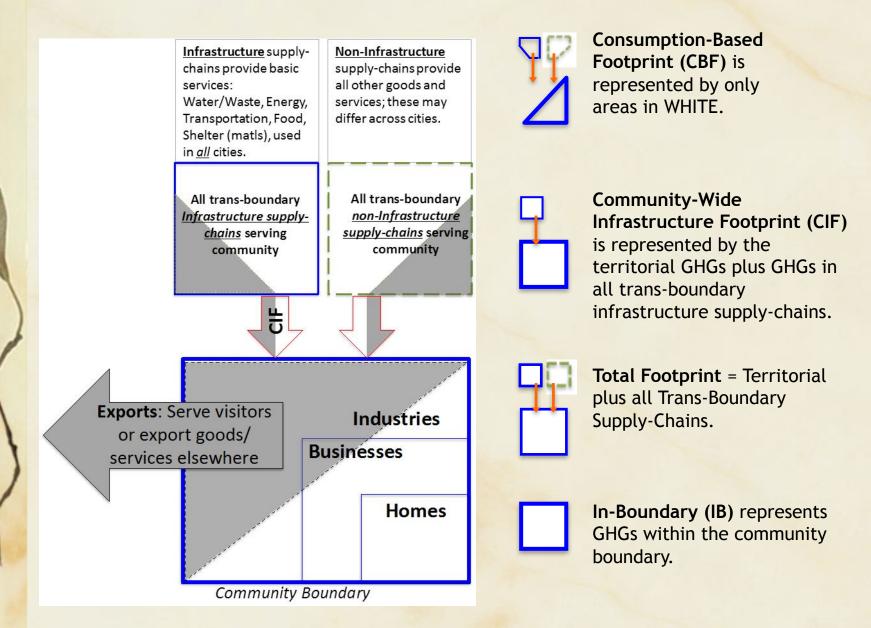
Advancing Urban GHG Inventory Development for Science and Mitigation Management Needs

Kevin Gurney Professor School of Life Sciences Senior Sustainability Scientist Julie Ann Wrigley Global Institute for Sustainability James Whetstone, Kim Mueller, Anna Karion, Lucy Hutyra, John Lin, Riley Duren, Tamae Wong

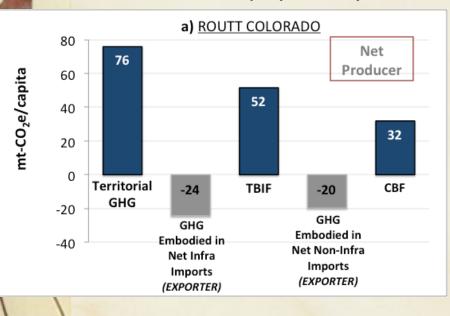
Setup

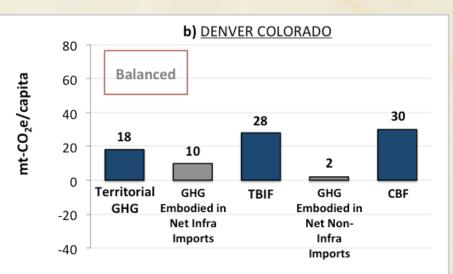
- Urban-scale GHG inventories continue to increase in importance
- Part of scientific research (in many areas/disciplines)
- Part of practical policy implementation and guidance
- There are multiple communities engaged in urban-scale inventory development and application (engineering, public policy, carbon science, urban science, economics)
- They have different goals, methods, needs
- However, to optimize use for both science and policy and to progress as a more integrated community, there may be an opportunity for an improved framework. To do that we need to first assess what we have, what we don't, what the challenges are, what the opportunities are.

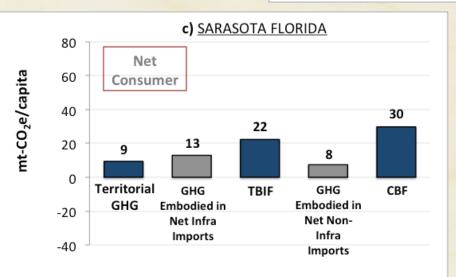
Goals


Workshop started us down path towards:

