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ABSTRACT: This report of the reddest emitting indium phosphide quantum
dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photo-
luminescence (PL) as well as PL multiplexing in the first optical tissue window
while avoiding toxic constituents. This synthesis overcomes the InP “growth
bottleneck” and extends the emission peak of InP QDs deeper into the first optical
tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS
core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent
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tunable emission with peaks ranging from 515—845 nm. The high absorptivity of
InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of
tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-
based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model
demonstrates the potential of the NIR-emitting InP particles for in vivo imaging.
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luorescence is an important biomedical imaging modality
because of the relatively low cost of imaging equipment,
nominal toxicity of nonionizing radiation (i.e., light), potential
for molecular imaging using target-specific contrast agents, and
the prospect of multiplexed imaging using discretely colored
fluorophores.”> Molecules common in biological tissues
including lipids, water, and hemoglobin both scatter and
absorb light, limiting the ability of visible wavelengths to
penetrate tissue structures.” However, tissue-penetrating
fluorescence imaging is feasible in the first optical tissue
window (650—950 nm), where both light scattering and
absorption are reduced compared to visible wavelengths.*
Semiconductor quantum dots (QDs) are inorganic nano-
particle emitters exhibiting size-dependent tunable emission
peaks and broad, overlapping absorption peaks that are ideal
for multiplexed imaging. While traditional cadmium selenide-
based QDs are somewhat limited in their preclinical imaging
applications because the CdSe bulk bandgap of 712 nm (1.74
eV) limits their emission range to visible wavelengths, the
bandgap of indium phosphide at 925 nm (1.34 V) promises
tunability and multiplexing capacity throughout the NIR-I
optical tissue window.>® Cadmium-free QDs exhibit consid-
erable promise for tissue-depth imaging both because of the
advantages of the extended wavelength range and because of
an interest in moving away from heavy metal-laden materials in
the hopes of eliminating toxicity concerns.” "'
Recent advances in InP synthesis include the development
of novel synthetic schemes that drive down the cost and
environmental impact of InP synthesis while also improving
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photophysical performance.'”™"> These Type I and Quasi-
Type II InP QDs exhibit high quantum yields with reasonably
narrow emission peak full width half maximums (FWHM <40
nm),">'® but do not emit throughout the first optical tissue
window; reported emission peaks for colloidal InP are all
below 750 nm, regardless of synthesis method."”'*~"” Indium
phosphide cores with cadmium sulfide or cadmium selenide
shells emit at wavelengths >1000 nm, but the Type II band
alignment of these structures coincides with longer photo-
luminescence lifetimes and lower quantum yields in addition to
the unfortunate inclusion of cadmium.”*~>* In order to address
the shortcomings of InP tunability in the NIR, copper-doped
InP and ternary systems such as copper indium sulfide have
been developed.”*”° These systems exhibit dopant-based NIR
emission, but this emission mechanism is thought to inherently
limit the maximum brightness of the emitters and increase the
emission peak width.”*™*" Alternative NIR-emitting QD
structures continue to be developed, including Ag,S and
Ag,Se, which can exhibit narrow PL across the visible and
NIR-II wavelength ranges.’’ > However, despite intensive
synthetic efforts, these silver-based systems suffer from
comparably low quantum yields and poor photostability,
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Figure 1. ZnSe/InP/ZnS core/shell/shell nanoparticles. The wide-bandgap ZnSe core acts as a spacer around which the optically active InP shell is
wrapped. The resulting InP QDs can emit at longer wavelengths than existing literature reports of InP QDs and are tunable with shell thickness.
From left to right: schematic of the core/shell/shell structure design, diagram of the ZnSe/InP/ZnS bandgap alignments with corresponding
electron and hole wave functions, and normalized photoluminescence (PL) spectra of QDs with increasing InP deposition. Note the electron and
hole densities presented are for a 3.4 nm ZnSe core with a 0.75 nm InP shell; the ZnS capping shell was modeled as an infinite well.

particularly at NIR wavelengths, even when shelled with wide
bandgap semiconductors.”’~** Our recent work describing
CdSe shell emission demonstrated that lower energy/longer
wavelength peak emission was feasible with confinement in the
QD shell layer than with the same volume of CdSe in the
traditional spherical QD morphology.””** Given concerns that
a “growth bottleneck” precludes synthesis of InP cores large
enough to produce emission peaks spanning the entire NIR
emission range theoretically possible for this material,>® we
hypothesized that an InP shell structure may enable lower
energy emission than we have observed with InP cores.

