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lectrical elements have been used to make frequency-selective filters since the early part of

the 20th century. These early filters, which utilized only passive inductors, capacitors, and
resistors, helped foster the development of the first radio transmitters and receivers by providing
circuits with frequency-selective capabilities. The limited range and selectivity of passive RLC
circuits were improved somewhat by the invention of the vacuum tube, which permitted the design
of filter circuits with feedback. Modern filter design really began with the arrival of high-quality
integrated-circuit operational amplifiers in the early 1960s. Modern filters utilize op-amps in
combination with RC feedback networks to provide countless filter functions with a wide range
of frequency-selective properties.

As demonstrated in Chapter 10, the frequency response of an op-amp feedback circuit can
be dramatically changed by the addition of capacitors to its feedback network. This property can
be exploited to produce op-amp circuits with well-defined and controllable frequency-response
characteristics. Such circuits are part of a family of stable analog feedback circuits called active

'filters. An analog feedback circuit that is intentionally operated outside its stability limit is called
an oscillator. In this chapter, the characteristics and properties of several active filter and oscillator
circuits are examined in detail. The functions performed by these circuits are important in many
signal- and information-processing applications. As we shall see, an active op-amp filter can
achieve all of its desired properties without the use of inductors. This result is fortunate, because
the inductors needed for filter circuits below about 1 MHz tend to be large, difficult to produce in
ideal form, and unsuitable for fabrication on an integrated circuit. Filter circuits made solely from
op-amps, resistors, and capacitors are readily fabricated in an integrated-circuit environment,

APLE FIRST-ORDER ACTIVE FILTER

As a prelude to a general discussion of active filters, we first illustrate the basic concepts of
active filtering using the circuit of Fig. 13.1(a). This simple filter is a low-pass variety that passes
all frequency components below its cutoff frequency and attenuates all frequency components
above. (We also recognize this circuit as the modified op-amp integrator of Chapter 2.) Because

we are interested in the behavior of the circuit under sinusoidal steady-state, rather than transient,
conditions, the circuit is best analyzed in the frequency domain.
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Figure 13.1
- A simple active
filter example.

(a) Inverting
amplifier with
feedback “element”
Z, = Ry|\Zc;

(b) equivalent
topology of the
invertin g-amplifier
configuration,

Figure 18.2
Magnitude Bode
plot of the active
filter of

Fig. 13.1(a). The
filter’s “cutoff”
frequency is
designated w,.
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The circuit has the same basic topology as the inverting amplifier of Fig. 13.1(b), but in this case, |
the parallel combination Ry||C is used as a feedback element. In the frequency domain, the |
capacitor behaves as an impedance element of valye Zc = 1/jwC. The output of the filter of |
Fig. 13.1(a) can be found by first expressing R, ||Z¢ as a single feedback impedance element of

1 R,
7, = Ryl —— = —
2= Rl JoC ~ 1+ joR,C

By analogy to the inverting-amplifier topology of Fig. 13.1(b), the output of the filter becomes

Vou 2, _ i S (13.2)
Vi Z, Ri 1+ joR,C

where Z; = Ry, and where voyt and viN have been represented in sinusoidal phasor form as V,
and V.

(13.1)
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The transfer function (13.2) has a single pole at w, = 1 /R2C and a gain of ~Ry/R; well
below w,. The magnitude Bode plot of this transfer function, shown in Fig. 13.2, has the basic
form of a single-pole low-pass filter. As the frequency of the input signal is increased above the
“cutoff” frequency w,, the filter output decreases at the rate of —2( dB per decade.

The frequency dependency described by the transfer function (13.2) can also be synthesized
using the passive RC circuit of Fig. 13.3, for which

Vout ZC 1

—

Vio Ry +Z¢ 1+ joR,C




Figure 13.3
Passive RC circuit
having the same
general frequency
fesponse as the
fctive filter of

Fig. 13.1(a).
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~ of the active filter of Fig. 13.1(a) is negligibly smallﬁ the op-amp functions as a voltage source

that drives the output terminal. This feature allows the active filter to drive a load impedance or
another stage in a multistage filter cascade without changing the filter characteristics. In contrast,
the output impedance of the passive circuit of Fig. 13.3 is equal to R,||(1/jwC). This relatively
high impedance causes the circuit’s output voltage and frequency response to be affected by the
characteristics of its load.

VIN O MWy

In principle, the transfer function of any passive filter can be synthesized in active form
to realize the advantages stated above. Additionally, passive filter circuits that would normally

_require inductors can be made in active form without the use of inductors. As discussed previously,

high-quality inductors are difficult to make in both discrete and integrated environments and are
usually avoided in modern active circuit design.

13.2 IDEAL FILTER FUNCTIONS

Figure 13.4
[deal “brick-wall”
responses of

:a) low-pass;

'b) high-pass;

.¢) band-pass; and
'd) band-reject
ilters.

