Audapter MEX file manually, e.g., by using the MATLAB command addpath. 

 

2.1. Offline Demos 

These offline demos can be run in MATLAB without an ASIO-compatible sound 

card attached, because these demo scripts utilize the offline processing option of Audapter, 

i.e., the “runFrame” option (see Sect. 3). 

2.1.1. Offline Demo 1: Formant perturbation 

The command for bringing up this demo is: 

test_audapter('formant', '--play');  

This command brings up two windows in MATLAB, each showing a 

spectrogram. The first window shows the spectrogram of the input signal, which is the 

English phrase “test a pepper” uttered by an adult male speaker. Overlaid in the 

spectrogram are the F1 and F2 tracks calculated by Audapter during the supra-threshold 

intervals, as well as a black curve showing the OST status (multiplied by 500 for 

visualization purpose). The second figure shows the spectrogram of the output, i.e., 

perturbed, speech signal. The F1 and F2 during the word “a” and the first syllable of the 

word “pepper” are altered. The new formant values are shown by the green curves in this 

http://www.motu.com/download
http://www.asio4all.com/
file:///e:/speechres/commonmcode


5 

 

figure. This demo program also plays the input and output signals, due to the inclusion of  

--play in the input argument. The consequence of this joint downward F1 and upward F2 

is that the word “pepper” sounds more similar to the word “paper”. 

This simple demo demonstrates three aspects of Audapter’s capacity: 1) formant 

tracking, 2) formant AFP and 3) OST for tracking the progress of the sentence and 

delivering the perturbation at specific part of a multisyllabic utterance.  

 

 

Figure 1. Graphical output of the demo command: test_audapter('formant', '--
play');  

2.1.2. Offline Demo 2: F0 perturbation (using the phase-vocoder method) 

Audapter has two implementations of an F0 perturbation using (1) a phase-

vocoder method, and (2) a time-domain method. The phase-vocoder method results in a 

full-spectrum shift (that is, both F0 and formants are shifted), whereas the time-domain 

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

F1 (original)

F2 (oringina)

OST status * 500

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

F1 (original)

F2 (oringina)

F1 (shifted)

F2 (shifted)

OST status * 500



6 

 

method selectively shifts F0. To see the demo of Audapter’s phase-vocoder F0 (pitch) 

perturbation capacity, use the following command:  

test_audapter('pitch', '--play'); 

The graphical output of this command is similar in format to the formant-

perturbation demo. This example is based on the same recording as in Demo 1. However, 

unlike the formant perturbation example, the fundamental frequency (F0) is shifted up 

during the word “a” and the first syllable of the word “pepper”.  

2.1.3 Offline Demo 3: F0 perturbation (using the time-domain method) 

To see the demo of Audapter’s time-domain F0 (pitch) perturbation capacity, use 

the following commands:  

time_domain_shift_demo('female', 0, '—wav', 'sustained-eee-

female.wav', '—play'); 

time_domain_shift_demo('male', 0, '—wav', 'sustained-eee-

male.wav', '—play'); 

The graphical output includes four figures. The first figure displays spectrograms 

of the input signal (in the below example, a sustained production of the vowel /i/ by a male 

speaker) and output signal. Both spectrograms have F1 and F2 traces overlaid in white. 

The second and third figures show the waveforms of the input and output signals. The 

fourth figure is a trace of the pitch, or F0, of the input and output signals. The shift is a one 

semitone (100-cent) downward shift in F0. It begins one second after voice onset and 

linearly increases until it reaches its max perturbation value two seconds after voice onset. 

 



7 

 

 

 

 

 

Figure 2. Graphical output of the demo command:  
time_domain_shift_demo(gender, 0, '—wav', wav-filename, '—play'). The 
sample recording was a sustained production of the vowel /i/ by a male 
speaker. 



8 

 

 

2.1.4. Offline Demo 4: Time warping   

The following command brings up an example of time-warping perturbation: 

test_audapter('timeWarp', '--play'); 

Comparing the two spectrograms, you can see change in the timing of various 

parts of the utterance. Specifically, two time-warping events were included in this example. 

The first event lengthens the duration of the [s] sound in the word “test” and delays the 

onset of the final [t] sound. It also delays the onset of the word “a”. This warping event 

ends at approximately the beginning of the first syllable in “pepper”. The second warping 

event starts during the silent interval before the onset of the second [p] sound in “pepper”. 

It lengthens this silent interval and thereby delays the onset of the noise release in the 

following [p] sound. As can be seen in this example, multiple time-warping events can be 

included in the same utterance.  

2.1.5. Offline Demo 5: Dynamic perturbation of a Standard Chinese triphthong 

In this demo, we show how Audapter can impose a time-varying F1 perturbation 

during a triphthong [iau] in Standard Chinese (Mandarin). To run this demo, enter 

command: 

audapterDemo_triphthong('--play'); 

 

Figure 3. Graphical output of the demo command:  
audapterDemo_triphthong('--play'). It shows the time-varying F1 perturbation 
during the Standard Chinese triphthong [iau]. 

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

Original

1.2 1.3 1.4 1.5 1.6 1.7
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

Shifted

1.2 1.3 1.4 1.5 1.6 1.7
0

500

1000

1500

2000

2500

3000

3500

4000



9 

 

The “--play" option leads to playback of the input and output waveforms. The 

script also shows a figure with two subplots, the left of which shows the input (unperturbed) 

spectrogram and the right of which illustrates the perturbed output. The white curves 

overlaid on these spectrograms are the original F1 and F2 values in the female speaker’s 

production, while the dashed green curves are the perturbed F1 and F2 values. The green 

F2 curve overlaps with the solid white F2 curve because the perturbation was limited to F1 

in this example. 

This type of time-varying perturbation is what is used in Cai et al. (2010). It is 

achieved by supplying proper values to these following Audapter parameters that support 

this type of OST-independent, time-varying formant manipulation: f2Min, f2Max, f1Min, 

f1Max, LBk, LBb, pertF2, pertAmp and pertPhi. Together, these nine parameters forms a 

structure called the perturbation field in the plane of F1 and F2. In this perturbation field, 

the amount of perturbations to F1 and F2 can vary as a function of the unperturbed value 

of F2. This also forms the basis for the “spatial” perturbation type used in Cai et al. (2011). 

Section 5 contains further details about the design and usage of the perturbation field. 

Detailed descriptions of the nine Audapter parameters can also be found in Section 4.  

 

2.2. Online demos 

The following demos show the real-time speech perturbation capacity of 

Audapter. They use the real-time processing options (“start” and “stop”; see Section 3). In 

order to run them successfully, you need to have an ASIO-compatible audio interface 

attached to the computer. A type of audio interface that has been used and tested 

extensively by the Guenther Lab is the Focusrite Scarlett (2i2 or 4i4 models). The settings 

in the demo scripts, however, assume that the attached audio interface is the MOTU 

Microbook2. If a non-MOTU audio interface is used, the settings will need to be adjusted 

accordingly, mostly in the MATLAB script getAudapterDefaultParams.m. These demo 

scripts assume that the audio interface has the following settings: sampling rate = 48000 

Hz; buffer length (frame size) = 96.  

2.2.1. Online Demo 1. Persistent formant shift 

To run this demo, enter the following command in MATLAB: 

audapterDemo_online('persistentFormantShift', gender); 

wherein gender is the gender of the user ('male', or 'female'). The formant perturbation in 

this demo consisted downward F1 shifts and upward F2 shifts, which make the vowels 

sound “fronter” and higher in the AF. 

 
2 Some users have experienced malfunctions with the MOTU Mircobook in certain situations, e.g., loud noise 

playing through the headphone channel. Other audio interfaces may be preferred. 



10 

 

In this demo you can use the command line option ‘fb’ to select different feedback modes. 

Detailed description of the parameter fb is in Table 1. The default feedback mode is fb=1, 

i.e., speech-only feedback mode. It can also be activated with the command line:  

audapterDemo_online('persistentFormantShift', gender, 'fb', 

1); 

If you select the feedback mode 0 with:  

audapterDemo_online('persistentFormantShift', gender, 'fb', 

0); 

the auditory feedback (AF) is muted, however, Audapter still processes the formant 

tracking and shifting and store them in the output data.  

To show the noise-masking feedback mode, use fb value 2. 

audapterDemo_online('persistentFormantShift', gender, 'fb', 

2); 

To see the mixed speech and noise feedback mode, use fb value 3: 

audapterDemo_online('persistentFormantShift', gender, 'fb', 

3); 

fb value 4 activates the so-called speech-modulated noise feedback mode: 

audapterDemo_online('persistentFormantShift', gender, 'fb', 

4); 

In this mode, the auditory feedback is the noise waveform, modulated by the short-time 

intensity envelope of the speech waveform. Given that the level of the noise is carefully 

chosen, this mode is similar to the noise-only feedback mode in that it blocks the auditory 

feedback, however, it can also have the advantage of eliciting less Lombard effects, which 

may be desirable for certain purposes such as studying the control of speech movements 

and speech motor learning in the absence of AF.  

In the demo script, you can see that under fb values 2 to 4, where a noise 

waveform is required, Audapter loads the waveform from a .wav file “mtbabble48k”. 

  

2.2.2. Online Demo 2. Persistent pitch shift (using phase-vocoder method) 

This demo shows the basic phase-vocoder pitch shifting capacity of Audapter. It 

shifts the pitch up by two semitones throughout the trial, without any OST tracking.  To 

run this demo, do: 

audapterDemo_online('persistentPitchShift'); 



11 

 

 

2.2.3. Online Demo 3. Two fixed-delay, fixed-duration short pitch shifts in one utterance (using 

phase-vocoder method) 

Demo command line: 

audapterDemo_online('twoShortPitchShifts'); 

This demo includes two short pitch shifts following the automatically detected 

voicing onset, each of which lasts 200 ms. The second shift begins 300 ms after the end of 

the first shift. This type of perturbation is similar to the pitch-shift stimuli that have been 

used extensively at Chuck Larson’s lab at Northwestern University (e.g., Larson et al. 

2008). This timing control is achieved through the OST file 

in ../example_data/two_blips.ost. Studying this OST file and the associated PCF file 

(../example_data/two_pitch_shifts.pcf) can give you an idea of how to use the OST and 

PCF capacities to perform this type of fixed-duration, fixed-delay perturbations.  