In traditional Type I QDs, both the electron and hole reside
in the semiconductor core, the size and composition of which
dictates emission energy/wavelength/color. In Quasi-Type-II
heterostructures, one charge carrier (electron or hole) is
confined, but band offsets in either the conduction or valence
band are close enough in energy that the excited electron or
hole is delocalized.” In the prototypical case, that is, CdSe/
CdS, the electron wave function spreads from the core into the
shell material, while the wave function of the heavy hole is
confined to the core.”” In an Inverse-Type I semiconductor
nanoparticle, a high bandgap core material is coated with a
second semiconductor with a smaller bandgap and lower
energy valence and conduction bands, confining the excited
electron and the hole in the shell.” Cadmium-based Inverse-
Type I structures were briefly mentioned in the QD literature
over 10 years ago’"~*” but yielded minimal subsequent interest
until recently.*" A brief, singular report of thin-shelled, visible
emitting ZnSe/InP/ZnS particles described them as Inverse-
Type I structures.*” We synthesized the inverted structure with
concerted methods promoting the deposition of thick, epitaxial
semiconductor shells””™* to generate cadmium-free NIR
emission that pushes to longer wavelengths than reported
thus far with Type I or Quasi-Type II InP core structures
(Figure 1, Figure S1). These results highlight the advantages of
nonconventional heterostructured QDs, while opening the
door to further development of NIR-emitting InP nano-
particles.

The electronic structure of ZnSe/InP was calculated using a
two-band effective mass model; the effect of the high bandgap
ZnS cap (second shell) is negligible and was not accounted for
in the calculations. The specific parameters used in the
calculation are outlined in the SI. The result of the modeling
shows that ZnSe/InP heterostructures with sufficiently thick
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InP shells are predicted to exhibit Inverted-Type I electron and
hole localization to the shell (Figure S2), while particles with
less than 3 nm thick InP shells, like those demonstrated
previously,” exhibit quasi-Type II band structure with the
electron delocalized over the core and shell and the hole
localized to the shell (see band diagram in Figure 1, Figure S3).
In either case, the “heavy hole” of InP localizes to the InP shell
as soon as it is >0.5 nm thick. This model predicts that the
emission color of the ZnSe/InP structure can be tuned by
changing the InP shell thickness, as has also been seen with
ZnSe/CdSe inverted QDs.*® ZnSe/CdSe inverted Type-I QDs
exhibit Quasi Type-II/Type II behavior at intermediate shell
thicknesses, but the electron localizes to the shell prior to the
hole due to different CdSe and InP band offsets relative to the
ZnSe cores. For both the ZnSe/InP and ZnSe/CdSe core/
shells, Inverted Type-I band structure is predicted for thick-
shelled heterostructures as both the electron and hole localize
to the shell.** The bandgaps predicted by EMM indicate that
both traditional’”*® and inverted InP QD structures are
theoretically capable of producing tunable emission through-
out the first optical tissue window, but synthetic experience
indicates that this has been technically challenging to achieve
for InP core-based QDs, as these NIR emissions are not
reported in the literature.