The low-pass filter function described in Section 13.1 is but one of a class of analog filter functions
that also includes high-pass, band-pass, and band-reject filters. As its name implies, the high-pass
filter passes only those frequency components that lie above some designated cutoff frequency.
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Filter function
definitions shown
for (a) low-pass

(b) band-pass filter.

The band-pass filter transmits only those frequency components lying within a range specified by
~ upper and lower cutoff limits. The band-reject filter is the inverse of the band-pass filter; it passes
only those frequency components lying outside some specified frequency range.
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The basic forms of the transfer function for each of the various filter types are depicted
in Fig. 13.4. These perfect, boxlike plots are sometimes called brick-wall responses. Each one
represents an ideal case in which the filter gain remains constant over frequency regions where
signal transmission is desired and falls to zero otherwise. Much of filter design is concerned with
approaching these ideal responses as closely as possible while remaining within. the practical
constraints of part count, cost limitations, and filter complexity. As an example of this concept,
consider the simple low-pass op-amp filter of Fig. 13.1(a). Its —20-dB per decade rolloff above w,
provides only a very crude approximation to the ideal brick-wall low-pass response of Fig. 13.4(a).
The filter is inexpensive and easy to build, however, and is adequate for many applications. A
more complex op-amp circuit involving many more components could be constructed to provide
a response more closely approaching the ideal, but this choice would result in a larger number of
parts, and hence a greater cost per filter. :

In order to quantify the degree to which any given filter approaches the ideal “brick-wall”
response, it is helpful to define several quantities related to the filter’s response curve. Thesc
quantities are summarized in Fig.13.5 using the low-pass and band-pass filters as examples.
Similar definitions exist for the high-pass and band-reject filters. The filter’s passhand is defined
as the frequency region over which signal transmission is desired. The largest response occurring
anywhere within the passband is designated A,. In the ideal case, the filter gain would be equal
to A, throughout the passband. A real filter will always have a gain that changes with frequency,
hence the parameter A is used to define the lowest value to which the passband gain can fall
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"The band-pass filter transmits only those frequency components lying within a range specified by
. upper and lower cutoff limits. The band-reject filter is the inverse of the band-pass filter; it passes

; only those frequency components lying outside some specified frequency range.

Figure 13.5 4 Vou/ Vial
Filter function A,
definitions shown '
for (a) low-pass
filter and

(b) band-pass filter.
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The basic forms of the transfer function for each of the various filter types are depicted
in Fig. 13.4. These perfect, boxlike plots are sometimes called brick-wall responses. Each one
represents an ideal case in which the filter gain remains constant over frequency regions where
signal transmission is desired and falls to zero otherwise. Much of filter design is concerned with
approaching these ideal responses as closely as possible while remaining within the practical
constraints of part count, cost limitations, and filter complexity. As an example of this concept,
consider the simple low-pass op-amp filter of Fig. 13.1(a). Its —20-dB per decade rolloff above w,
provides only a very crude approximation to the ideal brick-wall low-pass response of Fig. 13.4(a).
The filter is inexpensive and easy to build, however, and is adequate for many applications. A
more complex op-amp circuit involving many more components could be constructed to provide
aresponse more closely approaching the ideal, but this choice would result in a larger number of
parts, and hence a greater cost per filter.

In order to quantify the degree to which any given filter approaches the ideal “brick-wall”
response, it is helpful to define several quantities related to the filter’s response curve. These
quantities are summarized in Fig. 13.5 using the low-pass and band-pass filters as examples.
Similar definitions exist for the high-pass and band-reject filters. The filter’s passband is defined
as the frequency region over which signal transmission is desired. The largest response occurring
anywhere within the passband is designated A,. In the ideal case, the filter gain would be equal
to A, throughout the passband. A real filter will always have a gain that changes with frequency,
hence the parameter A; is used to define the lowest value to which the passband gain can fall




Figure 13.6
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~and still be acceptablé to the designer. Any departure from the ideal of constant passband gain

may also be expressed as a maximum acceptable attenuation within the passband, defined by the
factor amax = A, — A;. ’

If an ideal filter could be constructed, its signal transmission would immediately fall to
zero outside the passband. In any real filter, some signal transmission always occurs outside the
passband. The quantity A, defines the maximum signal transmission acceptable to the designer
outside of the passband. The frequency at which signal transmission first falls to A, defines the
beginning of the filter’s stopband; the region between the passband and stopband is called the
transition region. Note that the band-pass filter has two transition regions and two stopbands.
Similarly, the band-reject filter has two transition regions and two passbands.