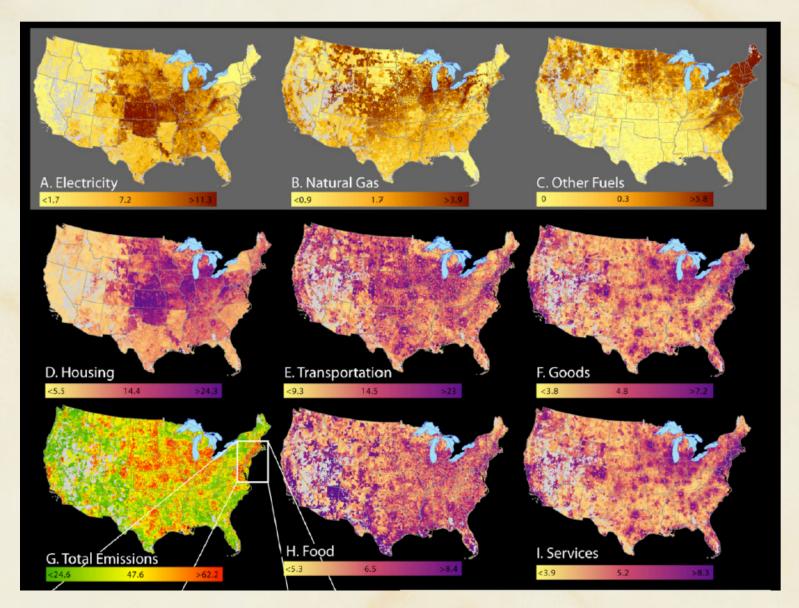
Goal 1: Identifying tools, data products, and information systems

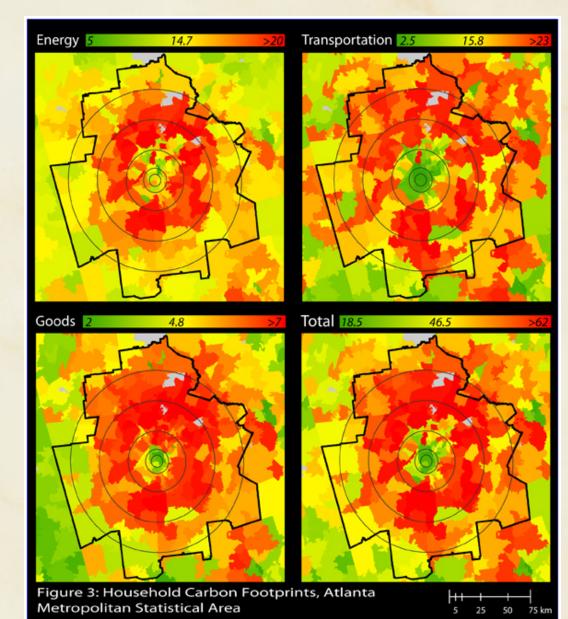

Goal 2: Achieving comparability and consistency/uniformity


Goal 3: Specifying data needs and data opportunities

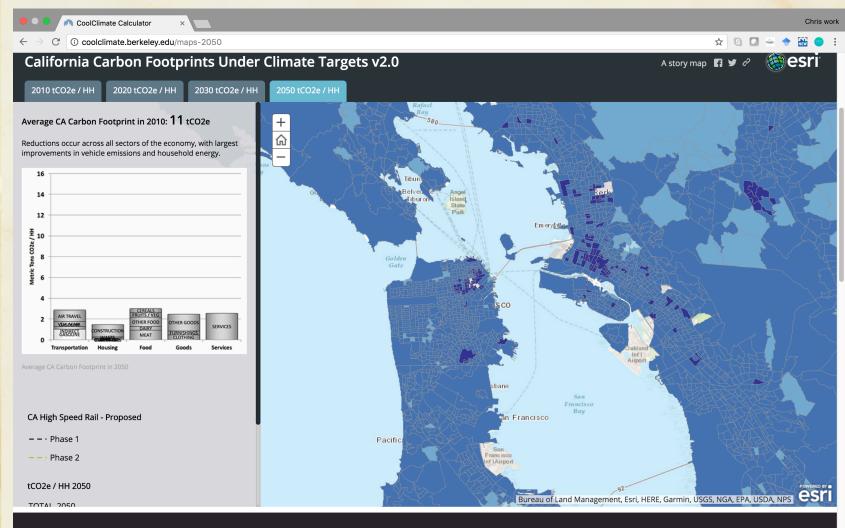

Inventory perspectives

Inventory perspectives




Spatially-explicit consumption inventory

Spatially-explicit consumption inventory


Methodologically different from the solely "scope 1" inventories

Primarily driven by MV regression from socioeconomics (which economists typically refer to as "top-down")