Inverted InP-based heterostructure reactions proceeded
using hot-injection colloidal chemistry methods. First, zinc
selenide cores were formed in a high-temperature, inert
atmosphere precipitation reaction between zinc oleate and
selenium complexed by diphenyl phosphine (Se/DPP), similar
to previous reports.”” The resulting ZnSe cores exhibit a clear
1S absorption peak, indicating quantum confinement and
reasonably narrow size distribution (Figure S4). The ZnSe
cores were purified in a glovebox under argon via ethanol
precipitation and then resuspended in octadecene (ODE) with
10% (v/v) oleylamine (OAm). Under argon atmosphere on a
Schlenk line, indium and phosphorus precursors were added
via a modified successive ionic layer adsorption and reaction
(SILAR) approach.*® In a typical SILAR reaction, shell layers
are added one ionic layer at a time through dropwise addition
of the precursors followed by a high-temperature anneal (178
°C; 1 or 2.5 h) to ensure epitaxial crystal growth and reduce
nucleation of the shell material. Although the ZnSe cores are
zinc-terminated,*’ indicating that starting the SILAR reaction
with the anionic phosphorus precursor should be preferred, we
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found that starting with the anion led to nucleation of new InP
QDs as SILAR progressed (data not shown). In contrast, we
observed no evidence of nucleation when initiating SILAR with
the indium cation, and we did observe spectral shifts in the
ZnSe core absorbance after the addition of the first indium
layer, indicating that the indium was binding to the ZnSe
surface even in the absence of phosphorus, perhaps by
displacing surface zinc atoms (data not shown). The indium
and phosphorus precursors were 0.2 M indium oleate (1:3.3
In/oleic acid (OA)) in ODE and 0.2 M tris(trimethylsilyl)-
phosphine ((TMS);P) in ODE, respectively. InP is highly
susceptible to oxidation and these surface defects inhibit
photoluminescence from the InP nalnostructure,50 so a second
protective shell of zinc sulfide was added via SILAR using zinc
oleate (0.2 M 1:3.3 Zn/OA) and 0.2 M sulfur dissolved in
ODE to produce strongly emissive and chemically stable
particles. The quantum yield (QY) of as-synthesized particles
was sometimes further increased using a postsynthesis
treatment process whereby cleaned particles were heated to
240 °C for 3 h with 0.2 M zinc oleate in trioctylphosphine
(TOP), producing zinc-terminated particles.

Up to 16 rounds of SILAR were used to deposit the InP
immediately followed by 2—3 rounds of ZnS SILAR. As can be
seen with bright-field (BF) scanning transmission electron
microscopy (STEM), the QDs gradually increase in size,
indicating progressive growth of the InP layer with additional
SILAR iterations (Figure 2a, Figures SS and S6). Microwave
plasma atomic emission spectroscopy (MP-AES; Agilent
4200MP-AES) of acid-digested samples yields the elemental
composition of the core/shell/shell structures. Atomic
concentrations in ppb were converted to molarity to calculate
the relative abundance of the discrete elements for each
sample. By combining the elemental ratios with the average
particle size from STEM images and the assumption that the
particles are concentric spheres comprising ZnSe/InP/ZnS, we
estimated the relative core and shell dimensions for the QDs
(Figure 2b). We assume that the relative volumes of the ZnSe
core, InP shell, and ZnS shell are proportional to the molar
ratios of Se, In, and Zn-minus-Se, respectively, adjusted for the
crystal densities of each of the semiconductors. These results
show that the InP shell grows progressively with an increased
number of InP SILAR shelling iterations (Figure 2b, Table 1).
The ZnS capping shell is ~1 monolayer thick for each of the
measured samples, consistent with the subquantitative reaction
efficiency often seen with the Zn(OA),-based shelling
protocol.

Precursor deposition and nanocrystal growth is also seen in
the X-ray diffractograms of the materials (Figure 2c). The
primary low-angle diffraction peak of sample QDS1S, observed
at 28.2° is at a considerably higher angle than the ZnSe core
peak, observed at 27.2°, and close to the ZnS peak position
28.5°. This shift toward a characteristic ZnS X-ray diffraction
pattern suggests that the QDS1S sample volume is dominated
by ZnS. In contrast, samples QD675 and QD740, with primary
low angle diffraction peaks at 26.6° and 26.5° respectively,
approach the characteristic InP diffraction peak at 26.3°,
indicating that these QDs largely comprise InP by volume.
These sample diffraction peak shifts are consistent with the
elemental volume predominance expected. Samples with few
InP SILAR cycles exhibit a substantial ZnS contribution to the
XRD diftractogram, while the predominance of the InP peaks
increases with larger numbers of InP SILAR cycles. Nano-
crystal growth is also clearly observed based on a narrowing of
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Figure 2. Materials characterization of QDs. (a) Bright-field (BF)
STEM images of samples QD515, QDS9S, QD675, QD740, QD770,
and QD845. (b) ZnSe/InP/ZnS core/shell/shell dimensions based
on atomic analysis (MP-AES), assuming concentric spheres with total
diameter equal to the average diameter determined by STEM. The
sample is indicated on the left with the component dimension noted
in nm on the bar section corresponding to the ZnSe radius (blue), InP
shell (orange), and ZnS shell (gray). (c) X-ray diffractograms (XRD)
of the ZnSe cores and several QDs, along with vertical lines
representing reference InP, ZnSe, and ZnS peaks from the
Crystallography Open Database (COD).

