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Abstract

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprec-

edented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly

vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we

assess the physiological responses of three Caribbean coral (animal host + algal symbiont)

species from an inshore and offshore reef environment after exposure to simulated ocean

warming (28, 31˚C), acidification (300–3290 μatm), and the combination of stressors for 93

days. We used multidimensional analyses to assess how a variety of coral physiological

parameters respond to ocean acidification and warming. Our results demonstrate reduc-

tions in coral health in Siderastrea siderea and Porites astreoides in response to projected

ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa.

Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counter-

parts, suggesting that this offshore population was more susceptible to changing conditions.

There were no plasticity differences in P. strigosa and P. astreoides between natal reef envi-

ronments, however, temperature evoked stronger responses in both species. Interestingly,

while each species exhibited unique physiological responses to ocean acidification and

warming, when data from all three species are modelled together, convergent stress

responses to these conditions are observed, highlighting the overall sensitivities of tropical

corals to these stressors. Our results demonstrate that while ocean warming is a severe

acute stressor that will have dire consequences for coral reefs globally, chronic exposure to

acidification may also impact coral physiology to a greater extent in some species than pre-

viously assumed. Further, our study identifies S. siderea and P. astreoides as potential ‘win-

ners’ on future Caribbean coral reefs due to their resilience under projected global change

stressors, while P. strigosa will likely be a ‘loser’ due to their sensitivity to thermal stress

events. Together, these species-specific responses to global change we observe will likely

manifest in altered Caribbean reef assemblages in the future.
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Introduction

Human-induced global change is driving unprecedented challenges for ecosystems globally,

from increases in terrestrial droughts [1] and severe storm activity across lower latitudes [2] to

altering species’ distributions globally [3,4]. Coral reefs are a prime example of an ecosystem

heavily impacted by global change, particularly by ocean warming and acidification [5–8].

Ocean acidification and warming are predicted to affect many marine ecosystems by reducing

ecosystem complexity and function, especially for organisms with longer generational times

and thus fewer opportunities to adapt to changing conditions [9]. Therefore, understanding

the diversity of responses of tropical reef-building corals at both the species- and population-

levels is critical for predicting future impacts of global change.

Previous work assessing tropical reef-building corals under global change has generally

focussed on quantifying changes in coral calcification rates owing to the ecological importance

of new reef production for the maintenance of these ecosystems [10–15]. These studies dem-

onstrate a diversity of calcification responses under stress, including maintained and sup-

pressed growth rates [12,16,17]. For example, the Caribbean coral species Siderastrea siderea
and Porites astreoides have been shown previously to maintain higher growth rates under

ocean acidification and/or warming stress, [16–18] and other species, such as Orbicella faveo-
lata and Acropora cervicornis, generally exhibited reduced growth under these same stressors

[14,18,19]. While some corals sustain growth rates under stress, these corals may accomplish

this at a cost to other metabolic processes [20,21] or through modifications to holobiont (ani-

mal host, dinoflagellates, bacteria, viruses, etc.) communities.

Tropical reef-building corals depend on the maintenance of an endosymbiotic relationship

with photosynthetic dinoflagellates (family Symbiodiniaceae) for a significant portion of their

energetic needs [22]. However, this relationship often breaks down under severe or prolonged

stress, especially with increasing seawater temperature, resulting in the phenomenon known as

‘coral bleaching’ [23–25]. Corals bleach in response to ocean acidification, but especially in

response to warming, and this loss of symbiosis leads to declines in calcification and gameto-

genesis [26]. Thus, as the symbiosis between the coral host and algal symbionts breaks down,

both components of the coral are likely to exhibit closely integrated physiological responses.

Indeed, previous work has observed that greater coral tissue biomass follows increased symbi-

ont density and chlorophyll a content in several Caribbean reef-building coral species [27],

highlighting the intrinsic relationship with algal symbionts to support the coral host’s energy

budget. Further, previous work has reported the influence of algal symbiont and microbiome

communities as mechanisms of improving coral holobiont physiology under environmental

stress [28–32]. Overall, it is clear that maintaining healthy symbioses within the coral holo-

biont is critical for the physiological health of the coral host.

Coral tissue biomass and energy reserves (e.g., lipid, protein, carbohydrate) are important

aspects of overall coral health [33,34] that provide insight into resilience and recovery capacity

in response to environmental stressors. Although energy reserves are extremely important in

understanding the coral host response to stress, few studies have investigated how the combi-

nation of ocean acidification and warming influence these traits [34–36]. Coral tissue biomass

relies on the equilibrium between energy sources and expenditures; thus, corals with already

low biomass (i.e., low energy reserves) may experience heightened vulnerability under envi-

ronmental stress [37] and may explain some of the variation of physiological responses to

stress within and between species [16,17]. However, studies have demonstrated that corals

may not always consume energy reserves under environmental stress [34] or increase meta-

bolic processes [38]. Instead, corals may use other physiological mechanisms as coping tools to
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maintain growth and host energy reserves, such as relying more on algal symbionts whose

photosynthesis is fertilised under conditions of elevated pCO2 [39].

Many symbiotic corals also have the capacity to exhibit physiological plasticity (i.e., modifi-

cation of an organism’s physiology) in response to changing environments that may be

employed under global change scenarios [40,41]. While plasticity is often highlighted as a

mechanism for rapid response to changing environments, there is debate about whether plas-

ticity alone is enough to ensure species persistence under global change [42]. Indeed, a highly

plastic coral may be able to modulate its physiology (e.g., increase chlorophyll a per symbiont

cell) under an acute stress event (e.g., low light levels) [43], but this is likely to come at a cost to

another metabolic process, such as energy stores. This physiological cost can be beneficial for

the coral in the short term, however, may eventually result in a decline in fitness [42,44], espe-

cially in long-lived organisms like reef-building corals. These potential trade-offs in reef-build-

ing corals remain poorly understood and highlight the complexities of plasticity as a mode of

global change resilience.