 

2.2.4 Online Demo 4. Persistent pitch shift (using time-domain method) 

This demo shows the basic time-domain pitch shifting capacity of Audapter. The 

shift is a one semitone downward shift in F0. The shift beings 1 second after voice onset 

(after passing the intensity threshold) and linearly increases to the maximum perturbation 

2 seconds after voice onset. The shift stays on for the rest of the trial.  This type of 

perturbation was used in Smith et al., 2020. To run this demo, do: 

time_domain_shift_demo(gender, 1); 

The type of perturbation does not use OST and PCF files. Instead, the 

perturbation is configured within the MATLAB script. The demo script includes helpful 

information about parameters specific to the time-domain pitch shift. Additional details are 

provided here. 

The following gets a default list of parameters for running Audapter: 

params = getAudapterDefaultParams(gender); 

These parameters are then updated for the time-domain shift. First, the time-

domain pitch shift is activated: 

params.bTimeDomainShift = 1; 

An a priori pitch range needs to be set for real-time pitch tracking. The range can 

be set on an individual basis (e.g., +/- 40Hz relative to a baseline F0 value from a sample 

recording): 

params.pitchLowerBound = 150; 

https://doi.org/10.1044/2020_JSLHR-19-00296


12 

 

params.pitchUpperBound = 300; 

The frame length needs to be long enough to ensure accurate real-time pitch 

tracking. Note that this is longer than the default value used for formant tracking: 

params.frameLen = 64; 

params.nDelay = 7; 

The time-domain pitch-shift also requires cepstral liftering: 

params.bCepsLift = 1; 

The time-domain pitch-shift can use one of three different algorithms: ‘pp_none’ 
(default), ‘pp_peaks’, ‘pp_valleys’. In all cases, for a down-shift perturbation, the 

algorithms extend the pitch cycles at boundaries between consecutive cycles by repeating 

the sample at the boundary, so that the length of each cycle is increased (lower pitch), while 

maintaining the same sliding-window frequency spectrogram. For an up-shift perturbation, 

the algorithms crop the pitch cycles at boundaries between consecutive cycles removing 

the near-boundary samples, so that the length of each cycle is decreased (higher pitch) 

while maintaining the same sliding-window frequency spectrogram. Possible abrupt jumps 

in the audio resulting from this cropping are attenuated by adding a linear trend at the 

boundaries, of the same duration as the difference between the original and perturbed pitch 

cycles, and of the same magnitude as the jump in values at the boundary. 

In the ‘pp_none’ algorithm the boundary between consecutive pitch cycles is 

determined from the zero-crossings of the band-pass filtered input audio. This choice 

makes the samples at the boundary to be typically close to zero, but sometimes it can result 

in high-frequency noise artifacts if the first-order derivatives of the audio waveform at 

these points are large. In those cases, the ‘pp_peaks’ or ‘pp_valleys’ algorithms may be 

preferred. With these algorithms, the boundaries are chosen to coincide with local peaks 

(‘pp_peaks’) or local valleys (‘pp_valleys’) in the original speech signal, in order to try to 

minimize the value of the audio pressure first-order derivatives during transitions.  

The following sets the algorithm: 

params.timeDomainPitchShiftAlgorithm = ‘pp_none’; 

The perturbation schedule is set using a 3x2 matrix. Each row corresponds to an 

“anchor point” in time. The first element of the row is time relative to the crossing of the 

intensity threshold (i.e., rmsThresh). The second element is the pitch shift ratio. A pitch 

shift ratio value of 1.0 means unshifted. A value of 2 means an octave of up-shift, while a 

value of 1.0595 is approximately an upshift of 1 semitone (100 cents). Conversely, a value 

of 0.9439 is approximately a downshift of 1 semitone (100 cents). For the time points 

between the anchor points, the shift amount if calculated from linear interpolation. For time 

points after the last anchor point, the pitch shift value from the last anchor point is 

maintained. The following example means: "Exert no perturbation in the first second after 

the crossing of the intensity threshold; then linearly ramp up the pitch-shift ratio from none 

to 100 cents in a period of 1 sec; finally hold the 100-cent shift until the end of the supra-

threshold event". 



13 

 

params.timeDomainPitchShiftSchedule = [0, 1.0; 1, 1.0; 

2, .9439]; 

Once all of the parameters have been updated, initiate Audapter with the 

parameters and record a trial: 

AudapterIO('init', params); 

AudapterIO('reset'); 

Audapter('start'); 

    pause(4.5); 

    Audapter('stop'); 

 

2.2.5. Online Demo 5. Focal formant shift 

To run this demo, enter command: 

audapterDemo_online('focalFormantShift', gender); 

In this demo, the user is expected to utter the nonsensical utterance “I said pap again”, in 

order to see the effect. Like the example in Sect. 2.2.1, this demo involves perturbations to 

formant frequencies, F1 and f2. However, unlike in the previous example, Audapter tracks 

the progress of the sentence and triggers the perturbation during a specific syllable of it. 

The word “pap” undergoes a upward F1 shift and downward F2 shift, which renders the 

word similar-sounding to the word “pop” (in American English, see Fig. 3 below).  

This online tracking and focal perturbation is achieved through the OST and PCF 

files “../example_data/focal_fmt_pert.ost” and “../example_data/focal_fmt_pert.pcf”. The 

OST file is a good example for those users who want to learn how to use Audapter to track 

a complex sentence consisting of multiple words and various types of consonants.  

 



14 

 

 

Figure 4. Example output of the demo on focal formant shift, tested on an adult 
male speaker, with the command line: 
audapterDemo_online('focalFormantShift', 'male'). The user uttered “I said pap 
again”. The Audapter tracks the progress of the words in this utterance in real 
time (see the blue curve showing the OST stat numbers). Notice the focused 
F1 and F2 perturbation during the word “pap”.  

This is an appropriate place to point out that the parameters in the OST file is 

largely ad hoc. The set of parameters are specific to the microphone gain and the speaker 

idiosyncrasy.  There is no guarantee that those OST parameters will work out of the box 

for all speakers. If you want to run focal perturbation experiments on multiple subjects, 

you need to write programs for determining the optimal OST parameter values for each 

subject, possibly with the help of force alignment results from an automatic speech 

recognizer (ASR).  Here, the optimality criterion is, of course, minimal error rate in the 

online detection of the focus word (i.e., the word to receive AFP). You can study the code 

in the author’s “rhythm-fmri” repository as an example of how to do this. This “rhythm-

fmri” project relied on the Julius ASR engine. The code can be found at GitHub location: 

https://github.com/shanqing-cai/rhythm-fmri. The key script for calculating subject-

specific OST parameters is at: https://github.com/shanqing-cai/rhythm-

fmri/blob/master/mcode/get_ost_pcf_params_rhy.m. 

 

 

F
re

q
u
e
n
c
y
 (

H
z
)

Input sound

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1000

2000

3000

4000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1000

2000

3000

4000

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

Output sound: Focal formant shift

 

 

Original F1

Original F2

Shifted F1

Shifted F2

OST stat * 250

https://github.com/shanqing-cai/rhythm-fmri
https://github.com/shanqing-cai/rhythm-fmri/blob/master/mcode/get_ost_pcf_params_rhy.m
https://github.com/shanqing-cai/rhythm-fmri/blob/master/mcode/get_ost_pcf_params_rhy.m


15 

 

2.2.6. Online Demo 6. Time warping 

Command line: 

audapterDemo_online('timeWarp'); 

In this demo, Audapter waits for the onset of voicing, as detected by the 

INTENSITY_RISE_HOLD mode of OST and a hard-coded intensity threshold of 0.02. 

Then it waits for another 100 ms before initiating a time warping event. This time warping 

event is specified in the PCF file ../example_data/time_warp_demo.pcf. The effect of this 

demo time warping will be the most salient if you can utter fast-changing sounds with 

abrupt onsets, such as “puh puh puh…” 

 

2.2.7. Online Demo 7. Globally delayed auditory feedback, pitch and gain perturbation and 

multi-voice feedback 

To bring up the global delayed, pitch- and gain-shifted multi-voice feedback 

demo, use the following command: 

audapterDemo_online('globalDAF_multiVoice'); 

This demo activates a feedback that consists of two voices and lasts for 3 seconds. One of 

the feedback voices has a global delay of 100 ms and a gain factor of 1.0; the other one has 

a longer delay (200 ms) and lower gain (0.33). In addition, the first voice contains a two-

semitone downward pitch shift and the second one contains a two-semitone upward pitch 

shift. This example shows how Audapter can be used to simulate choral reading effects for 

applications such as fluency enhancement for persons who stutter (Kalinowski et al. 1993). 

In the demo script, you can see lines that nullify the OST and PCF configurations 

in Audapter before starting the multi-voice feedback:  

Audapter('ost', '', 0); 

Audapter('pcf', '', 0); 

This is necessary here, as existing OST and PCF configurations will set parameter nFB 

automatically to zero and thereby disable the multi-voice feedback mode automatically. 

 

2.2.8. Online Demo 8. Continuous sine wave generation 

To run this demo, enter command:  

audapterDemo_online('playTone'); 



16 

 

You will hear four notes (A, B, C#, A) played in a sequence. Even though this 

function may seem very similar to the tone sequence generation function (Sect. 2.2.9), there 

is an important difference. Notice that the last tone will play continuously and keep going, 

until the user hits Enter to trigger the Audapter('stop') command. The tone sequence 

generator is not capable of producing continuous tones. Another difference is in the initial 

phases of the individual tones. You may be able to hear the discontinuities (“clicks”) in the 

sound produced by this example. This is because the tones produced under the “playTone” 

mode of Audapter do not have on/off ramps. The tone sequence generator, described in 

Section 2.2.9, however, is capable of imposing ramps on the tones.  

 

2.2.9. Online Demo 9. Waveform playback 

This demo can be brought up by the command: 

audapterDemo_online('playWave'); 

You will hear an utterance being played from the output channel of the audio 

interface. This option is based on the “playWave” mode of Audapter. The waveform for 

playback is supplied to Audapter with the following syntax (see the script): 

Audapter('setParam', 'datapb', sigInRS); 

sigInRS must have the same sampling frequency as the audio interface’s hardware 

sampling frequency before downsampling. In addition, its length must not exceed the 

maximum playback sample count maxPBSize, which can be obtained through the 

command:  

maxPBSize = Audapter('getMaxPBLen'); 

 

2.2.10. Online Demo 10. Tone sequence generation 

Use the following command to open this demo:  

audapterDemo_online('playWave') 

In this demo, you can hear four tones with varying frequencies, durations and amplitudes 

played from the output channels of the audio interface. Unlike he tones played through the 

“playWave” option of Audapter, these tones have smooth onset and offset ramps, so that 

the entire sound does not contain audible discontinuities. This example demonstrates how 

to use the parameters tsgNTones, tsgToneFreq, tsgToneAmp, tsgToneRamp and tsgInt to 

set up a tone sequence. 