the XRD peaks for samples with larger numbers of InP SILAR
cycles. This narrowing is particularly evident in the 40—60°
range: the two characteristic zincblende diffraction peaks of the
ZnSe cores and QDSI1S in this region are sufficiently broad
that the individual peaks are not readily resolvable, while
samples QD675 and QD740 have two clearly resolvable peaks.
Further growth of the nanocrystals is also supported by a
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Table 1. Summary of QD Properties

sample InP shell thickness
name sample description  diameter [nm]“ [nm/ML]"

ZnSe ZnSe core 2.0

QD515 ZnSe/2InP/3ZnS 4.2 + 0.60 (14%) 0.29 nm
0.9 ML

QDSSS  ZnSe/3InP/3ZnS 4.3 % 0.79 (18%)

QD595 ZnSe/4InP/3ZnS 4.5 +0.84 (19%) 0.91 nm
1.9 ML

QD675 ZnSe/7InP/2ZnS 6.0 + 0.86 (14%) 1.44 nm
4.3 ML

QD740 ZnSe/10InP/2ZnS 6.3 + 0.99 (16%) 1.79 nm
5.3 ML

QD770 ZnSe/13InP/3ZnS 7.9 + 0.96 (12%) 2.50 nm
7.4 ML

QD845°  ZnSe/16InP/2ZnS 6.8 + 0.71 (10%)

1S peak position PL peak (FWHM) Ave. PL lifgtime,

[nm/eV]© [nm/eV] 7 [ns]
356 nm 369 (19) nm

348 eV 3.36 (0.18) eV

482 nm 517 (75) nm 69
257 eV 2.40 (0.35) eV

520 nm 557 (84) nm 66
238 eV 223 (0.34) eV

572 nm 595 (82) nm S0
217 &V 2.08 (0.29) eV

648 nm 677 (123) nm 91
191 eV 1.83 (0.33) eV

702 nm 738 (129) 75
177 &V 1.68 (0.29) eV

731 nm 771 (145) nm 85
170 eV 1.61 (0.30)

735 nm 845 (174) nm 132
1.69 eV 1.47 (0.29) eV

“ZnSe core diameter determined from 1S peak position.49 Diameters of particles for samples QD515 and QDS595—QD84S were determined from
BF STEM dark-field images. Particle diameter for sample QD555 determined using TEM images. Error represents standard deviation of diameters
for n = 129—240 measured particles. “InP shell thickness determined by combining STEM-based diameter measurements and elemental ratios of
In, Se, and Zn determined by MP-AES. Not determined for QD555 and QD84S due to a lack of sample available for MP-AES elemental analysis.
“As determined from the derivative of the absorbance spectrum.'” “ZnSe cores emit out of the wavelength range measurable on our lifetime
instrument. “All samples in this size series use the same 2.0 nm diameter ZnSe core except QD845, which was synthesized with 16 rounds of InP

SILAR on a 3.1 nm diameter ZnSe core.

reduction in FWHM of the primary low-angle diffraction peak
from 2.8° to 2.3° for QD675 to QD770, respectively. In
addition to crystal size and composition, the XRD peak
position and width could also be affected by strain effects;
however, these strain effects are difficult to predict and
therefore are not considered explicitly.”"*>

The presence of constituent elements in QD clusters was
examined using energy dispersive spectrometry (EDS)
mapping using a Super-X EDS detector on Tecnai Osiris
TEM operated in STEM mode (Figure 3). EDS elemental
mapping was performed on the samples before and after
deposition of the outer ZnS shell. Since the electron beam
excites X-rays from both ZnSe core and its outer InP and ZnS
shells, the elemental maps show a relative elemental
distribution averaged over the entire particle volume probed.
The elements present in the mapped dots include zinc and
selenium from the cores and indium and phosphorus from the
inner shells with sulfur detected at 2.3 keV after addition of the
outer ZnS shell. Also appearing in the EDS spectra are the
energy lines corresponding to copper from the grid with
supporting carbon membrane.