To assess the physiological responses of Caribbean corals to independent and combined

ocean acidification (300–3290 μatm) and warming (28, 31˚C), we conducted a 93-day com-

mon-garden experiment on 3 species of corals (S. siderea, Pseudodiploria strigosa, P. astreoides)
and quantified coral host energy reserves (total protein, carbohydrate, lipid) and algal symbi-

ont physiology (cell density, chlorophyll a concentration, coral colour intensity). These coral

species were selected because they represent both weedy (P. astreoides) and stress-tolerant (S.

siderea and P. strigosa) life histories [45], possess similar growth morphologies (mounding),

and are common throughout the Caribbean across a variety of environmental gradients. Addi-

tionally, we included corals from two distinct reef environments to assess how environmental

histories impact responses to global change stressors. Overall, we selected these species to bet-

ter understand how corals that are expected to dominate Caribbean reefs in the future may

respond to global change stressors. We hypothesised that (1) corals are more susceptible to

thermal stress than acidification, (2) physiological responses are highly species-specific, and

(3) physiological plasticity dictates coral resilience under global change. Our results highlight

the diversity of physiological responses, from susceptibility to resistance, that Caribbean corals

exhibit in response to projected global change, which will ultimately drive changes in commu-

nity compositions across space.

Methods

Experimental design

Six colonies each of three Caribbean reef-building corals (Siderastrea siderea, Pseudodiploria
strigosa, Porites astreoides) were collected from inshore (Port Honduras Marine Reserve; 16˚

11’23.5314”N, 88˚34’21.9360”W) and offshore (Sapodilla Cayes Marine Reserve; 16˚

07’00.0114”N, 88˚15’41.1834”W) reef environments at similar depths (3–5 m) from the south-

ern portion of the Belize Mesoamerican Barrier Reef System. All corals were collected follow-

ing local laws and regulations with appropriate permits (#5674). These two distinct reef

environments are approximately 25 km apart and were selected to explore how environmental

history (e.g., temperature, salinity, carbonate chemistry, nutrients, etc.) affects responses to

global change. Specifically, the inshore site is known to be more environmentally variable (i.e.,

diel and seasonal variability) than the offshore location (S1 Fig), potentially diving local adap-

tation and/or long-term acclimatisation in these species [46–48]. This study further investi-

gates the physiological responses of corals assessed in Bove et al. [17] and detailed descriptions

of experimental setup can be found there.
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Corals (2 reef environments x 3 species x 6 colonies = 36 colonies) were collected and trans-

ported to Northeastern University’s Marine Science Center. Colonies were sectioned into

eight equally-sized fragments (8 fragments/colony = 288 total samples) and returned to ambi-

ent conditions for a 23-day recovery period, followed by a 20-day acclimation period where

tanks were slowly adjusted to target experimental treatment conditions. Corals were main-

tained in one of eight experimental treatments (three replicate tanks per treatment; see S2 Fig

for coral allocation schematic and Table A in S1 Text for sample sizes) for the 93-day experi-

ment. The eight treatments encompassed four pCO2 treatments (Table 1) corresponding to

pre-industrial, current-day (pCO2 control), moderate end-of-century, and an extreme pCO2

level all crossed with two temperatures (Table 1) corresponding to the corals’ approximate

present-day summer mean and projected end-of-century summer warming[49] that has also

been observed to induce bleaching in these species [50]. High-precision digital solenoid-valve

mass flow controllers (Aalborg Instruments and Controls; Orangeburg, NY, USA) were used

to bubble air alone (control pCO2 conditions), or in combination with CO2-free air (pre-

industrial conditions) or CO2 gas (end-of-century and extreme conditions) to achieve gas mix-

tures of each desired pCO2 condition.

Experimental tanks were filled with 5 μm-filtered natural seawater from Massachusetts Bay

with a salinity of 31.7 psu (±0.2) and were illuminated with full spectrum LED lights on a 10:14

light-dark cycle with photosynthetically active radiation of approximately 300 μmol photons m–2

s–1. Corals were fed a combination of ca. 6 g frozen adult Artemia and 250 mL concentrated

newly hatched live Artemia (500 mL-1) every other day to satisfy heterotrophic feeding [51,52].

Temperature, salinity and pH were measured at the same time (~1PM) every other day through-

out the experiment and total alkalinity (TA) and dissolved inorganic carbon (DIC) were analysed

every 10 days with a VINDTA 3C (Marianda Corporation, Kiel, Germany) (S3 Fig). Temperature,

salinity, TA, and DIC were used to calculate carbonate parameters using CO2SYS [53] with Roy

et al. [54] carbonic acid constants K1 and K2, Mucci’s value for the stoichiometric aragonite solu-

bility product [55], and an atmospheric pressure of 1.015 atm. At the completion of the experi-

mental period, corals were immediately flash-frozen in liquid nitrogen and transported to the

University of North Carolina at Chapel Hill. Coral tissue was removed from the skeleton using

seawater with an airbrush and stored in 50 mL conical tubes at −80˚C until further processing.

Host and symbiont physiological parameter assessments

Preserved coral tissue slurries were homogenised with a Tissue-tearor (BioSpec Products; Bar-

tlesville, Oklahoma, USA) for several minutes and vortexed for 5 seconds, after which 1.0 mL

of slurry was aliquoted for algal symbiont density analysis. Algal symbiont aliquots were dyed

with 200 μL of a 1:1 Lugol’s iodine and formalin solution and cell densities were quantified by

performing at least 3 replicate counts of 10 μL samples using a hemocytometer (1 x 1 mm;

Hausser Scientific, Horsham, Pennsylvania, USA) and a compound microscope. Algal symbi-

ont densities were standardised to total tissue volume and previously measured coral surface

area (106 cells per cm2) [17]. Remaining tissue slurry was centrifuged at 4400 rpm for 3 min-

utes to separate the coral host and algal symbiont fractions, and the host fraction was poured

Table 1. Warming and acidification treatment means and standard deviations.