 



17 

 

3. Basic Command Line Usage of Audapter 

Audapter is a C++ MEX program that can be called from MATLAB. If you enter 

the command: 

Audapter; 

that is, without any input arguments in MATLAB, you will see the help message in the 

MATLAB console. The help message lists the types of commands that you can send to 

Audapter. Each command can be called in two different ways, either as a command number 

(e.g.,1, 2) or as the corresponding character-based command name (e.g., start, stop).  

To list the currently attached ASIO audio interfaces (i.e., sound cards), use: 

Audapter('info'); 

To start a real-time audio processing trial, do: 

Audapter('start'); 

To stop a trial, do: 

Audapter('stop'); 

Note: to let Audapter work properly during the real-time processing trial, you 

need to have its parameters set properly, and optionally, have the online status tracking 

(OST) and perturbation configuration (PCF) files loaded properly. See the following 

sections (Sections 4, 7 and 8) on details of these settings. Among the parameters of 

Audapter, the most basic ones for ensuring the crash-free functioning include 

1) downsampling factor (parameter downFact) 

2) sampling rate (parameter srate),  

3) frame length (parameter frameLen) 

It is important to note that srate and frameLen should be the actual hardware sampling rate 

and buffer length divided by downFact. The downsampling factor, typically set to 3 or 4, 

is for reducing the computational load on CPUs for ensuring real-time processing. For 

example, if your audio interface has a sampling rate of 48000 Hz and a buffer length of 96, 

given that you’ve specified a downFact of 3, the values of srate and frameLen you should 

use in Audapter are 16000 and 32, respectively.  

To set a parameter of Audapter, use the setParam option:  

Audapter('setParam', paramName, paramVal, bVerb); 

In this command syntax, the second and third input arguments are the name of the 

parameter and the value you with set it to, respectively. The optional, fourth argument is a 

Boolean (0/1) variable that indicates whether the verbose mode is selected. If you do not 



18 

 

include this argument, the verbose mode is set by default. For example, the following 

command 

Audapter('setParam', 'bCepsLift', 0, 0); 

sets the parameter bCepsLift (see Sect. 4) to 0 (i.e., false) under the silent (i.e., non-verbose) 

mode.  

Oftentimes, for debugging and data analysis, you may want to run Audapter on pre-

recorded speech sounds, in an offline fashion. The option “runFrame” allows you to do 

that. In fact, the offline demos you have seen rely on this option. In this offline mode, you 

supply Audapter with signal frames (i.e., buffers) of speech sound at a time, with the 

following syntax:  

Audapter('runFrame', signalFrame); 

wherein signalFrame is a speech signal vector whose length matches frameLen * downFact. 
In other words, signalFrame is a frame of audio before downsampling. You can call 

Audapter in this way repeatedly, but with different signalFrames, to simulate the 

consecutive buffers that come in during an online, real-time trial. The test_audapter script 

for the offline demos contains examples of how this is achieved.  

The option “getData” of Audapter allows the user to extract audio and associated 

data from the last trial. This applies to either real-time trials triggered by options “start” 

and “stop” and offline trials triggered by option “runFrame”: 

[sig, dat] = Audapter('getData'); 

In the output, sig is a N×2 matrix, in which N is the number of samples in the last online 

or offline trial after the downsampling. The first column is the input signal; the second one 

is the output (potentially perturbed) signal. The second output “dat” is a N×M matrix 

containing various data derived from the audio input, such as calculated formant 

frequencies, linear prediction (LP) coefficients, short-time RMS intensity values, OST 

status numbers, etc. Each of the M columns is a different type of derived data. The matrix 

is not annotated and is not meant to be used directly by the user. Instead, there is a 

MATLAB script that wraps around the “getData” option of Audapter and generates much 

more readable data. It can be called in the following way (see the demo script: 

test_audapter.m, for an example): 

data = AudapterIO('getData'); 

The output data includes both the input / output signals and the derived data. Section 6 

contains a detailed description of all the fields of the output “data”. 

The “reset” option in Audapter allows the user to reset the status of the temporary 

data fields in Audapter, so as to prepare for the next incoming trial. It can be called as:  

Audapter('reset'); 



19 

 

which is equivalent to the calling the “reset” option in the AudapterIO wrap-around:  

AudapterIO('reset'); 

This resetting does not alter the parameter values. Instead, it sets memory fields that hold 

past audio signals, past formant values, etc., as well as the status of the OST tracker, to 

zero or other proper initial values, so that a new trial can start without any lingering 

influence from the previous trials. This resetting action should be performed prior to the 

onset of any new utterance in online and offline processing. The code in test_audapter.m 

demo script shows that.  

The “ost” and “pcf” options allows the loading of OST and PCF into Audapter, 

respectively, for specifying the details of online word tracking rules and perturbation to be 

delivered during the utterance. Details on how to use these options can be found in Sections 

7 and 8. 

The options of Audapter listed above are for speech signal processing. There are 

a number of other options in Audapter that support signal generation and playback 

functions that might be useful during psychophysical experiments, as listed below. 

The “playTone” option lets Audapter generate a continuous sine wave, of which 

the frequency, amplitude and initial phase angle can be specified in parameters wgFreq, 

wgAmp and wgTime, respectively. See the demo in Sect. 2.2.7 for an example of how to 

use this option.  

Apart from generating a continuous sine wave, the user can also load an existing 

waveform of which the sampling rate equals srate*downFact and it back by using the 

“playWave” option. See the demo in Sect. 2.2.8 for an example of how to use the playWave 

option.  

In addition, Audapter can also generate a sequence of short tone blips of 

adjustable durations, frequencies, amplitudes, onset/offset ramps and inter-tone intervals, 

through the “playToneSeq” option. Audapter can also write the waveform of the generated 

tone sequence to a .wav file through the “writeToneSeq” option. See the demo in Sect. 

2.2.9 for further details and an example of using these options.  

The last, but the not least important, command-line option of Audapter covered 

is the “deviceName” option. It is used to select an audio interface to use. It should be 

especially useful when you have multiple ASIO-compatible sound cards attached to your 

computer. When Audapter starts a real-time operation, such as “start”, “playTone” or 

“playWave”, it searches for the sound card with name matching the value of the pre-set 

deviceName. If it fails to find such a device, it will report error and stop. This option can 

be called with the following syntax example. 

Audapter('deviceName', 'MOTU MicroBook'); 

“MOTU MicroBook” is the default value of deviceName. If you use a different sound card, 

you’ll have to set it properly yourself, e.g.,  

Audapter('deviceName', 'Focusrite USB ASIO'); 



20 

 

 

 

4. Adjustable Parameters of Audapter 

Table 1 provides a list of all configurable parameters of Audapter. The values of 

these parameters can be set with the “setParam” option of Audapter. (see Sect. 3).  

Table 1. Adjustable parameters of Audapter  

Parameter 

Name 

Parameter 

Type 

Description Default value3 

Part 1. Basic audio interface settings 

downFact int Downsampling factor. The downsampling is 

for reducing the computational load for 

meeting the real-time constraint.  

3 

srate int Sampling rate (Hz), after downsampling 160004 

frameLen int Frame length in number of samples, after 

downsampling. This value should be an 

integer power of two.  

32 

nDelay int Processing delay in number of frames. The 

delay is due to the way in which Audapter 

forms an internal processing window: an 

internal window consists of (2 * nDelay - 1) 

input frames. During formant perturbation, 

the value of nDelay determines the feedback 

latency of the formant shifter. Note that if 

other types of perturbation, such as pitch 
shifting and time warping, is involved, the 

feedback latency may depend on other phase-

vocoder-related settings.  

7 

nWin int Number of windows per frame. Each 

incoming frame is divided into nWin 

windows.  

1 

fb int Feedback mode.  

0: mute (play no sound) 

1: normal (speech only) 

2: noise only 

3: speech + noise. The level of the noise is 

controlled by parameter fb3Gain. 

4: speech-modulated noise. The level of the 

modulated noise is controlled by parameter 

fb4Gain; the smoothness of the intensity 

envelope is controlled by parameter 

rmsFF_fb. 

1 

 
3 These default values of downFact, srate and frameLen are the parameter values that Audapter automatically take 

after construction. It can be found in the constructor of Audapter (Audapter::Audapter) in the C++ source code. 
4 48000 Hz downsampled by a factor of 3.  Note that this value is set for MOTU MicroBook. For other audio 

interfaces, other values may need to be used.  



21 

 

Note: these options work only under real-

time processing mode of Audapter, invoked 

through Audapter(1) or Audapter(‘start’). 

 

See Sect. 2.2.1 for demo of these modes of 

feedback. 

fb3Gain double Gain applied to the noise waveform for fb 

mode 3 (speech + noise) 

0.0 

fb4Gain double Gain applied to the modulated noise 

waveform for fb mode 4. 

1.0 

rmsFF_fb double array 

(1×4) 

First element: the forgetting factor at the 

onset of voicing.  

Second element: the forgetting factor when 

the voicing has stabilized.  

Third and fourth elements: reserved. Should 

be set to zero.  

Both the first and second values should be 

between 0.0 and 1.0. Greater values 

correspond to greater smoothing.  

Audapter will gradually shift the value of the 

forgetting factor from the first to the second 

element during the onset of the voicing and 

shift the value of the forgetting factor from 

the second to the first element during the 

offset of the voicing.  

[0.85, 0.85, 0.0, 0.0] 

stereoMode Int Two-channel audio output mode. This 

applies only to Audapter’s real-time 

processing mode.  

0: Audio signal in left channel only; right 

channel muted 

1: Identical audio signals in left and right 

channels 

2: Audio signal in left channel; simulated 

TTL pulses for indicating pitch perturbation 

intervals in right channel.  

1 

scale double Output scaling factor. This can be used as a 

global (i.e., time-invariant) gain control.  

1.0 

Part 2. Basic signal processing and intensity calculations 

preemp double Pre-emphasis factor 0.98 

rmsThr double Short-time RMS threshold. This threshold is 

used to determine during which input frames 

the formants are tracked and shifted. See 

rows “data.rms” and  “data.fmts” in Table 3 

for further details. 