In general, the gain of a filter may lie anywhere between the limits A, and A 1 in the
passband; similarly, the gain may lie anywhere below the value A2 within the stopband. The plot
of Fig. 13.6(a) shows a low-pass filter response that decreases monotonically from its value of A,
at w = 0 and reaches the value A1 only once before leaving the passband. The filter response of
Fig. 13.6(b) cycles between A, and A, several times within the passband and also cycles between
zero and A, within the stopband. The peak passband gain A, is reached at some frequency
other than zero in this second example. Both plots in Fig. 13.6 represent valid low-pass filter
responses and reasonable approximations to ideal brick-wall behavior. Each type of response can
be produced by an appropriately designed filter circuit.
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13.3 SECOND-ORDER FILTER RESPONSES

The low-pass filter of Section 13.1 is an example of a first-order filter. Its single pole in the
denominator causes the magnitude |V gy, /Vin| to fall off as 1/w, or —20 dB/decade, at frequencies
well above w,. The steep walls of the ideal response of Fig. 13.4(a) are only weakly approximated
by the —20 dB/decade slope of a first-order filter. A better approximation can be realized by
using filters of higher order. The order of a filter is formally defined as the number of poles in the
denominator of the transfer function. As a general rule, filters of higher order will have steeper
transition region slope(s). The transfer function of a second-order low-pass filter, for example,
falls off as 1/w?, or at —40 dB/decade, at frequencies well above its poles. Its slope will be
twice as steep as that of a first-order filter, making it a better approximation to the ideal brick-
wall response. Transfer functions of even higher order will produce steeper transition-region
slopes. In this section, we examine the properties of several second-order filter configurations.
In Section 13.4, these filters are used as basic building blocks to synthesize filters of higher order
using the technique of cascading.
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13.3.1 The

Biquadratic Filter Function

The transfer function of a second-order filter can be described in terms of a ratio two of quadratic
polynomials

Vout = 4 A+ jo/ond + jo/w)
Vin *(1+ jo/w3)(1 + jo/ws)

In both the numerator and denominator, the quadratic polynomial has been expressed as the
product of two binomials, as in Chapter 9. If the filter is of order 2 or higher, the poles and zeros
are generally complex numbers. A transfer function with complex poles and zeros is more readily
described using the s-plane representation in the sinusoidal steady-state, where s = jw. The s-
plane is defined by a set of real and imaginary axes that are used to plot the real and imaginary
components of each pole and zero in the system. In the s-plane, the sinusoidal driving frequency
of the filter is equivalent to the imaginary-axis variable s = Jjow. If complex numbers sy, - - -, s,
are used to describe the poles and zeros, the biquadratic transfer function (13.4) takes on the form

H(jw) = (13.4)

(I+s/w)(1 + s/wy) _ A(S+Sl)(5+52) (13.5)

" +s/w3)(1+s/wg)  * (5+853)( +5a)

H(i)=A

Equation (13.5) can also be expressed in the general form

a2s2 +ais+ay

H =
() bys? + bis + by

(13.6)

where the coefficients ay, - - -, @, and by, - - -, by include combinations of the poles s, - - - , s4. This
ratio of quadratic polynomials is sometimes called the biquadratic transfer function, or simply
“biquad.” It can be used to describe virtually any second-order filter by appropriate selection of
the a and b coefficients. The denominator of the transfer function describing a second-order filter
must introduce a factor of 1/w? at high frequencies; this criterion can be met by adjusting the
coefficients by, by, and b, in (13.6) so that the s2 factor in the denominator dominates at high
frequencies. The filter’s overall behavior—that is, whether it will be a low-pass, high-pass, band-
pass, or band-reject filter—is established by adjusting the numerator coefficients agp, a1, and a;.

13.3.2 Second-Order Active Low-Pass Filter

Figure 13.7
Second-order active
low-pass filter of
the Sallen-—Key

type.

If the coefficients a; and a; in Eq. (13.6) are set to zero, the transfer function acquires the form
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We recognize this function as that of a second-order low-pass filter. At frequencies near s =
Jjw 2 0, the response approaches the constant value H(s) = ag/bo. At very high frequenmes
the response approaches the limit H(s) = aq /b2s?. Because s = jo, this limit falls off as 1 Jw?
with a slope of —40 dB/decade, as required of a second-order low-pass filter. One filter circuit
that has a transfer function of the form (13.7) is shown in Fig. 13.7. The circuit is sometimes
called a Sallen—Key filter after its original inventors." Its output as a function of frequency can
be found by direct analysis using KVL and KCL. Applying KCL to the v; node with all currents
represented as phasors yields

‘ L=hLh+1; (13.8)

If the impedance of each capacitor is represented by Z, = 1/jwC,, Eq. (13.8) can be expressed

as-
Vip ~V; Vi Vi— Vo

= + 13.9
Ry Ry +Z, Z, (139
The op-amp voltage v,. can be found in terms of V; from the complex form of the voltage divider:
Z,
V= 13.10
+ "B+, ( )

The op-amp output is connected directly to the v_ terminal, thereby forming a voltage follower
between v, v_, and voyr. This connection forces vyt to have the same value as U4, so that