Temperature Treatment (˚C) pCO2 treatment (μatm)

Pre-industrial Current-day End-of-century Extreme

Control 28 ± 0.4 288 ± 65 447 ± 152 673 ± 104 3285 ± 484

Warming 31 ± 0.4 311 ± 96 405 ± 91 701 ± 94 3309 ± 414

https://doi.org/10.1371/journal.pone.0273897.t001
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off from the symbiont pellet. Chlorophyll a pigment was extracted from the algal pellet by add-

ing 40 mL of 90% acetone to the conical tube at −20˚C for 24 hours. Samples were diluted by

adding 0.1 mL of extracted chlorophyll a sample to 1.9 mL of 90% acetone. If samples were too

high or too low for detection on the fluorometer, samples were reanalysed by either diluting or

concentrating the sample, respectively. Extracted chlorophyll a content was measured using a

Turner Design 10-AU fluorometer with the acidification method [56] and expressed as the μg

of pigment per cm2 of coral tissue surface area.

Coral host supernatant was aliquoted (1 mL each) for total protein, carbohydrate, and lipid

analysis, and stored at −80˚C. Glass beads were added to total protein aliquots, vortexed for 15

minutes, and centrifuged for 3 minutes at 4000 rpm. Duplicate samples were prepared with

235 μL of seawater, 15 μL of protein aliquot, and 250 μL of Bradford reagent (Thermo Scientific)
and left for 20 minutes. Coral host total protein samples were read at 562 nm on a spectrophotom-

eter (Eppendorf BioSpectrometer1 basic; Hamburg, Germany) in duplicates and were expressed

as mg per cm2 coral tissue surface area. For coral host carbohydrate, 25 μL of phenol was added to

1000 μL of diluted coral host slurry and vortexed for 3 seconds before immediately adding 2.5 mL

concentrated sulphuric acid (H2SO4). Samples were incubated at room temperature for 1 minute

and then transferred to a room temperature water bath for 30 minutes [57]. Finally, 200 μL of

each standard and sample was pipetted into a 96-well plate in triplicate and read on a spectropho-

tometer at 485 nm (BMG LABTECH POLARstart Omega; Cary, North Carolina, USA). Total

carbohydrate was expressed as mg per cm2 coral tissue surface area [58]. Coral host lipids were

extracted following the Folch Method [59] by adding 600 μL of chloroform (CHCl3) and metha-

nol (CH3OH) in a 2:1 ratio to 600 μL of host slurry and placed on a plate shaker for 20 minutes

before adding 160 μL of 0.05M sodium chloride (NaCl). Tubes were inverted twice and then cen-

trifuged at 3000 rpm for 5 minutes. Finally, the lipid layer was removed and 100 μL was pipetted

in triplicate into a 96-well plate for colourimetric assay. The lipid assay was performed by adding

50 μL of CH3OH to each well before evaporating the solvent at 90˚C for 10 minutes. Next, 100 μL

of H2SO4 was added to every well, incubated at 90˚C for 20 minutes, and cooled on ice for 2 min-

utes before transferring 75 μL of each sample into a new 96-well plate. Background absorbance of

the new plate was read at 540 nm on a spectrophotometer before adding 34.5 μL of 0.2 mg/mL

vanillin in 17% phosphoric acid to each well. The plate was read again at 540 nm and coral host

lipid concentrations were normalised to coral surface area (mg per cm2) [60,61].

Coral colour intensity was also analysed from images of every fragment with standardized

colour scales taken at every 30 days throughout the experiment. This assessment complements

other algal symbiont physiological assessments as a non-destructive alternative to quantify coral

bleaching. Colour balance was adjusted using a custom Python script that took a square of pixels

as a white standard (50 x 50) on each image to adjust the colour balance until it was true white.

The total red, green, blue, and sum of all colour channel intensities were measured following

[62] using the MATLAB macro “AnalyzeIntensity” for either 10 (S. siderea and P. astreoides) or

20 (P. strigosa; 10 in valley and 10 on ridges) quadrats of 25 x 25 pixels on each coral fragment.

The resulting values act as a measure of brightness, with higher brightness values correlating

with pigment lightening (i.e., coral bleaching); thus, data were inverted so that lower values rep-

resent reduced coral pigmentation. The sum of all colour channels (red, green, blue) resulted in

a stronger correlation with symbiont physiology (chlorophyll a and cell density) in S. siderea
and P. strigosa, while the red channel alone was best in P. astreoides.

Coral physiology analyses

Sample mortality was observed throughout the experimental period across species as described

in Bove et al. [17] and thus some treatments resulted in reduced replication for physiological
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analyses (Table A in S1 Text). Overall, S. siderea exhibited nearly 90% survival (86 total frag-

ments), P. strigosa exhibited 80% survival (77 total fragments), and P. astreoides exhibited 72%

survival (69 total fragments) at the end of the experiment [17]. Further, the initial and final

control treatment sample size of P. strigosa was lower than other species because this treatment

system had to be reconstructed before the start of the experiment and there were only a few

reserve genotypes of this species available for the new control system.

Principal component analysis (PCA) (function prcomp) of scaled and centered physiologi-

cal parameters (host carbohydrate, host lipid, host protein, algal symbiont chlorophyll a, algal

symbiont cell density, calcification rate as previously reported for the same samples in Bove

et al [17]) were employed to assess the relationship between physiological parameters and

treatment conditions for each coral species. Main effects (temperature, pCO2, reef environ-

ment) were evaluated with PERMANOVA using the adonis2 function (vegan package; version

2.5.7 [63]). The additive model resulted in a lower AIC than the fully interactive model for all

species, so interaction terms were dropped from each model resulting in fully additive models

(see Table B in S1 Text).

Correlations of all physiological parameters were assessed to determine the relationships

between parameters within each species. The Pearson correlation coefficient (R2) of each com-

parison was calculated using the corrgram package (version 1.13 [64]) and the significance was

calculated using the cor.test function. These relationships were then visualised through simple

scatterplots.