Spatially-explicit consumption inventory

Interactive carbon footprint mapping tool for California 2010-2050

Lessons from international urban inventories

	SCOPE	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF ₆ 5	TOTAL
GWP		(1)	(21)	(310)				
Units		kt CO2 e.	kt CO2 e.	kt CO2 e.	kt CO2 e.	kt CO2 e.	kt CO2 e.	kt CO2 e.
ENERGY								
a) Stationary Combustion								
Electricity (incl. T&D losses)'	1,2,3	3,758	2.37	6.15	ND	ND	ND	3,766
District energy and CHP	1.2	ND	ND	ND	ND	ND	ND	ND
Energy from waste	i	ND	ND	ND	ND	ND	ND	ND
Commercial & Institutional"	1	517	1.39	1.15	ND	ND	ND	520
Residential	1							
Manufacturing Industries &	1	1.005	0.82	2.43	ND	ND	ND	1.008
Construction		· ·						· ·
Other ^m	1	61.2	0.13	0.69	ND	ND	ND	61.4
b) Mobile Combustion					ND	ND	ND	
Road transportation: LDVs"	1	2.821	12.2	73.3	ND	ND	ND	2,906
Road transportation: trucks	1							
Railways	1	ND	ND	ND	ND	ND	ND	ND
Domestic aviation [*]	3	908.7	0.13	7.88	ND	ND	ND	916.7
International aviation	3	508.7						
Domestic marine ^{VI}	3	65.4	0 11	0.64	ND	ND	ND	66 1
International marine	3							
Other	1	ND	ND	ND	ND	ND	ND	ND
c) Fugitive Sources		ND	ND	ND	ND	ND	ND	ND
INDUSTRIAL PROCESSES								
Mineral industry ^{v=}	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
Chemical industry	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
Metal industry	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
Electronics industry	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
Other	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
Solvent and product use	1	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.
AFOLU	1	ND	ND	ND	ND	ND	ND	ND
WASTE								
Solid waste disposal on land	1,3	Neg.	1,012	Neg.	ND	ND	ND	1,012
Wastewater handling	1,3	ND	ND	ND	ND	ND	ND	ND
Waste incineration	1,3	ND	ND	ND	ND	ND	ND	ND
TOTAL		9,136	1.029	92.2	ND	ND	ND	10.256

	Activity Data			Emissions Factor			Total GHGs
	Value	Units	Tier	Value	Units	Tier	t CO2 e
ENERGY [*]							
Electricity (on-site renewable)"	ND	GWh	N/A	ND	t CO2 e / GWh	N/A	ND
Electricity (grid)"	6270	GWh	1	601	t CO2 e / GWh	1	3,766,275
Diesel Oil	26,221	TJ	1	75.1	t CO ₂ e / TJ	1	1,970,361
Fuel Oil	10,820	TJ	1	77.6	t CO2 e / TJ	1	840,136
Gasoline	20,187	TJ	1	72.3	t CO2 e / TJ	1	1,459,614
Jet Kerosene	12,709	TJ	1	72.1	t CO ₂ e / TJ	1	916,693
Kerosene	1,640	TJ	1	72.3	t CO ₂ e / TJ	1	118,534
LPG	1,910	TJ	1	63.2	t CO2 e / TJ	1	120,784
Marine Fuel Oil	668	TJ	1	78.2	t CO ₂ e / TJ	1	52,209
INDUSTRIAL PROCESSES*	Neg.	kt		Neg.	t CO ₂ e / kt		Neg.
WASTE							
Solid waste disposal on land	669.3	kt	1	1.512	t CO ₂ e / t	2	1,011,953
Wastewater handling	ND	kt BOD		ND	t CO2 e / kt BOD		ND
Waste incineration	ND	kt		ND	t CO2 e / kt		ND
AFOLU	ND	-		ND			ND

