
-1-

EC583 – Power Electronics

A Brief-and-Abbreviated Analog-to-Digital Conversion Tutorial for the MSP430

Introduction:
An analog-to-digital converter (ADC, or A/D) is an electronic circuit that converts an analog voltage
into its digital representation. The latter is an integer that is proportional (relative to an internal or
external reference voltage) to the magnitude of the sampled analog voltage While an analog signal
has (theoretically) infinitely fine resolution, a digital signal can resolve only down to the voltage
increment represented by its LSB.

The MSP 430 controller can perform A/D conversion using 10 bit or 12 bits. This tutorial is based on a
a 10-bit conversion mode, hence the binary number representing the result of a conversion can vary
over the range 0 to one-bit-less than 210, i.e., 1024 − 1 = 1023. All voltages are referenced to VSS = 0 V
(ground). If a voltage being sampled has value vIN and the reference voltage for conversion is VREF ,
then the decimal number representing that input will be:

n = 1023×
REF

IN

V
v

Performing A/D Conversion:
Here are the steps you must take to perform an A/D operation:

• Define the port pins that will be used as analog input channels.
• Select a clock source for the conversion operation, or set up the Watchdog timer.
• Select a conversion mode (e.g., continuous, one-time conversion, etc).
• Select the reference voltage VREF.
• Select the sample-and-hold time for the conversion.
• Enable the corresponding chosen pin for analog input.
• Switch ON the ADC functionality.
• Enable ADC (take a reading)
• Read the value after conversion; set a program variable to the reading.

Control Registers
The MSP430 architecture is governed by numerous control registers, which are fixed memory bytes
inside the chip. The relevant registers for A/D conversion are Control Registers #0 and #1:
 ADC10CTL0 and ADC10CTL1
Control registers are configured by setting their bits. Bits are set by a summation statement of various
library constants that have different meaning to the chip (they represent control register bit positions.)
The idea is to accumulate the various constants you need, then add them all together in a single
statement of the form
 ADC10CTL1 = Constant1 + Constant2 + ... or, similarly
 ADC10CTL1 = ConstantA + ConstantB +
 The idea is to accumulate the various constants you need, then add them all together into a single
“ADC10CTL1 = ” type statement. (The relevant constants for A/D are predefined within the MSP430)

Setting Up the Analog Input Pins
For the MSP430 chips we use in class, any one of the pins of Port 1 can be set to be an analog input.
Thus up to 8 channels are available for separate ADC inputs. These input channels are selected by
adding INCHn constants to Control Register#1 (ADC10CTL1). To set channel as an analog input, the
constant INCH01 is added to the total value of ADC10CTL1. Similarly, suppose that we wish to set
Channels 4 and 5 as analog inputs. The ADC10CTL1 declaration statement would include the constants:

ADC10CTL1 = INCH_4 + INCH_5

-2-

The physical pins that correspond to these channels depends on which MSP430 chip you have, but the
ones we use in class follow the table below. (Note that, in general, the various pins of the MSP430 can
serve multiple functions depending on how the port is configured.)

 Analog Input Pins and Constants INCHx for MSP430-G2231 and MSP430-G2553:
 P1.0 = Channel 0 (A0) INCH00 P1.4 = Channel 4 (A4) INCH04
 P1.1 = Channel 1 (A1) INCH01 P1.5 = Channel 5 (A5) INCH05
 P1.2 = Channel 2 (A2) INCH02 P1.6 = Channel 6 (A6) INCH06
 P1.3 = Channel 3 (A3) INCH03 P1.7 = Channel 7 (A7) INCH07

Clock Source Selection:
The ADC will perform conversions at a speed defined by either the Watchdog timer, or an internal
clock. If the Watchdog timer is not used, it must be disabled, and one of several internal (and faster)
clocks chosen. This latter selection is again made by adding library constants to ADC10CTL1:

+ ADC10SSEL00 (chooses the RC oscillator generated inside the chip)
+ ADC10SSEL01 (choose auxillary clock)
+ ADC10SSEL10 (choose master clock)
+ ADC10SSEL11 (choose sub-main clock)

For most programs in this class, the RC oscillator (frequency of several MHz) will be fine.