Eq. (13.10) becomes
Z,

Vour =V X
out "Bt Z, (13.11)
Rearranging Eq. (13.11) results in
R+ Z
Vi = Vou 2t 22 (13.12)
Z,
Combining Egs. (13.9) and (13.12) leads to an expression for Vy, as a function of Vi
Vin R2 + ZZ Vout R2 + Z2 Vout
Jin oy f2Trfe vV .
Rl out RIZZ Z2 + ow ™ 5 5 ZIZZ Zl (13 ig)
Equation (13.13) can be solved for Vg, resulting in
1 Ry +Z 1 R+ Z Vi
o+ et~y 22T T2) _ Yin (13.14)
Z2 Z1Z2 Z, R1Z2 R
YAYZ)
or Vour = V;j - 13.15
T LIy + Zy(R + R) + RiR, (13.13)
Substitution of 1/jwC; and 1/jwC; for Z1 and Z; in Eq. (13.15) results in
v 1
H(jo) = == = (13.16)

Ve 1-w(RiR:C1Cy) + joCo(R; + Ry)
It is possible to factor the denominator of this frequency-dependent transfer function into

the standard “product of binomials” form of Chapter9. For all but a few values of Ry, R,, Cy,

1 R.P SallenandE. L. Key, “A Practical Method of Designing RC Active Filters,” IRE Transactions on Circuit
Theory, Vol. CT-2, 74-85, March 1955.
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and C,, this factoring reveals poles in the denominator that are complex numbers. The transfer
function (13.16) can also be represented as H (s) in the s-plane if the following substitutions are

made:

s = jw 1317
1
Wy = ————— 13.18
’ VRIR,C ( )
R R, C|C C RiR
and 0= 2RROG G (___Vlz ) (13.19)
Co(Ry + Ry) G\Ri+R;

Note that the parameter O, called the “quality factor” of the filter, is dimensionless.
By using these substitutions, Eq. (13.16) can be expressed as

\Y 1 w? w?
o - = 0 (13.20)

A === 1+82/02 +5/0,0 ~ 2 +5(w,/ Q) F @2 (5=s1)(s —53)

On the right-hand side of Eq. (13.20), the denominator has been factored into two complex bino-
mials (s — s;) and (s — s,), where

) 172
=2 2o} 13.21)
s 20 + 20 w; (13.2
w, w, \ 2 72
=P (D" _ o
and Sy = 20 ’:(2Q> a)o] (13.22)

We recognize Eq. (13.20) as a biquad transfer function in which the s? and s coefficients in the
humerator are set to zero. This feature causes the response to be unity at dc (s = 0) and to fall
off as 1/s? at high frequencies. As the expressions (13.21) and (13.22) indicate, s; and s, are
complex conjugates with equal real parts and with imaginary parts of the same magnitude but
opposite sign.

The factors s; and s, represent the poles of the transfer function (13. 16). For the case where
the R and C values yield a QO less than 0.5, the factor in brackets in Egs. (13.21) and (13.22) will
be positive, so that s; and s2 will be real and Eq. (13.20) can be written in the form

Vou[ _ Cl)g/sl.S'z — 1 {?3 /,)3}
Vin (/o) + (jo/o) +1] 1+ Jo/o1)(1 + jo/w,) -
where w; = —s; and w, = —s2. Equation (13.23) is produced by dividing the numerator and

denominator on the right-hand side of Eq. (13.20) by s1s,. The right-hand side of Eq. (1 3.23)isin
the standard product of binomials form of Chapter 9, wherein the frequency response is described
by two simple, real poles at ; and ;. We recognize this transfer function as that of a low-pass
filter of second order. At frequencies well below w; and w,, its gain is unity. At frequencies well
above w; and wy, its gain falls off as 1 /w2, that is, at —40dB per decade in frequency.

Q=05 exactly, the factor inside the brackets in Egs. (13.21) and (13.22) becomes zero.
For this case, the poles of the filter coincide at @y, reducing the transfer function to

Vout _ 1

Vin 1+ jw/w,)?

- (13.24)
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If Q is larger than 0.5, the square-root terms in Egs. (13.21) and (13. 22) become imaginary,
and the poles become complex-conjugate numbers s; and s, with real part equal to

Wo

m="35 (13.25)

and imaginary parts equal to
+js; = £jlof = (0,/2Q)1* = +jlw? — s31'? (13.26)

These complex poles s; and sy are located to the left of the imaginary s-axis in the s-plane,
as shown in Fig. 13.8. Their placement in the left-half plane results because the sg given by
Eq. (13.25) is negative. The radial distance d from the origin to each of the poles s; and s; in
Fig. 13.8 is given by

= |sg + Jjsii
= {(0/2Q)* + [@? — (0,/20)*1}* = w,

As this equation shows, the poles s; and s;, when complex, lie on a circle of radius w, at an angle
determined by the value of Q. The real and imaginary parts sz and s; are not independent. For a
given w,, specifying sg automatically specifies Q and s;.

When the poles s; and s; are imaginary, the magnitude of the transfer function must be
expressed as

(13.27)

\Y 2
H(s)| = |~ | = — 22 (13.28)
Vin Is —s1lls — s2i
Im{s] A
S) SR~~~ - Circle of”

P ;
P ~. / radius o,

sp=—,/20"

sp=2[02 - (0,/20)212
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Figure 13.9
Poles of the
low-pass filter of
Fig. 13.7 in the
s-plane. The
magnitude of
Vou/Vig is
proportional to the
reciprocal of the
product dyd;.