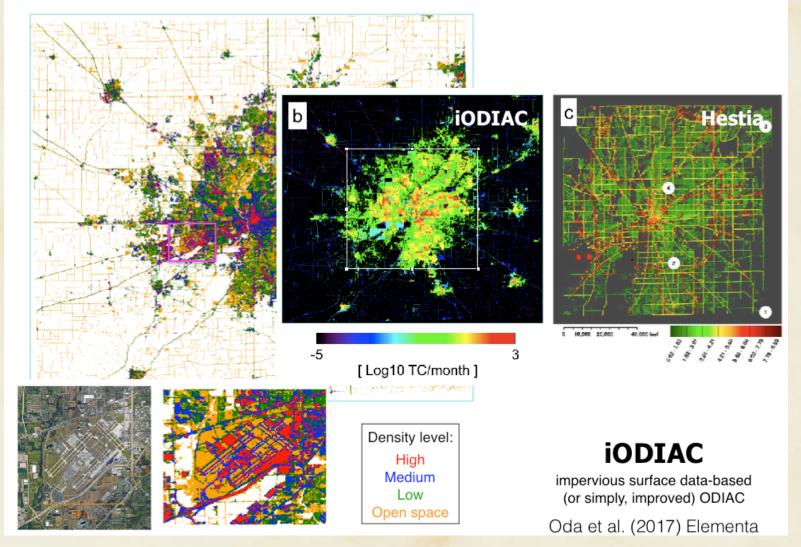
Local presence best for data collection

• University, source inside the local government, dedicated consultant/graduate student

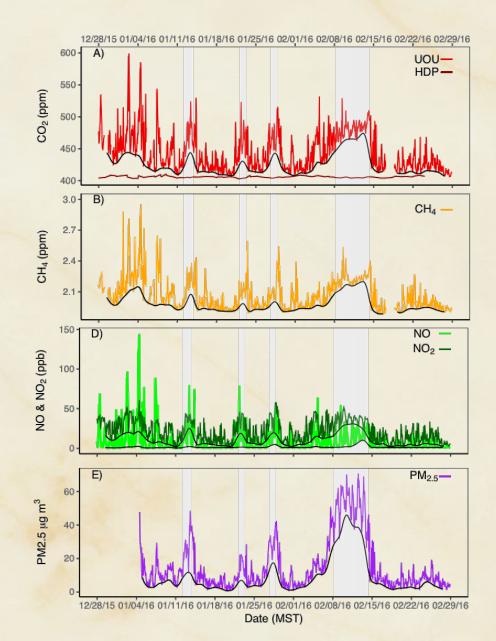
Incentives for city officials must be clear

 Access to finance, city-to-city competition, PR/marketing, meeting carbon reduction goals

Conforming to a standard is difficult


 Great in theory for cross-city or temporal comparisons, data availability and collection methods vary between cities and over time

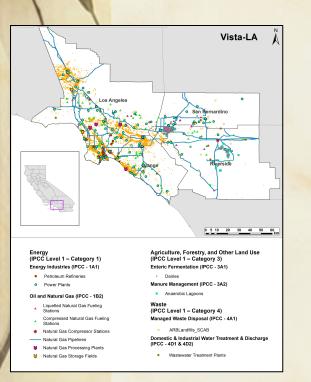
Consumption-based inventories make options for emissions reduction (and financing) tangible


Use of remote-sensing

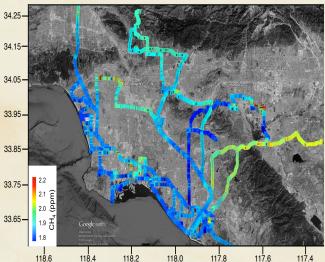
Local reported EI + Remote sensing data?

Ongoing urban intensives: SLC

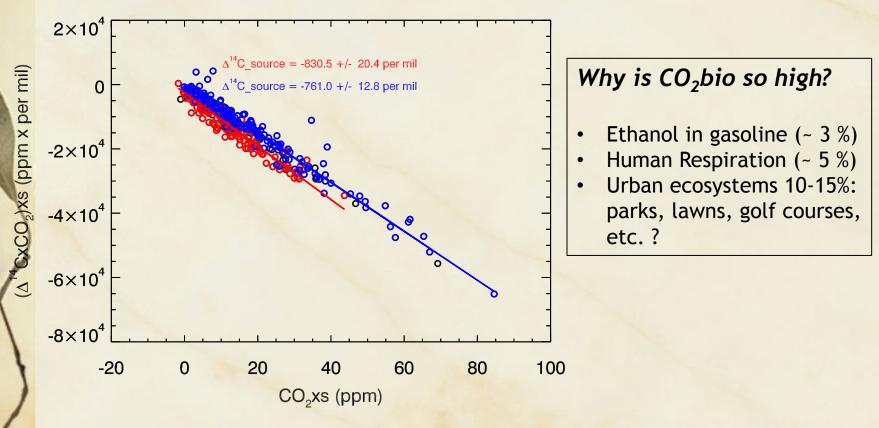
Time Series on Univ. of Utah Campus of CO₂ and Criteria Pollutants