0.02. Note that this default 

value is by no means 

generalizable. It is selected 

more or less arbitrarily. The 

proper value of rmsThr 

depends on many factors 

such as microphone gain, 

speaker volume, identity of 

the vowel, etc.  

rmsRatio double Threshold for short-time ratio between the 

smoothed unfiltered intensity value and the 

smoothed high-passed intensity value. 

Together with rmsThr, this parameter is 

1.3 



22 

 

involved in vowel detection for determining 

when formants are tracked and shifted. See 

rows “data.rms” and “data.fmts” in Table 3 

for further details. 

rmsFF double Forgetting factor (FF) for smoothing of 

short-time RMS intensity (rms_o) to obtain 

the smoothed intensity (rms_s). 

0.95 

trialLen double Length of the trial (unit: s). If this parameter 

is set to a positive value, the feedback of 

Audapter will continue for that amount of 

time and goes mute. But even when the AF 

goes mute, the signal and data recorders will 

continue functioning until Audapter stop is 

called.  

0.0 

rampLen double Length of the onset / offset ramps imposed 

on the auditory feedback (unit: s). These are 

linear, multiplicative ramps that can prevent 

the unpleasant sound discontinuities 

(“clicks”) at the beginning and end of a trial. 

If the value is 0.0 (by default), then no ramp 

is imposed. If the value is greater than 0, the 

headphones output is weighted using a linear 

ramp from time 0 to rampLen at the 

beginning of the trial and similarly at the end 

of the trial. Note that the value for rampLen 

is only taken into consideration when 

trialLen is non-zero. 

0.0 

Part 3. Formant tracking and shifting settings 

nLPC int Order of linear prediction (LPC). The 

number of LP coefficients will be nLPC + 1. 

15. For LP formant tracking 

to work properly, this value 

needs to be adjusted 

according to the sampling 

rate and the vocal-tract 

length of the speaker. Under 

16000 Hz sampling rate 

(following downsampling), 

values 15 and 17 are 

recommended for female 

and male adult speakers, 

respectively. See mcode/ 
getAudapterDefaultParams. 

nFmts int Number of formants to be shifted. 2 

nTracks int Number of tracked formants. The 1st to the 

nTracks-th formants will be tracked. 

4 

avgLen int Length of the formant-frequency smoothing 

window (in number of frames). To disable 

smoothing of formant frequencies, use 

avgLen = 1. 

10. Ideally, the smoothing 

window width should be 

approximately equal to the 

pitch cycle. 

cepsWinWidth int Low-pass cepstral liftering window size Depends on the F0 of the 

speaker. 

aFact double α factor of the penalty function used in 

formant tracking. It is the weight on the 

bandwidth criterion. The formant tracking 

1 



23 

 

algorithm is based on Xia and Espy-Wilson 

(2000). 

bFact double β factor of the penalty function used in 

formant tracking. It is the weight on the a 

priori knowledge of the formant frequencies. 

0.8 

gFact double γ factor of the penalty function used in 

formant tracking. It is the weight on the 

temporal smoothness criterion.  

1 

fn1 double Prior value of F1 (Hz), used by the formant 

tracking algorithm. 

633 

fn2 double Prior value of F2 (Hz), used by the formant 

tracking algorithm.  

1333 

bGainAdapt Boolean A flag indicating whether gain adaptation is 

to be used (see Boucek 2007) 

1 

bTrack Boolean A flag indicating whether the formant 

frequencies are tracked. Normally, it should 

be set to 1.  

1 

bDetect Boolean A flag indicating whether Audapter is to 

detect the time interval of a vowel. It should 

be set to 1 whenever bShift is set to 1.  

0 

bWeight Boolean A flag indicating whether Audapter will 

smooth the formant frequencies with an 

RMS-based weighted averaging.  

1 

bCepsLift Boolean A flag indicating whether Audapter will do 

the low-pass cepstral liftering. Note: 

cepsWinWidth needs to be set properly in 

order for the cepstral liftering to work.  

1 

bShift Boolean Activation for formant frequency shifting 1 

bRatioShift Boolean A flag indicating whether the data in 

pertAmp are absolute (0) or relative (1) 

amount of formant shifting. 

0 

bMelShift Boolean A flag indicating whether the perturbation 

field is defined in Hz (0) or in Mel (1). 

1 

minVowelLen int Minimum allowed vowel duration (in 

number of frames). This is a somewhat 

obsolete parameter. It was used during prior 

single CVC syllable vowel formant 

perturbation experiments for preventing 

premature termination of perturbations. This 

capacity should have largely been superseded 

by OST (Section 7). 

60 

f2Min double Lower boundary of the perturbation field 

(Section 5) 

0.0 

f2Max double Upper boundary of the perturbation field  0.0 

f1Min double Left boundary of the perturbation field 0.0 

f1Max double Right boundary of the perturbation field 0.0 

LBk double Slope of the tilted left boundary of the 

perturbation field 

0.0 

LBb double Intercept of the tilted right boundary of the 

perturbation field 

0.0 



24 

 

pertF2 1×257 double 

array 

The independent variable of the perturbation 

vector field (unit: mel or Hz, dependent on 

bmelshift). See Section 5.  

All 0.0 

pertAmp 1×257 double 

array 

The 1st dependent variable of the 

perturbation field: amplitude of the vectors.  

When bratioshift = 0, pertAmp specifies the 

absolute amout of formant shifting (in either 

Hz or mel, depending on bmelshift). 

When bratioshift = 1, pertAmp specifies the 

relative amount of formant shifting. See 

Section 1.2 (Section 5). 

All 0.0 

pertPhi 1×257 

double array 

The 2nd dependent variable of the 

perturbation field: orientation angle of the 

vectors (radians). 

All 0.0 

Part 4. Sine wave (pure tone) generation and waveform playback  

wgFreq double Sine-wave generator frequency in Hz 1000 

wgAmp double Sine-wave generator frequency (wav amp) 0.1 

wgTime double  Sine-wave generator initial time, used to set 

the initial phase.   

0 

dataPB double, 1×L 

array 

Arbitrary sound waveform for playback. The 

sampling rate of the playback is srate * 

downFact. Under the default setting, this 

sampling rate is 16000 × 3 = 48000 Hz. 

Therefore Audapter can playback 4.8 seconds 

of sound. L must less than or equal to the 
maximum allowable playback length in # of 

samples, which can be obtained from 

Audapter by using syntax: 
Audapter('getMaxPBLen') 

zeros(1, 

Audapter('getMaxPBLen')) 

 

trialLen double Length of the trial in sec. “triallen” seconds 

past the onset of the trial, the playback gain is 

set to zero.  

2.5 

rampLen double Length of the onset and offset linear ramps in 

sec.  

0.05 

Part 5. Tone sequence generator 

tsgNTones Int The total number of tones in the sequence. 

The upper limit is 64. See Sect. 2.2.9 for 

example code of using the tone sequence 

generator.  

0 

tsgToneFreq Double array 

(1×tsgNTones) 

The frequencies of all tones in the sequence 

(Hz) 

[] 

tsgToneDur Double array 

(1×tsgNTones) 

The durations of all tones in the sequence (s) [] 

tsgToneAmp Double array 

(1×tsgNTones) 

The peak amplitude of the tones in the 

sequence  

[] 

tsgToneRamp Double array 

(1×tsgNTones) 

The length of the onset  / offset ramps of the 

tones in the sequence (s) 

[] 

tsgInt Double array 

(1×tsgNTones) 

The inter-onset intervals between the tones in 

the sequence.  

[] 

Part 6. Global delayed auditory feedback and multi-voice feedback 



25 

 

nFB Int Number of feedback voice (≤4). Note: multi-

voice feedback mode (nFB > 1) is overridden 

by PCF files. Therefore, in order to use the 

multi-voice feedback, you need to nullify the 

OST and PCF files first. See Sect. 2.2.6 for 

an example of how to configure the multi-

voice feedback mode under nFB > 1. 

1 

delayFrames Int array 

(1×nFB) 

Amount of delay, in number of input frames. 

The duration of a frame can be calculated as 

frameLen / srate. 

[0] 

gain Int array  

(1×nFB) 

Intensity gain factors in individual feedback 

voices. Value 1.0 corresponds to no intensity 

shift. Note that these gains are applied to the 

individual feedback voices before the final 

summed feedback is scaled by the parameter 

scale.  

[1.0] 

pitchShiftRatio Double array 

(1×nFB) 

Pitch shifting ratios in individual feedback 

voices. Value 1.0 corresponds to no pitch 

shift. Values > 1.0 correspond to upward 

pitch shift. 

[1.0] 

mute Boolean array 

(1×nFB) 

Mute flags for the individual feedback 

voices.  

[false] 

bPitchShift Boolean An activation flag for the phase vocoder. It 

should be set to 1 (true) whenever pitch 

shifting and/or time shifting is involved. The 

name of this parameter is admittedly 

confusing, which is a legacy problem. 

false 

Part 7. Miscellaneous 

bBypassFmt Boolean A flag indicating whether Audapter will skip 

the formant tracking and shifting algorithms. 

It can be set to 1 (true) in applications that do 

not require formant tracking and require only 

pitch shifting, time warping and/or global 

delay and intensity manipulations to reduce 

latency and computational load.  

false 

 

 

  



26 

 

5. The Formant Perturbation Field 

F1 (mel)

F2(mel)

f1min f1max

f2max

f2min
F2=lbk×F1+lbb 

φ

A

Perturbation 

field

0

 

Figure 5. A schematic drawing of the perturbation field. The dashed lines show 
the boundaries of the perturbation field. The arrows show the perturbation 
vectors. The shaded region is the perturbation field. A and θ are the magnitude 
and angle of the vector, which are both functions of F2. 