Here, we use physiological plasticity to refer to the amount an individual modifies its physi-

ology in response to stress compared to observed physiology under control conditions. Physio-

logical plasticity of each experimental fragment was calculated for each species using all

principal components (PCs) calculated above as the distance between an experimental frag-

ment and the control (420 μatm; 28˚C) fragment from that same colony [65]. The effects of

treatment (pCO2 and temperature) and natal reef environment on calculated distances were

assessed using generalised linear mixed effects models (function lmer) with a Gamma distribu-

tion and log-link and a random effect for colony (P. strigosa and P. astreoides) or tank crossed

with colony (S. siderea). The best-fit model was selected as the model with the lowest AIC for

each species (Table C in S1 Text). Natal reef environment was only a significant predictor of

plasticity in S. siderea; thus, samples were pooled across reef environments for both P. strigosa
and P. astreoides. Parametric bootstraps were performed to model mean response and 95%

confidence intervals with 1500 iterations and significant effects were defined as non-overlap-

ping confidence intervals. Marginal and conditional R2 values of the best fit models were calcu-

lated using the r2_nakagawa function in the rcompanion package (version 2.4.13 [66]). All

figures and statistical analyses were carried out in R version 4.1.2 (R Core Team, 2018) and the

accompanying data and code can be freely accessed on GitHub (github.com/seabove7/Bove_

CoralPhysiology) and Zenodo (10.5281/zenodo.5093907).

Results

Principal component analysis

Two PCs explained approximately 66% of the variance in physiological responses of S. siderea
to ocean acidification and warming treatments (Fig 1A). PC1 was driven by differences in algal

symbiont physiology (chlorophyll a, cell density), while PC2 represented an inverse relationship

between host energy reserves (lipid, protein, carbohydrate) and calcification rates and colour

intensities. Overall, higher pCO2 and temperature resulted in reduced S. siderea physiology (Fig

1A). Treatment pCO2 predominantly drove S. siderea physiological responses (p = 7e-04), while

temperature and reef environment did not explain as much variation in physiological responses
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(p = 0.05 and p = 0.001, respectively; Table D in S1 Text and S4A Fig). These observed

responses are driven by declines in total host physiology under warming as well as reduced sym-

biont physiology with increasing pCO2 (S5A Fig). Further, no significant interactive effect

between temperature and pCO2 was detected in S. siderea physiology (S4D Fig).

For P. strigosa, 74% of the variance in response to treatments was explained by two PCs (Fig

1B). PC1 explained most of the variation of physiological parameters with the exception of host

lipid content, which was represented in PC2. Physiology of P. strigosa was reduced under warm-

ing (p = 7e-04) and in offshore samples (p = 7e-04; S4B Fig), however, pCO2 did not clearly

alter physiology (Fig 1B; p = 0.2; Table D in S1 Text). This clear decline in physiology under

warming is driven by declines in symbiont physiology and total host protein content (S5B Fig).

Again, no significant interactive effect between temperature and pCO2 was detected (S3E Fig).

For P. astreoides, the first two PCs explained 59% of the total variance in response to treat-

ment (Fig 1C). Samples separated most along PC1 driven primarily by calcification rate and

algal symbiont density, while PC2 exhibited an inverse relationship between host total carbo-

hydrate and colour intensity. Overall, higher pCO2 reduced P. astreoides physiology, while ele-

vated temperature resulted in improved physiology (Fig 1C). These patterns are most notable

in the reduced host energy reserves in response to increasing pCO2 and higher symbiont phys-

iology and lipid content under warming (S5C Fig). Temperature (p = 0.001) and pCO2

(p = 7e-04) altered P. astreoides physiology, while reef environment was not significant

(p = 0.5; Table D in S1 Text and S4C Fig) and there was no significant interactive effect

between temperature and pCO2 (S3F Fig).

Correlations of physiological parameters

Coral physiological parameters were generally positively correlated with one another within

each of the three species. Correlations between S. siderea physiological parameters identi-

fied 15 significant relationships out of all 21 possible comparisons (Fig 2A). Of those signifi-

cant correlations, six resulted in a Pearson’s correlation coefficient (R2) equal to or greater

than 0.5, with the strongest relationship identified between symbiont density and chloro-

phyll a (R2 = 0.72).

Fig 1. Principal component analysis (PCA) of all coral physiological parameters for (A) S. siderea, (B) P. strigosa, and (C) P. astreoides after 93 days of exposure to

different temperature and pCO2 treatments. PCAs of (A) S. siderea and (C) P. astreoides are depicted by pCO2 in colour (pre industrial [300 μatm], light purple; current

day [420 μatm], dark purple; end-of-century [680 μatm], light orange; extreme [3290 μatm], dark orange) and temperature by shape (filled circles 28˚C; open circles 31˚C).

The PCA for (B) P. strigosa is depicted by temperature in colour (28˚C blue; 31˚C red) and pCO2 by shape (pre industrial, circles; current day, triangles; end-of-century,

squares; extreme, stars). Arrows represent significant (p< 0.05) correlation vectors for physiological parameters (rate = calcification rate; den = symbiont density;

chla = chlorophyll a; pro = protein; carb = carbohydrate; lipid = lipid; colour = colour intensity) and ellipses represent 95% confidence based on multivariate t-

distributions.

https://doi.org/10.1371/journal.pone.0273897.g001
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All pairwise physiological parameters were significantly correlated with one another in P.

strigosa and, of those, 15 correlations exhibit moderate (R2 > 0.50) positive relationships (Fig

2B). Notably, the two strongest correlations were host carbohydrate vs. host protein (R2 =

0.70) and host carbohydrate vs. chlorophyll a (R2 = 0.76).

Compared to both S. siderea and P. strigosa, fewer physiological traits were significantly

(p< 0.05) correlated with one another in P. astreoides (12 significant out of 21 total compari-

sons; Fig 2C). Of the significant correlations, only two pairwise comparisons resulted in a

Pearson’s correlation coefficient greater than 0.5: chlorophyll a vs. colour intensity (R2 = 0.57)

and host carbohydrate vs. host protein (R2 = 0.68).