(Bares et al., In Preparation)


Ongoing Urban Intensives: LA & CH₄

- CH₄ signal in integrated urban air masses exceeds inventory (CH₄/CO, CH₄/CO₂)
- Source apportionment: more ff derived CH₄ than in inventory
- CH₄ hotspots are ubiquitous, some from uninventoried sources


Hopkins et al., J. Geophys. Res., 2016

Most CH₄ hotspots of unknown origin are from fossil sources

Ongoing Urban Initiatives - LA & bio

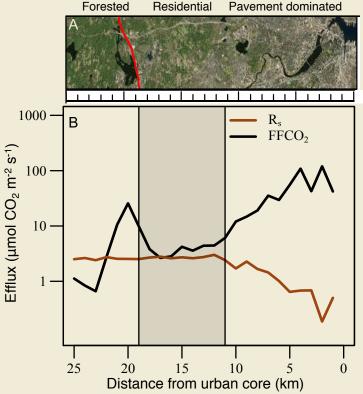
Winter: -760 per mil \rightarrow CO₂xs is 24% biogenic Summer: -830 per mil \rightarrow CO₂xs is 17% biogenic

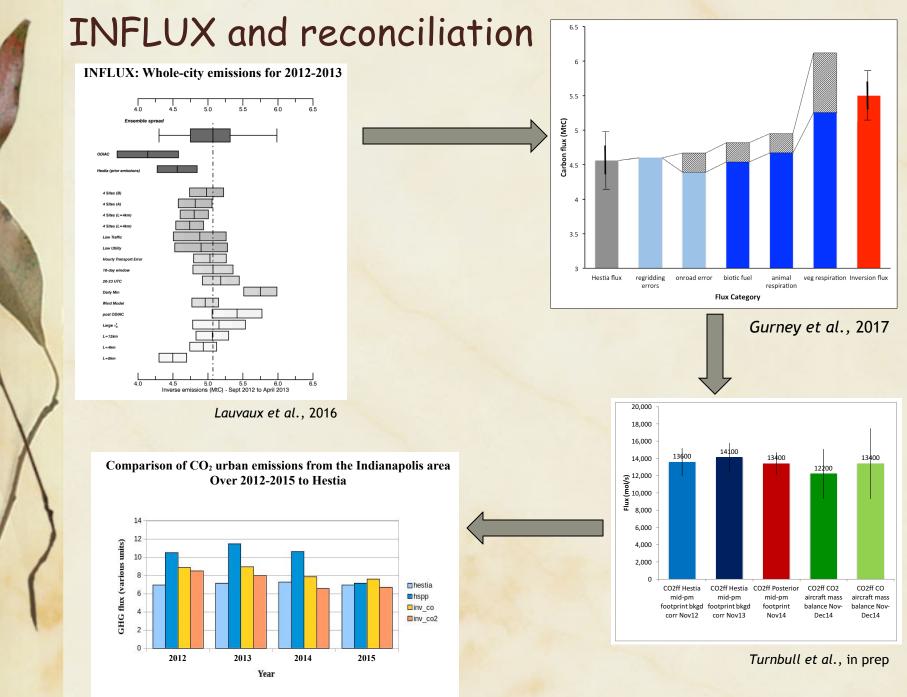
Ongoing urban intensives: Boston & bio

Environmental Pollution 212 (2016) 433-439

Contents lists available at ScienceDirect

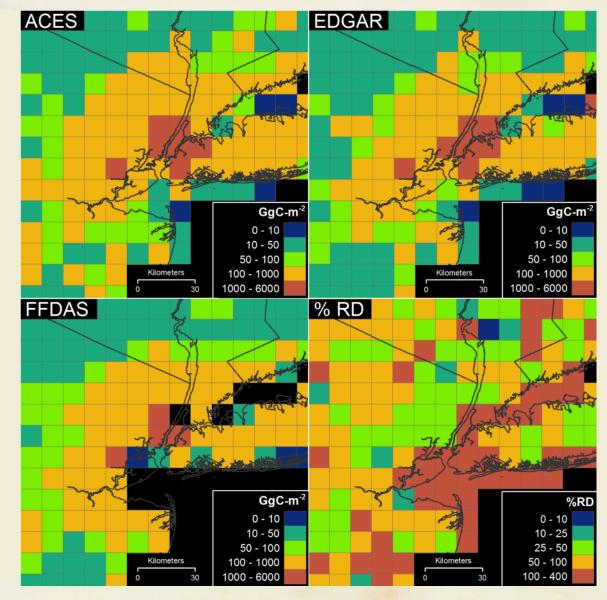

Environmental Pollution


journal homepage: www.elsevier.com/locate/envpol


Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area *

Stephen M. Decina ^{a, *}, Lucy R. Hutyra ^b, Conor K. Gately ^b, Jackie M. Getson ^b, Andrew B. Reinmann ^b, Anne G. Short Gianotti ^b, Pamela H. Templer ^a