The perturbation field is a region in the F1-F2 plane wherein F1 and F2 can be 

perturbed in a F2-dependent way. This mode of formant perturbation is currently 

incompatible with the OST and PCF files, described in Sections 7 and 8. In particular, OST 

and PCF take precedence over the perturbation field. If you have OST and PCF files loaded 

into Audapter, the software will use the information in those configuration files for 

determine the amount of F1 and F2 perturbation. Therefore, to prevent OST and PCF 

configurations from overriding the perturbation field, OST and PCF settings need to be 

nullified prior to the onset of a trial that utilizes the perturbation field. This can be achieved 

through the commands:  

Audapter('ost', '', 0); 

Audapter('pcf', '', 0); 

As shown schematically shown in Fig. 4, the location of the field is defined by 

five boundaries specified by six of Audapter’s adjustable parameters (Table 1):  

F1 ≥ f1Min;  (1) 

F1 ≤ f1Max; (2) 

F2 ≥ f2min;  (3) 

F2 ≤ f2max;  (4) 



27 

 

F2 ≥ LBk × F1 + LBb, if LBk ≤ 0; or F2 ≤ LBk × F1 + LBb, if LBk > 0; 

 (5) 

The units of f1Min, f1Max, f2Min, f2Max, LBb and LBk are either Hz or mel depends on 

another parameter, bMelShift. If bMelShift = 1, their units are mel; when bmelshift = 0; 

their units are Hz. In addition, the short-time intensity and spectrum need to satisfy certain 

conditions for the formant perturbation to happen. The “data.fmts” row in Table 1 contains 

the definition of these conditions. 

Detection of a vowel and shifting its formant frequencies is contingent on 

simultaneous satisfaction of the intensity/spectrum condition and Equations (1) – (5) and. 

The boundary defined by Equation (5) is in general a tilted line (see Fig. 4), and may seem 

a little bit peculiar. It was added because it was found to improve triphthong detection 

reliability in the Standard Chinese triphthong perturbation study. This boundary can be 

disabled by setting both LBb and LBk to zero. Similarly, if your project is concerned with 

only a fixed amount perturbation to a steady-state vowel in an isolated CVC syllable, you 

may wish not to use the boundaries f1Min, f1Max, f2Min, and f2Max, and rely only on the 

RMS intensity criteria in Table 3. This can be achieved by simply setting f1Min and f2Min 

to 0 and f1Max and f2Max to sufficiently large values (e.g., 5000).  

The perturbation field is a vector field (arrows in Fig. 4). Each vector specifies 

how much F1 and F2 will be perturbed, respectively. Each vector is defined by a magnitude 

A and an angle φ, which corresponds to pertAmp and pertPhi in the list of adjustable 

parameters (Table 1). Both A and φ are functions of F2. pertAmp can be either an absolute 

amount of formant shift or a relative ratio for formant shift, depending on whether 

bRatioShift is set to 0 or 1. The angle pertPhi has a unit of radians and starts from the 

positive horizontal axis and increases in the counterclockwise direction, in a fashion 

analogous to the complex plane. For example, if bMelShift = 0, bRatioShift = 1, pertAmp 

= all 0.3’s and pertPhi = all 0’s, then the perturbation will be a uniform 30% increase in 

F1 of the vowel.  

The mappings from F2 to A and φ are specified in the form of look-up tables  by 

the three parameters pertf2, pertAmp and pertPhi, which are all 1×257 vectors. The hard-

coded number 257 may look a little peculiar and arbitrary. It is selected to enable efficient 

binary search for mapping unperturbed F2 values to perturbation vectors. Linear 

interpolation is used to calculate the magnitude and angle of the perturbation vectors. See 

the demo script “audapterDemo_triphthong.m” for an example of how to use the 

perturbation field (see also Sect. 2.1.4) 

 The design of the perturbation is general enough to allow flexible F2-dependent 

perturbations. However, your project may concern with only fixed perturbation to a steady-

state vowel, and hence not require this flexible setup. If that’s the case, you can simply set 

both pertAmp and pertPhi as constant. For example, if you want to introduce a 300-mel 

downward shift to the F1 of a steady-state vowel (e.g., /ε/), you can simply set bMelShift = 

1, bRatioShift = 0, and let pertAmp be a 1×257 vector of all 300’s and let pertPhi be a 

1×257 vector of all π’s. Here, pertF2 should be a 1×257 linear ramp from f2Min to f2Max.  

You should also keep in mind that the parameters f1Min, f1Max, f2Min, f2Max, 

LBk, LBb, pertF2, and pertAmp all have units that are dependent on bMelShift, despite the 



28 

 

fact that the formant frequency outputs in the data structure (Sect. 6) and other parameters 

of Audapter (e.g., srate, fn1, fn2, wgFreq, see Table 1) always have the unit of Hz.  

 

 

6. Data Structure of the .mat Files 

The runExperiment script generates a .mat file for each trial. Each of those .mat 

files contains a variable by the name of “data”. This variable is obtained through the 

MATLAB script AudapterIO: 

data = AudapterIO('getData'); 

It is a structure containing a number of fields. The following is a description of the meaning 

of those fields.  

Table 3. Data fields and their meanings in the output of AudapterIO('getData') 
and the saved data files 

Field name Meaning 

data.signalIn 

 

Input signal after downsampling. This can either be from the audio 

interface for an online trial, or from the “runFrame” option for an 

offline trial. 

data.signalOut Output signal, before upsampling, possibly perturbed, depending on 

the perturbation configuration. If an online trial is involved, this is 

the signal delivered to the output channel of the audio interface, i.e., 

to the headphone 

data.intervals The onset sample numbers (integers) for the data frames. 

data.rms Column 1: Short-time root-mean-square (RMS) intensity values, 

smoothed, denoted rms_s. The amount of smoothing is determined 

by the value of the parameter “rmsFF” (RMS forgetting factor).  

Column 2: Short-time RMS intensity, pre-emphasized (i.e., high-

pass filtered) and smoothed, denoted rms_p. The amount of pre-

emphasis (i.e., high-pass filtering) is determined by parameter 

“preemp”, whose value is 0.98 by default. The amount of smoothing 

is the same as in column 1.  

Column 3: Non-smoothed, non-pre-emphasized short-time RMS 

intensity, denoted rms_o.  

data.fmts Formant frequencies. The values are non-zero only for the moments 

in which the smoothed short-time RMS  intensity rms_s and the ratio 

between rms_s and rms_p (i.e., rms_ratio) satisfy the following 

condition:  

(rms_s > 2 * rmsThr) && (rms_ratio > rmsRatioThresh / 1.3) 
||  

(2 * rmsThr > rms_s > rmsThr) && (rms_ratio > rmsRatioThresh) 



29 

 

 

The use of rmsRatioThresh in this condition is for excluding the 

unvoiced segments from the formant tracking. The value of  

rms_ratio should be greater during vowels and other voiced sounds 

than during unvoiced sounds such as fricatives. If you do not wish to 

include this ratio in the determination of formant-tracking intervals, 

you can set rmsRatioThresh to 0. 

data.rads The phase angles of the poles in the Z-plane in the LP results. 

data.dfmts Rate of change (velocity) of the formants. 

data.sfmts Formant frequencies in the output signal (i.e., auditory feedback). 

The values are non-zero during and only during the time intervals 

involving non-zero formant shifts.  

data.rms_slope Short-time slope of rms_s (the smoothed short-time RMS intensity 

values). This slope has a unit of s-1, and is obtained through Pearson 

linear regression of the rms_s values against the time. The size of the 

regression window is adjustable in the first part of an OST file (see 

Sect. 7). The reason why this parameter is configured in OST files is 

because rms_slope is used in certain heuristic rules in OST.  

data.ost_stat OST status number, determined by using the configurations in the 

OST file loaded into Audapter. If no OST file has been loaded, the 

values in ost_stat will be all zero. 

data.pitchShiftRatio The ratio of pitch shift as a function of time. 1.0 - no shift; >1.0 – up-

shift; <1.0 down-shift. Note: Audapter currently doesn’t support the 

extraction of pitch shift values in the multi-voice feedback mode. 

Under that mode, only the pitch shifting ratio of the first feedback 

voice is recorded. 

data.params Parameter settings during the trial. See Table 1 for a full description 

of the parameters. 

data.vowelLevel (may or 

may not exist depending on 

the version of 

runExperiment.m) 

Mean intensity of the vowel (in dB SPL A). 

 

data.uiConfig (may or may 

not exist depending on the 

version of 

runExperiment.m) 

GUI configuration during this trial 

data.timeStamp A time stamp created shortly after the end of the trial 

 

 

 

7. Online Status Tracking (OST) 

For certain psychophysical AFP applications, you may wish to use a 

multisyllabic speech utterance and impose the perturbation during specific sounds or 

syllables of the utterance. Online status tracking (OST) is a functionality of Audapter that 

serves this purpose. You can design a set of heuristic rules based on signal properties such 

as intensity to detect the onset and offset of various sounds in the utterance. With OST, 



30 

 

Audapter assigns a non-negative integer status number to each input frame in real time. In 

post-processing, these state numbers are stored in data.ost_stat (see Sect. 6). You can map 

these state numbers to various types of perturbations in by using perturbation configuration 

(PCF) files, a topic covered in Sect. 8. Therefore OST and PCF work together to enable 

the online automatic triggering of perturbation events.  

An OST file is an ASCII text file that configures the set of heuristic rules for 

tracking the progress of a speech utterance. It can be loaded into Audapter with the 'ost' 

option:  

Audapter('ost', ost_fn, 0); 

The second input argument is the name of the OST configuration file. The third argument 

is a Boolean flag for verbose mode.  

Code Sample 1 below is an example OST file. You should follow this formant 

when creating your own OST files. This file consists of three parts. Part 1 is a single line 

that begins with “rmsSlopeWin =”. This sets the window size (in seconds) for computing 

the slopes of short-time RMS intensity. Part 2 begins with a line such as “n = 3”. This 

compulsory line specifies the number of OST rules in the OST file. The number of 

following lines in this part must match the value of n. Each of the following lines specifies 

a tracking rule. These rules are engaged sequentially during an online trial. 

Code Sample 1. An example online status tracking (OST) configuration file. 
# Online status tracking (OST) configuration file 

rmsSlopeWin = 0.030000 

 

# Main section: heuristic rules for tracking 

n = 3 

0 INTENSITY_RISE_HOLD 0.02 0.0200 {} # Detect the onset of the first 

word 

2 INTENSITY_FALL 0.01 0.0100 {} # Detect the end of the first word 

4 OST_END NaN NaN {} 

 

# maxIOICfg  

n = 1 

2 0.2 4 

Each line of OST rule consists of five fields that are words or numbers, separated 

by single spaces. The first field is the starting state value. The second field selects the mode 

of tracking. It can be either a number from the first column of Table 2 or an all-upper-case 

string from the second column of the same table. Table 2 lists the currently supported 

modes of tracking. They are based mostly on short-time intensity, its rate of change (slope), 

and the ratio of spectral intensity in high- and low-frequency bands (e.g., mode numbers 

30 and 31). If you wish to include new and/or more sophisticated modes of tracking, 

changes to the C++ source code of Audapter will have to be made. Specifically, the OST 

functions are package in header and source files ost.h and ost.cpp. The third and fourth 

fields of the line are the two mode-specific parameters that can be configured by the user. 