Figure 13.10
Low-pass filter
transfer function
(13.20) in the
s-plane. The
lengths of vectors
d; and d; are
shown at three
different driving
frequencies:

(@) w=0;

10 <w<sy;
©) w > s;.
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Ims] |

51 — Js1

P~ Driving frequency s = jo

Rels]

—~ 51

where s = jw. In the s-plane representation, the magnitudes |s — s;| and |s — s;| are determined
by the distances between the poles s; and s; and the location s = jw on the imaginary s-axis. As
depicted in Fig. 13.9, the magnitude |V, /Vin| becomes

Vout w? w?
|H (s)| = = = =2 (13.29)
Vin Is —sills — s3]  didy ’

where d; and d; are the lengths of vectors d; and dj, respectively.

For small frequencies, such that the driving point s = jw in Fig. 13.8 is located near the
origin, the vectors d; and d; have approximately the same length w,, and Eq.(13.29) yields
[Vour/Vinl & 1. This situation is depicted in Fig. 13.10(a).
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Figure 13,11
Magnitude plot of
the second-order
low-pass filter
transfer function
(13.20) for several
values of Q. The
slope of the Bode
plot above w, is
equal to

—40 dB/decade.
When O =

1/4/2 = 0.707, the
plot is said to be
maximally flat. As
Q becomes large,
the pole frequency
s begins to
approach the value
Jwe.

Section 13.3 © Second-Order Filter Responses ¢ 817

As the frequency is raised and jo rises up the imaginary s-axis, as in Fig. 13.10(b), d,
becomes longer and d; shorter by approximately the same amount, so that |V /Viy| remains
approximately constant. As w exceeds the value 57, both d; and d; increase in length, and
[Vout/Vin| begins to decrease as 1/w?. The latter case is depicted in Fig. 13.10(c).

We now consider the case of large Q. If Q exceeds the value 1/+/2 = 0.707, s1 will lie
closer to the imaginary axis than to the real axis, because s; will be larger than sg. For this case,
the product dyd, will be smaller than wf; as the driving frequency jw passes the value js;. The
resulting Bode plot of |Voy/Via| will thus display arise at the frequency jw = js;. At very large
values of Q (values of 10 or more), the Bode plot will actually peak sharply as s = jw passes
through js;. Note that js, will be approximately equal to jw, as Q becomes very large.

Figure 13.11 shows the magnitude Bode plot of the second-order low-pass filter function
(13.20) for several values of @, including small and large values. In all cases, the roll-off at high
frequencies proceeds at —40 dB/decade because |V /Vin| decreases as 1 /a)z. When Q is less
than 1 /«_/5 = 0.707, the filter response decreases gradually as the driving frequency w passes
through w,. When Q is greater than 0.707, the filter response peaks above unity as @ passes
through w,. When Q is equal to 1/4/2 = 0.707, the horizontal portion of the plot extends as
far as possible to the right without rising, and the filter’s —3-dB point lies exactly at w,. This
condition is sometimes called the maximally flat response. The maximally flat transfer function
represents a good approximation to the ideal brick-wall response when the filter of Fig. 13.7 is
used in stand-alone fashion. When several circuits are cascaded, so as to produce a maximally-
flat overall filter response of higher order, the poles of each second-order section are sometimes
located so as to produce values of Q other than 1/4/2. This concept is explored in detail in
Section 13.4.
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EXAMPLE 13.1

An amplitude-modulated (AM) radio transmission consists of a 530-kHz carrier modulated by
an audio signal with frequency components from 300Hz to 10kHz. (See Section4.4.5 for a
discussion of amplitude modulation.) The signal is passed through a diode detector, which
produces an output consisting of the desired audio signal plus unwanted frequency components
at 530kHz and above. Design a second-order analog filter that will pass the desired audio signal
while attenuating the unwanted signals by at least —60 dB.
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Discussion. The capacitor values determined in this example are not standard values,
hence one additional design modification might be to change C; and C; to their nearest
respective “off-the-shelf”” component values, with appropriate changes in Ry and Ry. Al-
ternatively, if the capacitors are to be fabricated on an integrated circuit, these nonstandard
values can be chosen at fabrication time.

Redesign the filter of Example 13.1 so that @ = 0.6. This choice of Q will result in a filter for
which the response is not maximally fiat. Answer: (one possible design) Ry = R, =
10k2; C; = 1.910F; C; = 1.3nF

Design a second-order filter with a —3-dB cutoff frequency of 1 kHz and a Q of 1.3. This choice
of Q will result in a filter with a peak in its response near w,. Answer: (one possible
design) R = R, =5kQ; C; = 83nF; C; = 12nF

Show that Eq. (13.13) leads to Eq. (13.16).

For the pole frequencies defined by Egs. (13.21) and (13.22), show that s;s; = w?. Express s;
and sy as sg =+ jsy, where sg and s; are given by Egs. (13.25) and (13.26).