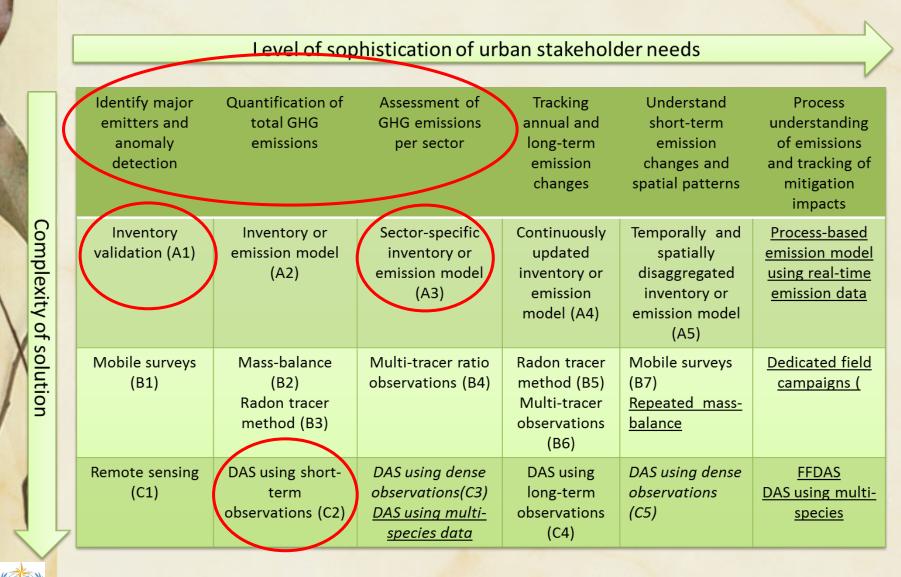
^a Department of Biology, Boston University, Boston, MA, 02215, USA
^b Department of Earth and Environment, Boston University, Boston, MA, 02215, USA



Different inter-annual variability across methodologies but similar 4-year trend

Intercomparisons just starting

Gately and Hutyra (in review)


Existing stakeholder services: ICLEI

- Global network of 1,500 cities, towns and regions in 108 countries
- **Expertise** on low-carbon, ecomobility, resource-efficiency, resilience, biodiversity, health, green economy, smart infrastructure, smart city, sustainable procurement
- Provide policy and technical guidance, tools, peer-learning and exchange to local and subnational governments
- Through our work we impact over 25% of the global urban population.

Stakeholder "matrix"

WMO

1000

Courtesy: Phil DeCola

Summary Themes

There remains apples/oranges in top-down/bottomup AND across the bottom-up

Very different methods/opportunities/challenges for FFCO₂, CH₄, Bio-sourced - criteria AQ linkage remains an opportunity (and a challenge)

We have just begun "intercomparison" (we have enough alternatives to start)

Need lots more "iteration" with stakeholders

We have started on two "action-items"

Action-items

1) Establishment of a registry for inventory results - all scales and methods

- Customizable for the GHG
 domain
- Can be deployed at different sites
- More tomorrow

NIST	
Greenhouse Gases Resource Registry A Collaboration of GHG Member Organizations SEARCH FOR RESOURCES ADD YOUR RESOURCE	
Find GHG Resources	

This system allows for the registration of resources, bridging the gap between existing resources and the end users. The Greenhouse Gases Resource Registry functions as a centrally located service, making the registered information available for research to the global community.

This is being developed at the National Institute of Standards and Technology (NIST) and is made available to collect information from the global community. Please do not enter any proprietary data into this system.

ome Page
ervices
Search for resources
Add your resource
ontact

2) Dialogue/planning with EPA on generating a spatiallyresolved CO2 inventory

We (me) will generate a written report on the findings, consensus, challenges, disagreements etc.