The QDs exhibit InP deposition-dependent quantum
confinement and optical properties (Figure 4). InP QDs
grown on the same ZnSe cores emit redder with additional InP
shell depositions. For example, the synthesis of QDSIS,
QDSSS, QDS9S, QD67S5, QD740, and QD770 all used the
same 2.0 nm diameter ZnSe core combined with 2, 3, 4, 7, 10,
and 13 rounds of In and P SILAR addition, respectively, and
2—3 rounds of ZnS addition. The InP shelling reaction was
repeated with subtle changes to the reaction conditions on
different batches of ZnSe cores, yielding similar tunability with
InP addition (Figure S7, Table S1). Of these samples, only
QD84S, which was synthesized with 16 rounds of SILAR on a
3.1 nm diameter ZnSe core, is included together with the
primary series to avoid redundancy.
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The InP from additional rounds of SILAR deposition
enhance the concentration-normalized absorbance of the
particles (Figure 4a, Figure S8), as is appropriate given the
larger volume of InP per particle. The distinct 1S peaks seen in
the photoluminescence excitation (PLE) spectra of the InP
QDs emitting in the visible wavelength regime (Figure 4b) are
indicative of quantum confinement. The QD samples exhibited
absolute quantum yields up to 38%, as measured in an
integrating sphere (Horiba Quanta-¢p) (Table S2). For the
three reddest emitters, which exhibited significant PL outside
the calibrated range of our integrating sphere, we used the
directly measured absolute QY and full PL spectrum to
extrapolate the QY of the redder region using the relative area
under the curve.

The weighted average photoluminescence lifetimes of the
InP QDs, determined using a triexponential fit, are between 80
and 140 ns, similar to previously observed lifetimes seen for
InP QDs (Figure 4c, Table 1, Table §3).202223335% The
inverted InP QD emission peaks are broad compared to InP
core-based systems however, and the largest particles exhibit
red-tail emission >1000 nm, which is beyond the bulk bandgap
of InP. Investigation of the fluorescent lifetimes of different
spectral regions of the QDSSS and QD675 emission peaks
(i.e., blue tail, peak, and red tail emission) reveal wavelength
region-dependent differences in the fluorescent lifetimes, as
shown in Figure S9. Specifically, the weighted average PL
lifetimes increase with increasing emission wavelength (ie.,
Thlue tail < Tpeak < Tred tail). This trend is particularly evident for
the transition from the emission spectra peak region to the red
tail, where the average lifetimes increase from 102 to 223 ns
and 147 to 426 ns for QDS5SS and QD67S, respectively (Table
S4). The breadth of the emission peak and differences in the
lifetimes suggest that there may be different emission
mechanisms between these spectral regions of the inverted
QD system or, alternatively, a heterogeneous particle
population. While there is precedent for QD systems with
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Figure 3. Elemental dispersive X-ray spectroscopy (EDS). Elemental maps showing the distribution of each element of interest alongside a
reference high-angle annular dark field (HAADF) image indicating the spatial position of particle clusters; scale bars in the elemental maps are the
same as the corresponding HAADF image. QD515 (a,b) before and (c,d) after ZnS capping. To generate the elemental maps, the X-ray K lines
were used for Zn, P, and S, while X-ray L lines were used for In and Se. (e) EDS spectra collected from yellow inset regions in the reference
HAADF images show the presence of elements in a cluster of QD. A representative background spectrum is included for reference; spectral

intensities are normalized to the copper peak at 8 keV.

more than one emission mechanism,”>>° further studies will be
required to ascertain the precise source of the wavelength
dependent lifetimes in this QD system.

Notably, the NIR-emitting particles exhibit significant
absorption and PLE > 600 nm (Figure 4). Efficient excitation
with red and NIR light ensures that penetrating wavelengths
can be used for in vivo photoluminescence, enhancing the
usefulness for preclinical imaging. Through this inverted InP
QD synthesis, we have achieved extended emission tunability
compared to what has been previously published for InP core-
based QDs, yielding multiple emitters in the first optical tissue
window. In order to generate bright NIR emitters for in vivo
imaging of sentinel lymph nodes, QD675, QD770, and QD845
were Zn-TOP treated to enhance their brightness. As a result
of this treatment, the QY of the QDs increased, but the
emission peaks of the two longer wavelength emitters blue-
shifted to QD720 and QD790, respectively (Table S2).
Following a previously published protocol, QDs were rendered
water-soluble through encapsulation in lipid-PEG micelles
using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol)] (ammonium salt) with 5000
Da PEG (DSPE-PEGSk, Avanti Polar Lipids, Inc.).””*® The
water-soluble samples largely retained their precoating bright-
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ness, exhibiting QYs between 11 and 18%, consistent with
similarly treated commercial QD705s (Thermo Fisher) (Table
S2).