Plot the magnitude and angie of the low-pass filter transfer function (13.20) as a function of
frequency for several values of Q. Write a computer program to help with these calculations.

13.3.3 Second-Order Active High-Pass Filter

Figure 13.12
Second-order
Sallen—Key active
high-pass filter.
The slope of the
Bode plot below w,
is equal to

+40 dB/decade.

The active circuit of Fig. 13.12 is a second-order high-pass filter of the Sallen—Key type. A high-
pass filter transmits frequency components above its cutoff frequency w, and attenuates frequency
components below w,. The circuit of Fig. 13.12 is the dual of the low-pass filter of Fig. 13.7;
the locations of all capacitors and resistors are exchanged. Because the basic circuit topology is
preserved, the output can be found by exchanging the R and jwC terms in the transfer function
for the low-pass filter. Performing this operation on Eq. (13.15) yields

RiR
Vour = Vin 12 (13.36)
RIRy+R{(Zy+ 1)+ 7.7,

Substitution of 1/jwC} for Z; and 1/jwC, for Z; in Eq. (13.36) and some manipulation results
in
(jw)*C1C2R1 Ry

Vou = Vi
T T - X (CIGRIRy) + joRI(Cr + C)

(13.37)

Ry

AAAA
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U O !

Q=
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——OvVour
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Figure 13.13
The lengths of
vectors dy, dy, and
d3 shown at three
different
frequencies w for
the second-order
high-pass filter
function (13.41)
with Q > 0.5:
(a) w ~ 0;
®0<w<sy;
©) w > s;.
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The transfer function (13.37) can again be represented in the s-plane by making the following
substitutions:

s = ja) (33038}
1

Wy = ———— (13.39)

* T VRIRCIC;
and = 2RRCC _ [R <___V Cice ) (13.40)

Ri(C1 +Cy) Ri\Ci+ G ‘
With these substitutions, Eq. (13.37) becomes
2 2

H(s) = You S S (13.41)

Vo Frs@/O R - GG s

The roots of the denominator of this expression are again given by Eqgs. (13.21) and (13.22),
respectively, and Eq. (13.41) again has the form of a biquadratic transfer function. In this case,
the numerator consists of a single factor of s2. At high frequencies, the denominator approaches a
limit consisting of a single factor s2, but this factor is canceled by the factor of s in the numerator.
Hence [Vou/Vin| approaches a limit of unity gain at high frequencies. As the driving frequency is
reduced well below w,, the denominator in (13.41) approaches the constant value w?. In this case,
the factor of s in the numerator causes [Vout/Vin! to fall toward zero at the rate of 40 dB/decade.

Im[s] | Im[s] }

s — Js1

R;[s] R;[s]

(a) (b) ()

5= [0F- (0,202 sp=- 0,120

The magnitude of Vo /Vi, as a function of input frequency can be determined by again
examining the vectors d; and d; in the s-plane, as in Fig. 13.13. An additional vector d3, which
extends from the location of the driving frequency jo to the origin, is needed to represent the
factor of s? in the numerator of Eq. (13.41). This vector has a length d3 = w. When Jjw lies near
zero, as in Fig. 13.13(a), vectors d; and d; have nearly the same length, and d3 has approximately
zero length. The magnitude of the transfer function (13.41) in the limit J ~ 0 thus becomes

Vou

d2
— 3 0
Vin

= & 13.42
9, (13.42)




Figure 13.14
Magnitude plot of
the second-order
high-pass filter
iransfer function
{13.41) for several
values of Q. When
Q=1/V2=
0,707, the plot is
4iid to be
inaximally flat.
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where d1, dy, and d3 represent the lengths of d;, dy, and ds, respectively. If jow is increased above
zero, d, will increase by about the same amount that d; decreases, as in the low-pass filter case.
Were it not for ds, this relationship would again keep [Vou/Vin| constant for w < s;. The length
ds increases with jw, however, so that |V /Viy| for the high-pass filter increases as the square
of w. As w approaches sy, d reaches a minimum. Well above w = s, the lengths dj, d2, and d3
all approach the same value, so that the magnitude of |Vou/Vin| approaches unity. Note that if
sg & s1, sy will be approximately equal to w,, as seen from Eq. (13.26).

V. ut”

—out

V. (dB)A

+20 |~

—40 —

| | >

1000, 10w, ©

The magnitude Bode plots of this filter for several values of Q are shown in Fig. 13.14. Each
plot has a low-frequency +40 dB/decade slope (the response increases as w?), a corner frequency
near w,, and a flat region above w,. As in the low-pass filter case, if @ < 0.5, the poles s; and s
become real and the filter function (13.41) can be expressed by

Vour _ (jo)* [0,

- (13.43)
Vin (4 jo/o)(1+ jo/w)

H(jw) =

where w1 = 81, w2 = 82, and wywy = w% Equation (13.43) is in the product-of-binomials form
introduced in Chapter 9. For the case Q = 0.5, the poles w; and w; coincide at w,.