Coral physiological plasticity

Physiological plasticity of offshore S. siderea fragments exhibited a positive linear trend with

increasing pCO2, while the inshore fragments appear to respond in a parabolic pattern to

pCO2, with the lowest calculated distances occurring at 420 μatm, 31˚C and 680 μatm, 28˚C

(Fig 3A). Further, offshore S. siderea fragments exhibited higher plasticity in the extreme

pCO2 treatment than in inshore fragments reared in the pre-industrial, current-day, and

extreme pCO2 treatments, regardless of temperature (Fig 3A and Table E in S1 Text).

Plasticity of P. strigosa and P. astreoides was not clearly different between colonies based on

natal reef environments (see Table C in S1 Text). No clear differences in physiological plastic-

ity in response to treatment were identified in P.strigosa (Fig 3B and Table E in S1 Text), how-

ever, this is likely due to reduced sample sizes in this analysis as a result of only five colonies

(Noffshore = 3, Ninshore = 2) present in the control treatment for distance calculations.

Elevated temperature generally resulted in higher plasticity of P. astreoides compared to

control temperature (Fig 3C and Table E in S1 Text), however, this trend was not clearly dif-

ferent within each pCO2 treatment. Physiological plasticity of P. astreoides was significantly

lower in both the pre-industrial and end-of-century pCO2 treatments at control temperature

than that measured in the extreme pCO2 treatment combined with the elevated temperature.

Species differences in coral physiology

The first two PCs of coral physiology explained about 62% of the total variance across samples

(Fig 4). In general, fragments of S. siderea contained higher chlorophyll a content, host

Fig 2. Coral physiological parameter scatter plots (top) and correlation matrices (bottom) for (A) S. siderea, (B) P. strigosa, and (C) P. astreoides showing pairwise

comparisons of within each species. Scatter plots of each pairwise combination of physiological parameters are displayed on the top with temperature treatment depicted

by shape (28˚C closed points; 31˚C open points) and pCO2 treatment depicted by colour (pre industrial [300 μatm], light purple; current day [420 μatm], dark purple; end-

of-century [680 μatm], light orange; extreme [3290 μatm], dark orange). Strengths of the correlations (R2 via Pearson correlation coefficients) between each pairwise

combination of physiological parameters are indicated by darker shades of blue on the bottom with significance depicted by asterisks according to significance level (�

p< 0.05; �� p< 0.01; ��� p< 0.001). R2 and significance levels correspond to the scatter plot at the intersection between two physiological parameters.

https://doi.org/10.1371/journal.pone.0273897.g002
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carbohydrate, and host lipid content, while P. strigosa fragments typically had greater host pro-

tein content accompanied by higher calcification rates, and fragments of P. astreoides were dif-

ferentiated by their high symbiont densities (Figs 4A and S6). Despite being different coral

species, coral physiology exhibited similar declines in responses to increasing pCO2 treatments

(Fig 4B), however, responses to temperature were highly species-specific (Fig 4C and Table F

in S1 Text). Furthermore, corals from the inshore reef environment exhibited more con-

strained physiology than their offshore counterparts (S6 Fig).

Discussion

Coral physiology highlights sensitivity of Caribbean corals to global change

Caribbean coral reefs have experienced considerable shifts in ecosystem composition since the

1970s defined by declines in several stony coral taxa [67,68], resulting in reefs now dominated

by weedy and stress-tolerant species. Ocean acidification, warming, and the combination of

Fig 3. Physiological plasticity of (A) S. siderea, (B) P. strigosa, and (C) P. astreoides after 93-day exposure to experimental treatments. Higher values represent greater

plasticity (stronger response) in coral samples. Natal reef environment is depicted along the x axis for S. siderea, however, P. strigosa and P. astreoides samples were pooled

by reef environment. pCO2 treatment is depicted by colour and shape (pre industrial [300 μatm], light purple; current day [420 μatm], dark purple; end-of-century

[680 μatm], light orange; extreme [3290 μatm], dark orange) and temperature is represented as either closed (28˚C) or open (31˚C) symbols. The current day at 28˚C

treatment is not depicted here since plasticity is represented as the distance from this treatment (420 μatm at 28˚C). Symbols and bars indicate modelled means and 95%

confidence intervals. Non overlapping confidence intervals were interpreted to be statistically different.

https://doi.org/10.1371/journal.pone.0273897.g003

Fig 4. Principal component analysis (PCA) comparing the physiology of all three species at the end of the experiment with samples clustered by (A) species, (B) pCO2

treatment, and (C) temperature treatment. Arrows represent significant (p < 0.05) correlation vectors for physiological parameters and ellipses represent 95% confidence

based on multivariate t-distributions.

https://doi.org/10.1371/journal.pone.0273897.g004
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the two stressors are expected to further reduce coral abundance throughout the Caribbean by

the end of this century [69]. We demonstrate a variety of coral responses to simulated ocean

acidification and warming scenarios that provide insight into how multiple stress-tolerant and

weedy coral species may respond to global change. Understanding individual physiological

responses of coral hosts and their algal symbionts provides valuable insight into the relation-

ship between these partners, especially in these now-dominant species. However, to better pre-

dict how corals will respond to global change, it is necessary to assess how the physiological

parameters of both partners will respond. For example, we found that pCO2 treatment drove

differences in coral physiology of both S. siderea and P. astreoides (Fig 1); however, these

effects were not clear when assessing individual physiological parameters on their own within

a species (S5 Fig). Indeed, several previous studies have reported mixed physiological

responses to elevated pCO2, from no difference in coral host energy reserves [34] to reduced

symbiont density and productivity loss [25,38]. These effects of pCO2 highlight the complexity

of the responses of corals under stress [34,70,71] and suggest that, by limiting assessments to

only a few physiological parameters, studies may miss important changes to the coral’s overall

condition.