For example, in the tracking INTENSITY_RISE_HOLD, the user needs to set the intensity 

threshold and the hold duration in the third and fourth fields, respectively. Table 2 contains 

descriptions of these parameters. Note that some tracking modes are associated with two 



31 

 

parameters, while others are associated with one or none. In the cases wherein fewer than 

two parameters are required, use the first several ones of the third and fourth fields, and 

leave the rest at NaN or arbitrary values. The fifth field of the line is a pair of curly brackets. 

This compulsory field serves no purpose in the current version of Audapter and is reserved 

for potential future uses.  

Each tracking mode is associated with a fixed increment in status number at the 

end of the mode. For example, the mode INTENSITY_RISE_HOLD involves an increment 

of 2 from the beginning to the end of the tracking. The last column of Table 2 lists these 

increment amounts. In Part 2 of the OST file, the first fields of the consecutive lines must 

match these increment values, otherwise unexpected and unpredictable tracking errors may 

occur. In other words, if the onset ost_stat value of an INTENSITY_RISE_HOLD rules is 

0, for example, then the beginning ost_value of the next rule, specified in the following 

line, must be 2. It should also be noted that each set of OST rules must end with a rule of 

the OST_END tracking mode (e.g., see the code sample above).  

Part 3 of the OST file is for the maximum-inter-onset-interval (maxIOI) mode of 

tracking. The maxIOI mode of tracking is a quite ad hoc way of dealing with possible 

tracking failure. It is essentially a way of telling the OST module of Audapter that “you 

should proceed to a different state forcefully, regardless of the tracking rule, if a certain 

amount of time has elapsed from the onset of a given state”. As you probably have come 

to realize, this is not an elegant way of approaching the tracking problem and should be 

used only as a last resort.  

This part begins with a line which specifies the number of maxIOI rules. The 

number of the trailing lines in this section must match the value of n in this first line. In 

each of the trailing lines, there are three numbers. The first number is the onset ost_stat 

number. The second one is the maximum wait time, in seconds. The third onset is the value 

of ost_stat that Audapter will automatically jump to when this wait period has elapsed.  

Consecutive parts in the OST file are separated by blank lines. You can insert 

comment lines in OST file. These comment lines should begin with the hash (#) character. 

You can also add comments to the end of uncommented lines (as in certain programming 

languages such as Python or MATLAB). 

Table 2. A list of supported heuristic modes for online status tracking (OST) 

Mode 
Number 

Mode Name Description and Example 
Usage 

Parameters Increment 
in OST 
state 
number 

0 OST_END Serves as an ending rule. 
Once a rule of this mode is 
reached, OST halts and the 
status number freezes at the 
current value until the end of 
the trial. Each OST file must 
end with this rule. 

(None) 0 

1 ELAPSED_TIME Elapsed time from previous 
state 

prm1: duration +1 



32 

 

 

Example: Wait for a fixed amount 
of time (e.g., 100 ms) after voicing 
onset 

5 INTENSITY_RISE_HOLD Crossing an intensity (RMS) 
threshold from below and hold 
 
Example: Detect the onset of a 
vowel or a voiced consonant-vowel 
cluster 

prm1: rmsThresh 

prm2: minDur (s) 

+2 

6 INTENSITY_RISE_HOLD_POS_SLOPE Crossing an intensity threshold 
from below and hold, during 
positive RMS slope 
 
Example: Detect the onset of a 
vowel, with added security 

prm1: rmsThresh 

prm2: minDur (s) 

+2 

10 POS_INTENSITY_SLOPE_STRETCH  Stretch of positive intensity 
slope, with only a stretch count 
threshold 

 
Example: This is still another way 
to detect the onset of a vowel or 
voiced consonant 

prm1: 
stretchCntThresh 

+2 

11 NEG_INTENSITY_SLOPE_STRETCH_SPA
N  

Stretch of negative intensity 
slope, with a stretch count 
threshold and a stretch span 
threshold 
 
Example: Detect the end of a 
vowel or the silent interval between 
a vowel and a stop consonant 

prm1: 
stretchCntThresh 

prm2: 
stretchSpanThresh 

+2 

20 INTENSITY_FALL Fall from a certain intensity 
threshold 

 
Example: Detect the end of a 
vowel 

prm1: rmsThresh 

prm2: minDur (s) 

+1 

30 INTENSITY_RATIO_RISE Intensity ratio cross from below 
and hold. See rows “data.rms” 
and “data.fmts” in Table 3 for 
further details. 

 

Example: Detect the onset of a 
sibilant (e.g., [s]) 

prm1: 
rmsRatioThresh 

prm2: minDur (s) 

+2 

31 INTENSITY_RATIO_FALL_HOLD Intensity ratio: fall from a 
threshold and hold 

 

prm1: 
rmsRatioThresh 

prm2: minDur (s) 

+2 



33 

 

Example: Detect the end of a 
sibilant (e.g., [s]) 

 

 

8. Perturbation Configuration (PCF) 

Once you have the OST heuristics configured, the next step in enabling focal 

perturbation of AF is supplying Audapter with a perturbation configuration (PCF) file. 

Similar to OST files, you can input a PCF into Audapter by using the following syntax: 

Audapter('pcf', pcf_fn, 0); 

The perturbation settings in a PCF file are divided into two parts: 

1) Time warping settings 

2) Settings for pitch, intensity and formant perturbations to be delivered at each 

specific state number  

This two-part organization is reflected in the structure of the PCF files. See the 

following code example: 

Code Sample 2. An example perturbation configuration (PCF) file. 
# Part 1 (Time warping): (state number), tBegin, rate1, dur1, durHold, 

rate2  
2 
0.94, 0.1, 0.1, 0.1, 1.5 # Time warping 1  
1.502, 0.1, 0.1, 0.1, 1.5 # Time warping 2 

 
# Part 2: stat pitchShift(st) gainShift(dB) fmtPertAmp fmtPertPhi(rad) 
6 
0, 0.0, 0, 0, 0 
1, 0.0, 0, 0, 0 
2, 0.0, 0, 0, 0 
3, 0.0, 0, 0, 0 
4, 0.0, 0, 0, 0 
5, 2.0, 0, 0, 0 # Two-semitone upward pitch perturbation during the last 

word 

This example PCF file defines two types of perturbations during a single 

utterance: two temporally non-overlapping time warps in the first section and a two-

semitone pitch shift in the second section.  

The syntax of Part 1 (time warping) is as follows. You begin by including a line 

consisting of a single positive integer, specifying the number of time warping events in the 

utterance. Following this line, a correct number of trailing lines needs to be entered, 

defining details of each time-warping event. There are two possible formatting for each 



34 

 

line. In the first format, five numbers are included in the line. These five numbers provide 

Audapter with the following pieces of information, respectively,  

1) tBegin: The onset time of the warp event (relative to utterance onset) 

2) rate1: The rate of initial time warping, with <1 being time dilation. In fact, this 

number has to be ≤1.0 in order for the system to be causal. 

3) dur1: Duration of the initial warping at rate1. 

4) durHold: Duration of the hold (i.e., no-warping) period following dur1 

5) rate2: rate of the time warping in the catch-up (or recovery) period. This number has 

to be ≥1.0.  

In total, a time warping event configured in this format lasts for a total duration 

of  

tBegin + dur1 + durHold + dur2 

wherein  

dur2 = (1 - rate1) / (rate2 - 1) × dur1 

When more than one warping events are specified in this format, Audapter will check to 

make sure that there are no temporal overlap between them. It will report an error if an 

overlap exists.  

In format 2, six, instead of five, numbers are included in each line. The first 

number should be an integer and it specifies the OST status number the time-warping event 

resides in. In this format, the onset timing of the warping event is relative to the onset time 

of the specified status number, not the onset of the utterance. The following five numbers 

have the same meaning as the numbers in line format 1. As in format 1, Audapter will look 

for temporal overlaps between time-warping events of the same OST status number and 

report an error if it finds any. However, because the onset timing of different OST status 

numbers cannot be predicted beforehand, Audapter will not attempt to check overlaps 

between time-warping events between different OST numbers or between time-warping 

events specified with different formats.  

Note that the sample PCF file above includes only format 1.  

In Part 2 of the PCF file, you define the amount of the following three types of 

non-time-warping perturbations at each OST status number. This section needs to start with 

a line consisting of a single integer that specifies the total number of different OST status 

numbers. Since OST status numbers always begin at 0, this integer should be one plus the 

maximum OST status number in the OST file you are using. 

The following lines have a fixed format, namely five numbers separated by 

commas and/or spaces. These five numbers, in order, define the following perturbation 

settings: 

1) 1st number: The OST status number. Note that this has to be sequential. You cannot 

skip status numbers or include status numbers that are outside the possible range.  



35 

 

2) 2nd number: The amount of pitch shifting, in semitones. Positive values correspond to 

upward pitch shifts, while negative ones correspond to downward shifts. 

3) 3rd number: The amount of intensity perturbation, in dB. 

4) 4th number: The magnitude of joint F1-F2 perturbation vector, in the formant plane 

spanned by F1 and F2. The unit of this depends on the bRatioShift parameter set in 

Audapter (see Section 4). If it is set to 0 (false), the unit will be Hz. Otherwise this 

number is dimensionless and specifies the ratio (fraction) of formant shifts.  

5) 5th number: The angle of the formant perturbation vector, in radians. For example, an 

angle of 0 leads to a pure upward F1 perturbation. An angle of -π/2 leads to a pure 

downward F2 perturbation. An angle of π/4 is used to specify equal amounts of 

perturbation to F1 and F2. 

As in an OST file, you can add comments to the PCF file with the “#” character 

(see Code Sample 6). 

 

9. Hardware Wiring and Configuration (Non-MRI Experiments) 

The following contains a photo and descriptions of the hardware wiring and 

configurations for a typical psychophysical (non-MRI) AFP experiment based on Audapter.  

 

Figure 6. A snapshot of the basic hardware connections for a psychophysical 
AFP experiment. 