Wenote in Fig. 13.14 that when Q is small, the magnitude of the response increases gradually
as o pass through w,. When Q is equal to 1/ +/2 = 0.707, the response becomes maximally flat.
For larger values of 0, a peak appears in the response at @ = w,.

Design a second-order high-pass filter with parameters w, = 1kHz and Q = 0.707.

Draw the angle plot x Voy/Vin as a function of frequency for the high-pass filter transfer function
(13.41) for several values of Q.

Show that Eq. (13.36) leads to Eq. (13.37).
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13.3.4 Second-Order Active Band-Pass Filter

Figure 13.15%
Second-order active
bandpass filter of
the Sallen-Key
type.

The op-amp circuit shown in Fig. 13.15 is a second-order active band-pass filter. It transmits only
those frequency components contained within its passband and attenuates both low-frequency and
high-frequency components that lie outside this range. The band-pass behavior of the circuit can
be confirmed qualitatively by examining the circuit in the limits of zero and infinite frequency. In
the limit jo — 0, capacitors C; and C, behave as open circuits, and vyy is effectively disconnected
from the op-amp terminals. The remaining dc portion of the circuit has the form of a follower
with zero input, In the limit Jjw — 00, capacitors C; and C, behave as short circuits, and the
circuit functions as an inverting amplifier with a feedback impedance of zero. Because the gain
of an op-amp inverter is proportional to its feedback impedance, the resulting output equals zero
regardless of input.

R G

VIN

——Q VouT

A mathematical expression for the transfer function of this circuit can be derived from KVL
and KCL. The op-amp, C», and R; form an inverting amplifier between voyr and v;. The voltage
vour can thus be expressed in the frequency domain by

R
Vou = =22V (13.44)
Z,
where Z; = 1/jwC,. Both Vy, and V,, contribute to V1; hence V; can be found using superpo-
sition and the complex form of the voltage divider. Alternately setting Vo and Vi, to zero with
v_ assumed to be at virtual ground potential yields a value for Vi

Z,\Z, R |Z,

V=V, 13.45
R N A AR N (1345
Substituting Eq. (13.45) for V; into Eq. (13.44) results in
Ry 72, R ||Z,
Vour = ——= in—————— + Vot —m—————— 13.46
out Z2 < in Rl +Z1”Z2 + outZ1 + Rl ||Z2 ( )

Equation (13.46) can be simplified by substituting appropriate expressions for each parallel com-
bination of impedances and by moving the factor of R; /Z; inside the parentheses:

Vo - [V- Z1Ry/(Z, + Zy) RiRy /(R + 1) :I
R+ 2o/ T+ Zo) | 7y + RiZa) (R + Zo)

_ (VinZIRZ + VouRi R, )
R\Z,+ R\Z, +7/Z,

(13.47)
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Solving Eq. (13.47) for Vo results, after some algebra, in

—Z1R,
Vout = V; (13.48
T RiZy + RiZy+Z1Zy + RiRy " )

Substituting 1/jwC; for Z; and 1/jwC; for Z, into Eq. (13.48) produces the desired transfer
function:

H(jw) = Vout — —Ry/jwCy
Vin Ri/jwCi + Ry /jwCy + (1/joC1)(1/jwCs) + R R, (13.49)
—Ry(jwC)

T joRI(C1+ C2) + 1+ (joC1)(jwCa) R Ry

Dividing the numerator and denominator of Eq.(13.49) by R1R,CC> and expressing jow as s
results in

Vout - JjoRyCa2 /Ry Ry C1C) —w2RyCys
H(G) = =2 o= ’ k = 13.50
) Vi (JwCI)(]wCZ)Rléflgzz{ngl(Cl+C2) +1 s2 +s(w,/ Q) + w? ( )
1
where Wy = —mm——— (13.53)
’ JRIRCiC,
and 0= LRRCICG &(VC@) (13.52)
Ri(Cy + &) Ri\Ci+C

Equation (13.50) has the form of a biquad transfer function in which the numerator contains a
single factor of s. As the frequency is reduced well below w,, the denominator approaches a
constant value of a)g. The factor of s in the numerator thus causes |Voy/Vin| to fall toward zero
at the rate of 20 dB/decade as the frequency is reduced. As the frequency is increased well above
w,, the denominator of H (s) approaches the limit s?. The factor of s in the numerator cancels one
factor of s in the denominator, leaving a single factor of s in the denominator that causes | Vo /Vial
to be reduced as 1/s (i.e., at the rate of —20 dB/decade) as the frequency is increased. At the
passband center frequency w,, the magnitude |Vou/Via| can be found by substituting w = w,
into Eq. (13.49):

Vour _ [ —Jjwo Ry Cy
Vin low, 1J@R1(C1+C2)+ 1~ 02R1 R C1Cy (13.53)
_ kG
Ri(C1+ ()

where w, = 1//R1R2C1C;. Given the expression (13.52) for 0, Eq. (13.53) becomes

R,C
= [ (13.54)
0=, RiC

As Eq. (13.54) suggests, |Vou/Vin| at @ = w, is dependent on Q. Analysis of Eq. (13.50) in the
s-plane yields the magnitude plots of Fig. 13.16, shown for several values of Q and values of R
and C such that R,C, /R Cy = 100.