To demonstrate multiplexed in vivo imaging with the NIR-
emitting InP QDs, the three Zn-TOP-treated samples were
encapsulated in in DSPE-PEGSK, buffer exchanged into
phosphate buffered saline (PBS), and sterile filtered. QDs
were subcutaneously injected into a BALB/cJ] mouse in three
distinct sites to visualize lymphatic drainage. QD675 and
QD790 were injected into the right and left hock, respectively.
QD720 was injected into the right second mammary fat pad
(Figure Sa). The mouse was imaged using an In Vivo Imaging
System (IVIS Spectrum; PerkinElmer) at several time points
post injection (p.i.), and the resulting images were analyzed
and unmixed using the Living Image software (PerkinElmer)
to show the emission from each QD. At 28 min p.i,, drainage
from the initial site of injection to local lymph nodes (LNs)
was observed for all three of the QDs (Figure Sb). One hour
p-., lymphatic drainage is visible in the collecting lymphatic
vessel extending from the left inguinal LN to the left axillary
LN (Figure Sc). We included an inset at higher thresholding
that shows the inguinal LN itself, since the low thresholding
that enables visualization of the lymphatic drainage vessel
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Figure 4. Optical properties of QDs. (a) Concentration-normalized absorbance was determined by measuring the absorption of carefully diluted
reaction products (unwashed) from reactions loaded with identical amounts of the same ZnSe core and adjusted for reactant addition volumes. (b)
Normalized photoluminescence and photoluminescence excitation spectra. (c) Photoluminescence lifetime following excitation at 405 nm.

Figure S. Spectrally unmixed images of a BALB/cJ mouse injected with three distinct QD solutions: QD675 (green; left hock injection), QD790
(gold; right hock injection), and QD720 (red, left armpit). (2) Injection sites imaged immediately post injection (p.i.). (b) Localization of QD675
in the left inguinal lymph node (LN), QD720 in the axillary LN, and QD790 in the right inguinal LN and popliteal LN 48 min p.i. (c) Lateral
image 1 h p.i. shows QD790 lymphatic drainage from the inguinal LN to the axillary LN; inset of the boxed region with higher thresholding shows
the contrast localized in the inguinal LN without image saturation. Images taken on PerkinElmer IVIS Spectrum and analyzed using Living Image
software. White arrows indicate injection sites, while blue arrowheads indicate LNs.

causes saturation of the region (Figure S, Figure S10).
Visualization of QD720 and QD790 in the lymph nodes was
possible at up to 52 h p.i. when the animal was sacrificed, and
the body cavity exposed to confirm the colocalization of QDs
with LNs (Figure S11). QD720 and QD790 were located in
the axillary LNs on their respective sides of injection. QD790
was also seen in several LNs near the inguinal node as well as
the inguinal LN itself. QD675 was not detected during the
post-mortem analysis.

In summary, through multicomponent InP SILAR deposi-
tion in the presence of ZnSe cores, we synthesized indium
phosphide-based QDs that exceed the previous NIR emission
limits for this important cadmium-free composition. These
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small, bright nanocrystals comprising only In, P, Zn, S, and Se
can be tuned to emit throughout the first optical tissue
window, presenting an opportunity for multiplexed fluorescent
imaging in the NIR, with QYs consistent with commercially
available cadmium-based QDs. Subsequent work will optimize
the synthesis to narrow the emission bandwidths, further
improve brightness, and tailor the colloidal coating for targeted
imaging.

B ASSOCIATED CONTENT

@ Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600.

https://doi.org/10.1021/acs.nanolett.1c00600
Nano Lett. 2021, 21, 3271-3279


http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c00600/suppl_file/nl1c00600_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c00600/suppl_file/nl1c00600_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00600?fig=fig5&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.1c00600?rel=cite-as&ref=PDF&jav=VoR

Nano Letters

pubs.acs.org/NanoLett

A full description of the nanoparticle synthesis and
coating procedure as well as additional characterization
results are included in the Supporting Information
(PDE).
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