Coral physiologies of all three species were also modulated by temperature, although these

impacts were more variable. Siderastrea siderea and P. strigosa both exhibited declines in phys-

iology under elevated temperature (31˚C) (Figs 1 and S5); however, these declines were more

pronounced in P. strigosa, especially through time (Figs 1B and S7). Indeed, while P. strigosa
was previously classified as a stress-tolerant species based on trait assessment [45], it has more

recently been identified as a more thermally sensitive coral species [35,72,73]. This response is

likely representative of the overall deterioration of coral condition in response to thermal

stress, which may lead to mortality under chronic or extreme exposure as is being seen more

frequently on Caribbean coral reefs [5]. Thermal events on coral reefs are generally considered

to be acute stress events (on the scale of hours to weeks) [74]. Thus, exposure of these corals to

more than 90 days of constant elevated temperature may have elicited a more severe response

in P. strigosa as is seen during mass bleaching events in situ for this species [75]. Conversely,

elevated temperature corresponded with improved physiological parameters in P. astreoides.
These differences in coral thermal responses are not surprising given that P. astreoides is gen-

erally considered a more opportunistic coral that can persist in less-desirable conditions,

including elevated temperature [18,45,76]. Conversely, S. siderea and P. strigosa are classified

as ‘stress tolerant’ species with varying levels of susceptibility and resilience to environmental

stress [16,50,77,78]. Despite some similarities in responses to ocean acidification and warming

observed here, the different relationships between physiological parameters within each spe-

cies likely interact to produce the species-specific responses observed in situ.

A major goal of this study was to better understand the combined effects of ocean warming

and acidification on coral physiology since these stressors continue to change in lock step.

While many studies report synergistic effects (i.e., the effects of both stressors compounding

one another) of increasing temperature and pCO2 on coral responses [79–81], the interaction

term of these treatments in our study was not significant in any models performed. In fact, the

species assessed in our experiments generally exhibited clear responses to either warming (P.

strigosa) or acidification (S. siderea and P. astreoides) that was only exacerbated by the other

stressor in the high temperature, extreme acidification scenario (S4 Fig). Under the combined

acidification and warming scenarios, it is possible that one stressor counteracted the effects of

the other to result in marginal physiological changes [82]. Indeed, it has been suggested that

CO2 fertilisation of algal symbionts under ocean acidification may improve coral physiology

[39], potentially countering the negative effects of associated warming on coral-algal symbio-

sis. Conversely, metabolic processes generally improve along with increasing temperatures up
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to an individual’s thermal optimum [83], suggesting that the elevated temperature used here

may have supported improved physiology, counteracting any negative effects of ocean acidifi-

cation. Further, while other studies report synergistic effects on coral physiology, most of these

studies only assess a single parameter, potentially missing other key physiological responses

that suggest more additive responses like observed here. It is clear that coral responses under

global change remain complex and require further investigation using additional multi-

stressor, multi-species studies to tease apart these complexities.

Global change and species-specific drivers of physiological plasticity

On shorter ecological time scales–like those employed in this experiment–plasticity may be a

coral’s most efficient response to global change, as it permits individual-level acclimatisation

to a rapidly changing environment within a generation [40,42]. Plasticity has been identified

as an important mechanism in coping with elevated pCO2 conditions in tropical corals [84–

86] and may predict how these organisms will perform under global change. However, physio-

logical plasticity may not always be beneficial long term and may instead signal a shift in

organism condition [18,42,44]. Organisms exhibiting higher plasticity in response to environ-

mental change (e.g., ocean warming and acidification) may incur a physiological cost in the

form of a trade-off that ultimately may impact the population’s ability to resist future change

[40–42]. Here we assessed the physiological plasticity of the coral under elevated temperature

and pCO2, and compared these responses across two natal reef environments (inshore vs. off-

shore). We found that S. siderea fragments from the offshore exhibited higher plasticity in

response to extreme pCO2 (3290 μatm) compared to the inshore counterparts, and that this

pattern differed between the two habitats (Fig 3A). These results suggest that offshore S. side-
rea fragments modulated their physiology to a greater extent than the inshore corals and this

shift in physiological state suggest reduced capacity to persist under future ocean acidification.

This higher plasticity likely comes at a fitness trade-off in corals that are experiencing sub-opti-

mum conditions [42,87]. Indeed, a reciprocal transplant experiment in southern Belize identi-

fied higher plasticity of offshore colonies of S. siderea compared to those from a nearshore

environment [47]. The offshore colonies grew at a much higher rate when transplanted to the

nearshore environment than in their natal environment (generally considered more ideal con-

ditions) [47], suggesting that plasticity in these corals may indeed come at the cost of growth

in home or more ideal conditions [42].

Varying levels of plasticity in P. strigosa and P. astreoides from different habitats has been

previously reported [47,88]; however, natal reef effects were not evident in either species in

this study (Fig 3B and 3C). The small sample size of P. strigosa likely contributed to the lack of

differences between habitats, while different measures of plasticity–physiological plasticity

(present study) vs. gene expression plasticity [88]–may contribute to the inconsistent

responses observed in P. astreoides. While neither species exhibited differing levels of plasticity

between reef environments, both P. strigosa and P. astreoides appear to exhibit higher plasticity

at the elevated temperature, though this is only statistically significant in P. astreoides (Fig 3B

and 3C). Interestingly, the higher plasticity at elevated temperatures in P. strigosa was associ-

ated with diminished physiological conditions, while higher plasticity in P. astreoides mani-

fested as improved physiology (Fig 1B and 1C). These differences highlight how plasticity may

result from physiological trade-offs in response to environmental change in some organisms

(i.e., P. strigosa) [42,87], while other organisms (i.e., P. astreoides) may benefit from such plas-

tic responses to match their physiology to their environment [89]. Either way, the role of plas-

ticity in coral responses to global change is complex and merits further investigation to better

understand species-specific levels of resilience.
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Another explanation for varying susceptibilities across coral species under global change

may relate to how physiological parameters are correlated to one another within the coral. For

example, all physiological parameters were significantly correlated with one another for P. stri-
gosa (Fig 2B), while only some correlations were significant for S. siderea and P. astreoides
(Fig 2). Notably, while symbiont density was significantly correlated with all parameters in P.