ADC Conversion Modes:
There are for modes available for conversion:

• Single channel, Single conversion
• Sequence of Channels
• Repeat Single Channel
• Repeat Sequence of Channels

These modes are selected by adding the appropriate CONSEQx bit to the ADC10CTL1 register”

+ CONSEQ00 (one channel and one-time conversion (once)
+ CONSEQ01 + MSC (sequence of channels and a single conversion of all of them)
+ CONSEQ10 (one channel repeatedly sampled)
+ CONSEQ11 + MSC (sequence of channels repeatedly sampled)

Note: If you want to scan a sequence of channels, you must also add MSC (multiple scanned
channels) to ADC10CTL1

Reference Voltage Selection :
The internal voltage reference for conversion can be set to 1.5 or 2.5 V by adding the appropriate
constant to the ADC10CTL0 register.

+ SREF00 VCC as reference voltage relative to ground
+ SREF01 Internal VREF as reference voltage relative to ground
+ REFON + REF2_5V Set VREF to 2.5 V (REFON enables this action)

Sample And Hold Time Selection :
The sampling (settling) time is important in ADC conversion. The longer the sampling time, the better
the accuracy of the conversion. The sampling time equates to a selected number of clock cycles:

 + ADC10SHT_0 4 Clock Cycles
 + ADC10SHT_1 8 Clock Cycles
 + ADC10SHT_2 16 Clock Cycles
 + ADC10SHT_3 64 Clock Cycles

Enable Analog Inputs :
Setting the value of the Analog Enable control register ADC10AE0 (in a direct program statement)
will enable a specific channel (get it ready to perform a conversion), as chosen by bit position.

+ ADC10AE0 = 1 Enable Channel 1 P1.0
+ ADC10AE0 = 16 Enable Channel 4 P1.3
+ ADC10AE0 = 32 Enable Channel 5 P1.4

-3-

For example, to enable channels 1 and 5, either of the following statements could be included:

ADC10AE0 = 1 + 32;
ADC10AE0 = 33;

Enable ADC :
The actual conversion(s) will occur when the following constants are added to ADC10CTL0:

+ ADC10ON; (last two letters spell “on”)
+ ENC; (ENC stands for ENable Conversion)

Reading The Digital Value After Conversion :
The ADC core converts an analog input to its 10 bit digital representation and stores the result in the
ADC10MEM register. Any program variable can be set to the momentary value of ADC10MEM (i.e., the
result of the most recent conversion). For example:

X = ADC10MEM;

where x can now be used to perform operations in C code.

Disable the Watchdog Timer (If Necessary)
The following code statement will disable the Watchdog Timer if you want ADC performed according
to the chosen clock. Note: It is permissible to use the timing of the Watchdog to decide when ADC will
occur.

 WDTCTL = WDTPW + WDTHOLD;

Some Simple Sample Code
(This code would be included in a program loop to set the variable n to the instantaneous value of
ADC10MEM for each execution of the loop.)

// SETUP COMMANDS:

// Turn off the WatchDog Timer

WDTCTL = WDTPW + WDTHOLD;

// Set conversion to single channel and continuous-sampling mode

ADC10CTL1 |= CONSEQ1;

//Set S/H time, 10-bit converter, and continuous sampling:
 ADC10CTL0 |= ADC10SHT_2 + ADC10ON + MSC;

//Choose P1.0 (channel 1) as an analog input pin:
 ADC10AE0 |= 1;

// Start A/D conversion; The result will appear in the memory variable "ADC10MEM"
 ADC10CTL0 |= ADC10SC + ENC;

// SET VARIABLE n TO THE RESULT OF THE A/D CONVERSION:
 n = ADC10MEM;