• MOTU MicroBook USB <--> ThinkPad USB on the right-hand side 

▪ Note that some users have experienced malfunctions with the MOTU Microbook; see 

Kim et al. (2020) for alternative recommendations of audio interfaces 

• Xenyx502 AC Power In <--> Power outlet 

https://doi.org/10.1044/2020_JSLHR-19-00419


36 

 

• MicroBook headphones (front) --> 1/8 inch/RCA adapter --> Ground loop isolator --> 

Xenyx502 2-TRACK Input L/R 

• Xenyx502 Phones --> headphones (whatever model you use) 

• Microphone (whatever model you use) --> (Mic XLR extension cable --> XLR/quarter inch 

adapter -->) MOTU Mic (front) 

• Make sure that Xenyx502 the power indicator light is one 

• Xenyx502 “2-TR to phones” button: down 

• Xenyx502 “2-TR to mix” button: up 

• Xenyx502 main mix: @ 12 o’clock 

• Xenyx502 PHONES knob: determined by headphones calibration 

10. Running an Auditory-Feedback Perturbation Experiment 

1. Instructions for obtaining the Audapter software package and building the core C++ MEX 

program can be found in Appendix 1 and Appendix 2, respectively. 

2. Open MATLAB 

Make sure that Internet is available if a non-standalone MATLAB license is used. 

3. Type in command: 
addpath(genpath('c:/audapter')); 

4. (Optional) Verify that the path to Audapter is found by typing: 
which Audapter 

and see that the return value is not empty. It should be something like: 
C:/audapter/Audapter-2.1/BIN/Release 

5. (Optional) Verify that Audapter recognizes the sound card: 
Audapter info 

If the sound card (e.g., MicroBook) is connected properly, you should see the name of the 

device in the printed message. The “match” / “non-match” info can be ignored for now. 

6. Edit expt_config.txt, for example: 
edit expt_config_fmt.txt 

Edit the subject info, device name (MicroBook or UltraLite), data directory, experiment 

design, single-trial perturbation design, etc. 

Note that the above file name “expt_config_fmt.txt” does not exist initially. You can create it 

by copying one of the example configuration files that comes with the package (see below). 

7. To start a behavioral (non-MRI) experiment, type in: 
runExperiment expt_config_fmt.example.txt 

or 
runExperiment expt_config_pitch.example.txt 

or  
runExperiment expt_config_fmt.example.txt twoScreens 

or  
runExperiment expt_config_pitch.example.txt twoScreens 

 

To start a sparse-sampling fMRI experiment, do: 
runExperiment expt_config_fmt_fmri.example.txt twoScreens 

 

The second input argument is the name of the experiment configuration file to be used. It 

determines the type of the experiment you will run. See Section 11 “Experiment 

Configuration File” for details.  

The input argument “twoScreens” can be used when a second monitor is connected. This 

argument will make the program display word stimuli and the visual feedback to the subject 

on the second monitor. If so, make sure that the second screen is to the right of the main 

screen and has a resolution of 1024x768. 

8. The command “runExperiment” opens up three windows: 

a) Data monitor, which displays the input and output waveforms, spectrograms and 

associated data after each trial  

https://docs.google.com/document/d/1HNk9zCQapWDYDDuQ_N9q2VTxeyzQ8Px_cvKPm5lkTJU/edit#bookmark=id.b37pzk52at3h
https://docs.google.com/document/d/1HNk9zCQapWDYDDuQ_N9q2VTxeyzQ8Px_cvKPm5lkTJU/edit#bookmark=id.b37pzk52at3h


37 

 

b) Participant window: this is the window that displays stimuli and certain visual 

feedback to the subject 

c) Control window, in which the experimenter can see and adjust certain settings of 

experiment workflow 

The subject is supposed to see only the participant window, but not the data monitor and 

control window.  

9. If you entered 0 into the PRE_REPS, PRACT1_REPS and PRACT2_REPS in the 

expt_config.txt file, the practice phases will be skipped. Hit Enter until you reach the rand 

(i.e., main) phase.  

10. Hit Enter again upon entering the rand phase. Click the play button in the control window and 

the first trial will start.  

11. To quit the experiment before the completion of the experiment, press Ctrl+C in the main 

MATLAB window and then enter command: 
Audapter stop; 

 

11. Experiment configuration (expt_config) file 

This section is a description of some of the most important fields in the 

experiment configuration files (e.g., expt_config_fmt.example.txt); 

• DATA_DIR is the base directory in which the experiment data will be saved. For example, if 

the SUBJECT_ID is “TS_01” and DATA_DIR is “C:/DATA/APE”, the data from the 

subject’s experiment will be saved at C:/DATA/APE/TS_01. Note that if a subject undergoes 

multiple experiments, each experiment needs to have a unique SUBJECT_ID in order to 

prevent the overwriting of previous data.  

• To switch between a formant perturbation experiment and a pitch experiment one, modify the 

fields PITCH_SHIFT_CENT, F1_SHIFTS_RATIO and F2_SHIFTS_RATIO. If the values 

are zero in PITCH_SHIFT_CENT and non-zero in either F1_SHIFTS_RATIO or 

F2_SHIFTS_RATIO, the experiment will be a pitch perturbation experiment. If the converse 

is the case, the experiment will be a formant perturbation one.  

The above-mentioned three fields are for specifying the randomized-perturbation part of the 

experiment. For specifying the sustained-perturbation part5, modify fields: 

SUST_PITCH_SHIFTS_CENT, SUST_F1_SHIFTS_RATIO and 

SUST_F2_SHIFTS_RATIO. They work the same way as the three previously mentioned 

fields.  

Note that in principle, you could do an experiment with pitch perturbation in its randomized 

part and formant perturbation in its sustained part (or vice versa), but such a design probably 

would not makes sense in most situations.  

Also, you could mix pitch and formant perturbation by having non-zero values in both the 

pitch and formant (F1/F2) fields. 

• To specify whether an experiment will contain randomized perturbation, sustained 

perturbation, or both, you can modify these fields: N_RAND_RUNS and 

{SUST_START_REPS, SUST_RAMP_REPS, SUST_STAY_REPS, SUST_END_REPS}. If 

N_RAND_RUNS is non-zero, the experiment will contain a randomized part (after the pre, 

 
5 AFP experiments can be divided into two categories based on design. The first category is what we call the 

randomized design. In this design, the non-perturbed and perturbed trials are mixed together and randomized in 

order. This design is suitable for studying the online AF-based control of speech movements. Examples of this 

design can be found in Cai et al. (2011; 2012). The second category is called sustained design. A sustained 

perturbation experiment is organized as a number of phases, typically called “start”, “ramp”, “pert” and “end”. The 

perturbation trials are congregated into the ramp and pert phases, while the other phases contain non-perturbed trials. 

This design is used to study long-term modification of the speech commands under consistent feedback errors, 

sometimes referred to as auditory-motor learning. Examples of this design can be found in Cai et al. (2010). 



38 

 

pract1 and pract2 phases). If the other four fields are non-zero, the experiment will contain a 

sustained part. Note that the sustained part always goes after the randomized part. So if you 

want to do an experiment with only a sustained part, you should set N_RAND_RUNS to zero. 

If N_RAND_RUNS and the other four fields are all non-zero, the experiment will consist of 

both a randomized part and a sustained one, in that particular order.  

• To specify whether the experiment is a behavioral or fMRI session, set the field 

TRIGGER_BY_MRI_SCANNER to 0 or 1, respectively. Other relevant fields are 

MRI_TRIGGER_KEY and FMRI_TA. The program will wait for the trigger key issued by 

the MRI session at the onset of every scan. The key is specified in MRI_TRIGGER_KEY. 

After the program receives the key, it will wait for a period specified in FMRI_TA before 

presenting the word stimulus. This ensures the sparse-sampling paradigm in the fMRI session. 

Note (important) for the program to receive the trigger key properly, you need to always focus 

on the “Control window”. 

Acknowledgements 

Below is a potentially incomplete list of grants that have supported involved 

personnel during the development of Audapter: 

• N.I.H. R01-DC001925 (P.I.: Joseph Perkell) 

• N.I.H. R01-DC007683 (P.I.: Frank Guenther) 

• N.I.H. R56- DC0010849 (P.I.: Joseph Perkell) 

• N.S.F. Doctoral Dissertation Improvement Grant (DDIG) 1056511 (P.I.: 

Joseph Perkell and Shanqing Cai)  

• M.I.T. Edward Austin Endowed Fellowship (Recipient: Shanqing Cai) 

• M.I.T. Chyn Duog Shiah Memorial Fellowship (Recipient: Shanqing Cai) 

• Keith North Memorial Fund of the Research Laboratory of Electronics, 

M.I.T. 

Appendix 1. Instructions for obtaining and setting up the Audapter package 

1. Download and install Git Bash (http://git-scm.com/downloads) or other preferred Git 

programs 

2. Open Git Bash 

3. Create directory:  mkdir /c/audapter 
4. cd /c/audapter 
5. git clone https://github.com/shanqing-cai/commonmcode.git 
6. git clone https://github.com/shanqing-cai/audapter_matlab.git 

7. There are two alternative approaches for obtaining the core C++ MEX program of Audpater.  

a) Download the source code and build it on your own. See Appendix 2 for details. 

b) Download pre-built binary MEX files. Download the compiled core MEX program of 

Audapter from the author’s website (https://github.com/shanqing-cai/audapter_mex). 

Create directory such as “C:\\audapter\Audapter-2.1\BIN\Release” and put the MEX file 

(Audapte.mexw32 or Audapter.mexw64) in that directory.  

In addition, make sure that at least one ASIO sound card driver is installed on your 

computer, as Audapter MEX program requires such a driver to run. This is necessary even if 

you plan to use Audapter only in the offline mode. Installing the ASIO driver does not require 

you to actually have the sound card hardware. You can download MOTU’s universal audio 

installer for free at: http://www.motu.com/download. Alternatively, you can try ASIO4ALL: 

http://www.asio4all.com/. 

To update the code through Git in the future, do in Git Bash: 

http://git-scm.com/downloads
https://github.com/shanqing-cai/commonmcode.git
https://github.com/shanqing-cai/audapter_matlab.git
http://www.motu.com/download
http://www.asio4all.com/


39 

 

cd /c/audapter/audapter_matlab 

git pull origin master 

Note that Git pulling can execute successfully only if you have not changed any of the tracked files 

in the Git repository or if you have made some changes and committed them. If you are new to Git 

and want to learn about it, there are several good sources online, such as http://git-

scm.com/docs/gittutorial. 