strigosa, it was least correlated with host lipid content, which was in turn best correlated with

host protein and host carbohydrate (Fig 2B). This pattern suggests P. strigosa are consuming

carbohydrate and protein stores in response to reduced symbiont density and chlorophyll a

content, while lipid stores remain relatively unaltered, in line with previous work on coral

energetics [90,91]. Siderastrea siderea exhibited similar relationships between symbiont density

and all other physiological parameters; however, calcification rates were more dependent on

algal symbiont status than host energy reserves (Fig 2A). Interestingly, P. astreoides symbiont

density only resulted in a significant correlation with lipid content, while chlorophyll a was a

better predictor of most physiological parameters (Fig 2C). In fact, chlorophyll a and symbiont

density resulted in one of the strongest correlations in both S. siderea and P. strigosa, while

these two parameters were not correlated in P. astreoides. This suggests that S. siderea and P.

strigosa both rely on greater concentrations of algal symbionts with higher chlorophyll a con-

tent for autotrophically-derived carbon to support the coral host [22,92], while P. astreoides is

dependent on more efficient symbionts alone [93,94]. Additionally, these three species are

known to host varying algal symbiont communities (e.g., Siderastrea siderea predominantly

hosts Cladocopium; P. strigosa hosts Cladocopium and Breviolum; P. astreoides hosts Breviolum
and Symbiodinium [95,96]) that may determine differing carbon allocation to the host as well

as different thermal tolerances of the coral [97,98]. Although profiling of the algal symbiont

community was outside the scope of the current study, both temperature and pCO2 can modu-

late the symbiosis between coral hosts and algal symbionts [24,25,99,100]. Therefore, given

that algal symbiont community and physiology play a significant role in coral responses to

global change stressors, these types of data should be obtained in future experiments to better

understand differences between and within tropical coral species.

Interestingly, when comparing PCAs of physiology from host only (lipid, carbohydrate,

protein) and symbiont only (chlorophyll a, symbiont density, colour intensity) for each spe-

cies, algal symbionts were generally more impacted than hosts by increasing pCO2 (i.e.,

pCO2 significantly drove differences in physiology in algal symbionts, not coral hosts) (S8–

S10 Figs and Table G in S1 Text). For example, variance in S. siderea host physiology was

not significantly explained by pCO2; however, pCO2 altered symbiont physiology. This

result suggests that algal symbiont traits were being negatively impacted under ocean acidi-

fication, but that host energy reserves remained unaffected. This pattern contrasts previous

work demonstrating no change in symbiont physiology under increased pCO2 [34,101,102]

and others highlighting greater transcriptomic plasticity of coral hosts in response to

increasing pCO2 relative to their algal symbionts [103]. Davies et al., [103] interpreted this

result as the coral host responding poorly to pCO2 stress. However, our results suggest that

coral hosts were able to maintain energy reserves despite reductions in symbiont density

and chlorophyll a content. There is debate on the exact relationship between the coral host

and algal symbionts (i.e., mutualism vs. parasitism) as well as their relative roles in coral

bleaching [104–106]. While this symbiotic relationship is largely considered a mutualism,

recent work has highlighted that this relationship is context dependent and, under specific

circumstances, the algal symbionts may become more parasitic [107]. Regardless, it is clear

that understanding the varied responses of the different symbiotic partners is critical for

predicting the future of tropical coral reefs.
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Global change drives similar physiological responses in Caribbean corals

Our results indicate species-specific relationships between physiological parameters within

a coral that dictate responses to global change stressors and these patterns may separate the

‘winners’ from ‘losers’ on future reefs [108,109]. Comparisons across all experimental coral

fragments highlight that S. siderea were differentiated by their higher host carbohydrate,

host lipid, and chlorophyll a content, while P. strigosa fragments were associated with

higher host protein and net calcification rates, and P. astreoides hosted the highest algal

symbiont densities (Fig 4A). These physiological differences across species likely corre-

spond to species-specific responses observed in this study and previous work assessing

global change on tropical reef-building corals [16,17,48,110], as well as patterns of resil-

ience observed in situ [76,78]. For example, S. siderea has generally been considered a more

resilient species in terms of survival and growth when reared under ocean acidification and

warming conditions [16,17,48]. This resilience may be associated with this species’ mainte-

nance of higher host carbohydrate reserves as a result of greater chlorophyll a content [111]

along with increased host lipids reserves for long-term performance [90,91]. The associa-

tion of proteins with P. strigosa is also noteworthy given that corals generally obtain pro-

teins from their algal symbionts [112]. However, P. strigosa was the most bleached of the

three species (see S5 and S7 Figs), suggesting that this species exhibited the largest variation

in protein as a result of the loss of productive symbionts with warming. These differences

across species not only highlight differences in the underlying response strategies of Carib-

bean coral species, but may also assist in predicting responses to environmental stress.

Although the coral species examined here exhibit differing host and symbiont physiological

responses, patterns of coral physiology converge under increasing pCO2, but not elevated tem-

perature, regardless of species (Fig 4B and 4C). This pattern observed with increasing pCO2

cautions that the broad classification of coral species as ‘resistant’ or ‘susceptible’ to environ-

mental stressors based on individual physiological responses [16,17,34,45,113] may overgener-

alize sensitivity to future reef projections [6,16,69]. For example, recent observations of

reduced recruitment and size distributions of P. astreoides, commonly labelled a ‘winning’

coral species across the Caribbean [114], suggest that qualifying the success of a species based

on short-term studies or limited data (e.g., only measuring a single response parameter) may

misrepresent its long-term trajectory. We are already witnessing species that were previously

classified as stress-tolerant (i.e., P. strigosa) [45] shifting into a more susceptible category in the

past several years alone [17,72], further highlighting the need to reassess how we label resil-

ience in tropical reef-building corals. Similarly, Caribbean coral reef communities have experi-

enced dramatic shifts in species composition and abundance over the past several decades

[68]; therefore, many of the individuals within a species assessed today remain due to some

level of resilience to stress. Overall, the susceptibility observed in this study across all species is

indicative of future Caribbean coral reef assemblages composed only of the most tolerant indi-

viduals within a species, despite some species-level resilience to global change stressors.