Vout
Vin
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Figure 13.16
Magnitude plot of
the band-pass filter
transfer function
(13.50) for several
values of Q. The
components R, Cy,
R;, and C, have
been chosen so that
R,Cy/R Cy = 100.
The locations of the
passband limits e
and w, are shown?
for the case

0 =0.01.

Figure 13.17
The s-plane
representation of
the poles of the
second-order
band-pass filter of
Fig. 13.15:

@ w=s;

(B @ = 57 — |5g].

,‘%, dB)A
+40 |~

+20 |~

20 I~

—40 |-

—60

+ g
W, W, @y @,

) 10w,
1000 100 10

For any value of Q, the two frequencies w; and w;, at which the output falls by a factor of
1/+/2 = —3dB from its value at @ = w, are called the half-power frequencies of the band-pass
filter. The difference w, — wi is called the bandwidth of the filter, The relationship between w,,
@1, w2, and the bandwidth of the filter for the specific case Q = 0.01 is illustrated in Fig. 13.16.
For large Q, analysis of the transfer fuiiction in the s-plane shows the half-power frequencies to
be located at w, =+ w,/2Q on either side of w,, as we now show.

The denominator of Eq. (13.50) can be factored into two binomials (s — s;) and (s —sp)
and the magnitudes of these binomials represented by the vectors d; and d; shown in Fig. 13.17.
The vector dj in Fig. 13.17 represents the factor of s in the numerator of Eq.(13.50). As shown
in Fig. 13.17(a), the vector length d; reaches its minimum value at the frequency o = 5,. If Sgis
small compared to s; (i.e., large Q), then

' 2172
51 = [wg - (%) J ~ w, (13.55)
Im[s]
. ‘S‘R
SI R,
ISR
[
d;
- ' >
Refs] SR Refs]
d;
S e [— — 57

(@) ®
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At this frequency, the magnitude of Vout/Vin, which is proportional to d3/d1da, reaches its max-
imum value. If w is decreased to the value (s; — sg), as in Fig. 13.17(b), d; will increase by a
factor of ~/2. If sg is small compared to s, the vector lengths d; and d3 will be decreased only
slightly at this new frequency. As a result of these combined effects, |Vou/Vin| will fall by a
factor of 1/ +/2 from its value at w = s; = w,. The half-power frequency w;, therefore, is equal
to

w] = S; — SR (1356)

Note from the denominator of Eq. (13.50) that |sg| is equal to w,/20.
Given the result (13.55), the half-power frequency becomes

Wo
Wy — —— 13.57
Ry ( )
* This same reasoning can be applied to the case wz = (s + 5 z) to yield
) Wy
o~ — 13.58
w2 W, + 2Q ( 3.5 )
The resulting bandwidth of the filter for the case sg < 51 is thus equal to
BW = w; — w; = % (13.59)

Note that a small s is equivalent to a large Q, since Q = w,/2sg.

EXERCISE 13.9

13.13

13.14
13.18

Derive the result (13.54) by substituting s = jw, into Eq. (13.50).

Synthesize a second-order band-pass filter with a Q of 100 and a center frequency of 10kHz.
What is the magnitude of the response at w = w,? What is the bandwidth of the filter?’

Design a band-pass filter using the specifications of Exercise 13.10 so that the gain is equal to
+60dB at w,. What is the bandwidth of your new design?

By analyzing the transfer function (13.50) in the s-plane, show that the band-pass filter of Fig.
13.15 produces responses with the magnitude plots of Fig. 13.16. ‘

Draw the angle plot % Vout/Via as a function of frequency for the band-pass filter transfer function
(13.49) for several values of . Write a computer program to help with these calculations.
Show that Eq. (13.48) follows from Eq. (13.47).

Arrive at the result (13.48) using KCL at the v; node, rather than the superimposed complex
voltage-divider expression (13.45).

13.4 ACTIVE FILTER CASCADING

The usefulness of active filters becomes apparént when two or more are cascaded together to
produce filter transfer functions of increased order or complexity. As mentioned in Section 13.1,
the output of any one active op-amp filter stage will appear as a voltage source to the input of
the next stage, so that interstage loading problems are virtually nonexistent. The overall transfer
function of an active filter cascade thus will be equal to the simple product of the transfer functions
of each of its individual stages. A filter of order higher than 2 is easily synthesized by simply
cascading several one- or two-pole filters in series. The poles of each component filter are
appropriately chosen such that the desired overall response is achieved.

In general, the higher the order of a filter cascade, the more closely its transfer function
can be made to approach one of the ideal “brick-wall” responses of Fig. 13.4. In this section,
we examine the techniques required to accomplish this task. Although we shall focus primarily
on the low-pass filter, the concepts introduced apply equally well to high-pass, band-pass, and
band-reject filters.