Appendix 2. Instructions for building the core MEX program of Audapter in 

Microsoft Visual Studio 

1. The C++ source code is available from Shanqing Cai (https://github.com/shanqing-

cai/audapter_mex), the author of this manual and the current maintainer of Audapter 
2. Download the audapter_mex repository 

3. Download Visual Studio 2017, available at https://visualstudio.microsoft.com/vs/older-

downloads/ under 2017 

a. You will need to create a username and password and then select download 

b. You do not need to install workbooks at this stage 

4. Open Visual Studio and select “Open a project” 

a. Navigate to the audapter_mex folder you downloaded and select Audapter.sln 

b. Install any workbooks that you need at this point (whatever Visual Studio 

prompts) 

c. Restart computer, re-open Visual Studio, and open Audapter.sln 

5. In Visual Studio, select the correct configuration and architecture (win32 or x64). The 

configuration is set in the first dropdown menu and should be “Release”. The architecture is 

set in the second dropdown menu and needs to match your operating system.  

6. In Visual Studio, update the include and library paths to match your setup. In the Solution 

Explorer on the right-hand side: 

a. Right-click on the Audapter project and select “Properties” 

i. Go to Configuration Properties → General 
1. Set Platform Toolset to “Visual Studio 2017 (v141)” 

ii. Go to Configuration Properties → C/C++ → General 
1. Select “Additional Include Directories” 

2. Edit the line that contains “…\matlab\extern\include” to point 

to the current version of “…\matlab\extern\include” on your 

computer, e.g., C:\Program 

Files\MATLAB\R2017b\extern\include 

iii. Go to Configuration Properties → Linker → General 

1. Select “Additional Library Directories” 

2. Edit the line that ends in “\extern\lib\win*\microsoft” to point 

to the path on your computer, e.g., C:\Program 

Files\MATLAB\R2017b\extern\lib\win64\microsoft 

iv. Click “Apply” and “OK” 

b. Right-click on the audioIO project and select “Properties” 

i. Go to Configuration Properties → General 
1. Set Platform Toolset to “Visual Studio 2017 (v141) 

7. In Visual Studio, retarget and build the solution: 

a. Right-click on “Solution Audapter (2 projects)” 

i. Select “Retarget Solution” 

1. The displayed SDK version is fine to use, click “OK” 

2. If the retargeting worked correctly, the output will say 

“Retargeting End: 2 completed, 0 failed, 0 skipped” 

http://git-scm.com/docs/gittutorial
http://git-scm.com/docs/gittutorial
https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/


40 

 

3. If there are errors, it is usually due to incorrect file paths – 

recheck the paths you selected 

b. Right-click on “Solution Audapter (2 projects)” 

i. Select “Build Solution” 

1. If the build worked correctly, the output will say 

“========== Build: 2 succeeded, 0 failed, 0 up-to-date, 0 

skipped ==========” 

2. If there is a linking error, make sure MATLAB is closed and 

try again 

8. In MATLAB, make sure your experimental code can appropriately find the entire Github 

repositories you cloned/downloaded (adaupter_mex, audapter_matlab, commonmcode), 

e.g., 

addpath(genpath('[your-filepath]/audapter-mex')) 

addpath(genpath('[your-filepath]/audapter-matlab')) 

addpath('[your-filepath]/commonmcode')) 

9. In MATLAB, check which Audapter mex files are being accessed by Audapter: 

which Audapter -all 

a. The one you want to use is Release\Audapter.mexw64 (assuming a x64 

operating system). To avoid Audapter using the wrong Audapter.mexw64 file, 

delete any other versions from your computer 

Appendix 3. Legacy Instructions for building the core MEX program of Audapter 

in Microsoft Visual C++ 

1. The C++ source code is available from Shanqing Cai (https://github.com/shanqing-

cai/audapter_mex), the author of this manual and the current maintainer of Audapter 
2. Extract the Audapter-2.1 directory in the zip archive to C:/audapter/ 

3. Open the solution in Visual C++ 2010 or later 

4. In Visual C++, select the correct architecture (win32 or x64). You may need to manually set 

the linker output format to either mexw32 or mexw64, depending on your architecture. 

5. There are a number of configurations in the solution, such as “Release”, “Release_USyd” and 

so on. The main difference between these configurations are the include and library paths. 

You can use an existing configuration and make necessary modifications to it. You can 

modify the configuration by right-clicking “Audapter” in the Solution Explorer and select 

“properties”. 

Below are the most important settings for ensuring successful debugging and compiling: 

a. General / Configuration type = Dynamic Library (.dll) 

b. C/C++  / Additional include directories should contain $(SolutionDir)\audioIO, 

$(SolutionDir)\SibShift and C:\Program Files\MATLAB\R2011a\extern\include. The 

last directory may vary depending on your MATLAB installation path.  

c. Linker / General / Additional library dependencies should include C:\Program 

Files\MATLAB\R2011a\extern\lib\win32\microsoft. This directory may vary 

depending on your MATLAB installation path and your CPU architecture.  

d. Linker / Input / Additional dependencies should include libmx.lib, libmex.lib and 

libmax.lib 

e. Other settings that are described in this helpful webpage for guiding beginners 

through MEX building in VC++: 

http://coachk.cs.ucf.edu/GPGPU/Compiling_a_MEX_file_with_Visual_Studio2.htm 

http://coachk.cs.ucf.edu/GPGPU/Compiling_a_MEX_file_with_Visual_Studio2.htm


41 

 

6. Use menu option: “Build → Rebuild” to rebuild both the audioIO and Audapter projects (in 

that order) in the solution. A number of warning messages are expected. Most of them should 

be harmless and can be ignored. 

7. If your build result is in a directory other than BIN/Release, e.g., in BIN/Release/USyd, move 

the mexw32 (or mexw64) file into BIN/Release, so that the cds script can find the Audapter 

MEX file.  

References 

Boucek M. (2007). The nature of planned acoustic trajectories. Unpublished M.S. thesis. 

Universität Karlsruhe. 

Cai S, Boucek M, Ghosh SS, Guenther FH, Perkell JS. (2008). A system for online dynamic 

perturbation of formant frequencies and results from perturbation of the Mandarin triphthong 

/iau/. In Proceedings of the 8th Intl. Seminar on Speech Production, Strasbourg, France, Dec. 

8 - 12, 2008. pp. 65-68. 

Cai S, Beal DS, Ghosh SS, Guenther FH, Perkell JS. (In press). Impaired timing adjustments in 

response to time-varying auditory perturbation during connected speech production in persons 

who stutter. Brain Lang. 

Cai S, Beal DS, Ghosh SS, Tiede MK, Guenther FH, Perkell JS. (2012). Weak responses to 

auditory feedback perturbation during articulation in persons who stutter: Evidence for 

abnormal auditory-motor transformation. PLoS ONE. 7(7):e41830. 

Cai S, Ghosh SS, Guenther FH, Perkell JS. (2010). Adaptive auditory feedback control of the 

production of the formant trajectories in the Mandarin triphthong /iau/ and its patterns of 

generalization. J. Acoust. Soc. Am. 128(4):2033-2048. 

Cai S, Ghosh SS, Guenther FH, Perkell JS. (2011). Focal manipulations of formant trajectories 

reveal a role of auditory feedback in the online control of both within-syllable and between-

syllable speech timing. J. Neurosci. 31(45):16483-16490. 

Kalinowski J, Armson J, Stuart A, Gracco VL. (1993). Effects of Alterations in Auditory 

Feedback and Speech Rate on Stuttering Frequency. Lang. Speech. 36(1):1-16. 

Kim KS, Wang H, Max L. (2020). It's about time: Minimizing hardware and software latencies 

in speech research with real-time auditory feedback. JSLHR, 63(8):2522-2534. 

Larson CR, Altman KW, Liu H, Hain TC. (2008). Interactions between auditory and 

somatosensory feedback for voice F0 control. Exp. Brain Res. 187:613-621. 

Tourville JA, Cai S, Guenther FH (2013) Exploring auditory-motor interactions in normal and 

disordered speech. Proceedings of Meeting on Acoustics. 9:060180. Presented at the 165th 

Meeting of the Acoustical Society of America, Montreal, Quebec, Canada, June 2 – June 7, 2013. 

Smith DJ, Stepp CE, Guenther FH, Kearney, E. (2020). Contributions of auditory and 

somatosensory feedback to vocal motor control. JSLHR, 63(7):2039-2053. 

Xia K, Espy-Wilson C. (2000). A new strategy of formant tracking based on dynamic 

programming. In ICSLP2000, Beijing, China, October 2000. 


	1. Overview: What is Audapter?
	1.1. How to cite Audapter?

	2. Getting Started - Running Offline Demos
	2.1. Offline Demos
	2.1.1. Offline Demo 1: Formant perturbation
	2.1.2. Offline Demo 2: F0 perturbation (using the phase-vocoder method)
	2.1.3 Offline Demo 3: F0 perturbation (using the time-domain method)
	2.1.4. Offline Demo 4: Time warping
	2.1.5. Offline Demo 5: Dynamic perturbation of a Standard Chinese triphthong

	2.2. Online demos
	2.2.1. Online Demo 1. Persistent formant shift
	2.2.2. Online Demo 2. Persistent pitch shift (using phase-vocoder method)
	2.2.3. Online Demo 3. Two fixed-delay, fixed-duration short pitch shifts in one utterance (using phase-vocoder method)
	2.2.4 Online Demo 4. Persistent pitch shift (using time-domain method)
	2.2.5. Online Demo 5. Focal formant shift
	2.2.6. Online Demo 6. Time warping
	2.2.7. Online Demo 7. Globally delayed auditory feedback, pitch and gain perturbation and multi-voice feedback
	2.2.8. Online Demo 8. Continuous sine wave generation
	2.2.9. Online Demo 9. Waveform playback
	2.2.10. Online Demo 10. Tone sequence generation


	3. Basic Command Line Usage of Audapter
	4. Adjustable Parameters of Audapter
	5. The Formant Perturbation Field
	6. Data Structure of the .mat Files
	7. Online Status Tracking (OST)
	8. Perturbation Configuration (PCF)
	9. Hardware Wiring and Configuration (Non-MRI Experiments)
	10. Running an Auditory-Feedback Perturbation Experiment
	11. Experiment configuration (expt_config) file
	Acknowledgements
	Appendix 1. Instructions for obtaining and setting up the Audapter package
	Appendix 2. Instructions for building the core MEX program of Audapter in Microsoft Visual Studio
	Appendix 3. Legacy Instructions for building the core MEX program of Audapter in Microsoft Visual C++
	References