Conclusions

As global change continues, it is critical to understand species-specific responses to ocean acid-

ification and warming scenarios to predict the future of Caribbean reef assemblages, especially

with a focus on now-dominant coral species explored here. Our results suggest that S. siderea
may continue to dominate reefs across the Caribbean due to its maintenance of tissue energy

reserves and relatively unaltered symbiosis with their algal symbionts under stress. Conversely,

the previously assumed stress-tolerant species P. strigosa was unable to maintain any physio-

logical traits under warming, suggesting that this species is now particularly vulnerable to
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thermal stress, which will likely lead to widespread bleaching and mortality. Finally, P.

astreoides exhibited improved physiology under warming while ocean acidification caused

reductions in the same physiological traits, indicating that this species may also fare better

than others under global change. Although these species had variable responses under these

global change scenarios, all three exhibited physiological deterioration under the effects of

ocean acidification. Our results underscore the intricacies of coral physiology, both within and

across species, in response to their environment and contribute to our understanding of the

many ways that global change affects tropical coral reefs.

Supporting information

S1 Fig. In situ satellite sea surface temperature. Monthly MODIS satellite SST data from

2002 to 2021 for both the inshore (Port Honduras Marine Reserve; yellow) and the offshore

(Sapodilla Cayes Marine Reserve; green) coral collection locations. Solid horizontal lines repre-

sent corresponding reef environment mean SST across duration. The blue dashed line repre-

sents the experimental control treatment temperature (28 C) and the red dashed line

represents the experimental elevated temperature treatment (31 C). Note the temperature vari-

ability of the inshore site exceeding the offshore location. [Data accessibility: NASA OBPG.

2020. MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. PO.DAAC, CA, USA. Dataset
accessed [2021-02-02] at https://doi.org/10.5067/MODSA-MO4D9].

(TIFF)

S2 Fig. Experimental design layout. Diagram showing allocation of coral fragments for a sin-

gle species throughout the experiment. Colour represents a different colony and shape repre-

sents reef environment. Four colonies (two from each reef environment) are reared within

each tank (grey box), with three tanks comprising a treatment (white box). This is repeated for

each pCO2 treatment at both temperatures. This same experimental design was used for all

species. This figure is taken from Bove et al. 2019.

(TIFF)

S3 Fig. Experimental seawater parameters. Calculated and measured seawater parameters

over the entire experimental period.

(TIFF)

S4 Fig. Reef and treatment PCAs by species. Principal component analysis (PCA) of all coral

physiological parameters for S. siderea, P. strigosa, and P. astreoides depicted by natal reef envi-

ronment (A-C; offshore green, inshore yellow) and the combination of pCO2 and temperature

treatment (D-F). Arrows represent significant (p< 0.05) correlation vectors for physiological

parameters and ellipses represent 95% confidence based on multivariate t-distributions.

(TIFF)

S5 Fig. Measured physiological parameters per species. Mean (±SE) physiological parameter

(each row) measured for (A) S. siderea, (B) P. strigosa, and (C) P. astreoides at the completion

of the 93-day experimental period. pCO2 treatment is represented along the x axis and the tem-

perature is depicted by colour (28˚C blue; 31˚C red).

(TIFF)

S6 Fig. PCAs by reef and treatment across all species. Principal component analysis (PCA)

comparing the physiology of all three species at the end of the experiment depicted by (A) reef

environment and (B) combined pCO2 and temperature treatment. Arrows represent signifi-

cant (p< 0.05) correlation vectors for physiological parameters and ellipses represent 95%
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confidence based on multivariate t-distributions.

(TIFF)

S7 Fig. Coral images through time per species. Coral colour changes over the experimental

period. Representative images of fragments of (A) P. astreoides, (B) S. siderea, and (C) P. stri-
gosa from the same colonies demonstrating change in coral colour over time in either control

(420 μatm; 28˚C) or warming (420 μatm; 31˚C) treatments from the start of the experiment

(T0) to the end (T90).

(TIFF)

S8 Fig. PCAs of S. siderea host or symbiont physiology. Principal component analysis (PCA)

of S. siderea coral host (protein, lipid, carbohydrate; left) or algal symbiont (chlorophyll a, sym-

biont density, colour intensity; right) physiological parameters by temperature (28˚C blue;

31˚C red), pCO2 (pre industrial [300 μatm], light purple; current day [420 μatm], dark purple;

end-of-century [680 μatm], light orange; extreme [3290 μatm], dark orange), and natal reef

environment (offshore green; inshore yellow). Arrows represent significant (p< 0.05) correla-

tion vectors for physiological parameters and ellipses represent 95% confidence based on mul-

tivariate t-distributions.

(TIFF)

S9 Fig. PCAs of P. strigosa host or symbiont physiology. Principal component analysis

(PCA) of P. strigosa coral host (protein, lipid, carbohydrate; left) or algal symbiont (chlorophyll

a, symbiont density, colour intensity; right) physiological parameters by temperature (28˚C

blue; 31˚C red), pCO2 (pre industrial [300 μatm], light purple; current day [420 μatm], dark

purple; end-of-century [680 μatm], light orange; extreme [3290 μatm], dark orange), and natal

reef environment (offshore green; inshore yellow). Arrows represent significant (p< 0.05)

correlation vectors for physiological parameters and ellipses represent 95% confidence based

on multivariate t-distributions.

(TIFF)

S10 Fig. PCAs of P. astreoides host or symbiont physiology. Principal component analysis

(PCA) of P. asteroides coral host (protein, lipid, carbohydrate; left) or algal symbiont (chloro-

phyll a, symbiont density, colour intensity; right) physiological parameters by temperature

(28˚C blue; 31˚C red), pCO2 (pre industrial [300 μatm], light purple; current day [420 μatm],

dark purple; end-of-century [680 μatm], light orange; extreme [3290 μatm], dark orange), and

natal reef environment (offshore green; inshore yellow). Arrows represent significant

(p< 0.05) correlation vectors for physiological parameters and ellipses represent 95% confi-

dence based on multivariate t-distributions.

(TIFF)

S1 Text. Document containing supplemental tables A through G with captions referenced

in the main text.

(PDF)
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