

Application of radiocarbon and other tracers to separating urban biogenic and fossil carbon emissions.

John Miller^{1,2} CO2 Urban Synthesis Workshop Nov. 6 - 7, 2017

1. NOAA/GMD 2. CU/CIRES

Atmospheric ¹⁴CO₂ looks just like fossil CO₂

-2.5 per mil Δ^{14} C = 1 ppm CO₂-fossil

$\rm CO_2$ variations can be separated into Biogenic and Fossil fractions using $\Delta^{14}\rm C.$

$$CO_{2}xs$$

$$C_{obs} = C_{bg} + C_{fos} + C_{bio}$$

$$(\Delta \times C)_{obs} = (\Delta \times C)_{bg} + (\Delta \times C)_{fos} + minor$$
Bio has no/little influence

Air sampling and 14C measurement

- We need ~2 L of air for high precision, so we dedicate air from one NOAA "PFP" flask.
- Extraction of pure CO₂ and graphitization at U. of Colorado (Scott Lehman);
- Accelerator Mass
 Spectrometer (AMS) analysis, with precision of 1.7 per mil at U. of California, Irvine.

Wintertime biospheric CO₂ fraction averages ~50% for regions; ~ 20% for cities

Thanks to: K. Rozanski, M. Zimnoch (Poland); I. Levin (Germany); Morgan Lopez(France); L. Zhou (China); Korea-China Center for Atmos. Res.

5

Radiocarbon Monitoring in Indianapolis

LA Basin ¹⁴CO₂ sampling sites

CO₂ and ¹⁴CO₂ data show large variations with a clear fossil fuel contribution.

100 per mil!! ~ 40 ppm fos. CO2.

Background (NWR, MWO) USC Granada Hills CS Fullerton

Biospheric contribution to total CO_2 is substantial.

- → Larger enhancements in winter – less vertical mixing
- → Seasonally varying biosphere contribution with summer uptake.
- → Summer biosphere drawdown is underrepresented because of enhanced mixing
- → Variability in CO₂xs,bio and fos are likely dominated by changes in mixing.

Isotopic mixing analysis also shows substantial biospheric contribution throughout the year.

Winter: -760 per mil \rightarrow CO₂xs is 24% biogenic Summer: -830 per mil \rightarrow CO₂xs is 17% biogenic

Biogenic contribution appears highly seasonal

How productive are urban ecosystems?

→ "Soil respiration (~7 umol/m2/s) ... in urban ecosystems was ...2.5 to five times greater than any other land-use type." Kaye et al., Global Change Biology (2005) LA lawns up to 15 umol/m2/s in summer.

- \rightarrow Harvard forest summer respiration fluxes are similar
- → These fluxes would require ~1/8th of LA to be covered by lawns (and golf course, parks, etc.) to explain our observations. Is this realistic?

LANDSAT 30 m EVI

 \rightarrow Distribution of green appears to be somewhat decoupled from people and roads, but still widespread.

LANDSAT 30 m EVI zoomed in shows even more.

 \rightarrow Quickbird/Google Earth (~50 cm) shows yet more.

We can leverage ¹⁴C measurements to create a pseudo-continuous CO₂ fos time series.

Year

2016.0

Using radiocarbon and CO to separate fossil and biogenic CO2 above Sacramento

- After isolation of fossil fraction, CO:CO2ff is consistent across days.
- This ratio is then applied to continuous CO measurements.

Using X:CO₂ff ratios we can estimate emissions for X, X=CH4 and HFC-134a, and other gases

Emission Ratio x FF inventory = Emissions of "Gas X"

 $F_{ff} \sim 3.6 \times 10^{13} \text{ gC/yr}$ (Vulcan 2.2, four county total)

Gas	LA Basin Emissions
CH ₄	460 Gg CH ₄ /yr
HFC-134a	2.5 Gg HFC-134a/yr

Note: Using C_tot instead of C_fos will impose a (seasonal) bias in tracer ratio methods (e.g. Pieschel et al., 2013; Wong et al., 2016)

δ^{13} C: Natural Gas vs. coal & oil

Summary and implications

- 1. $CO_2xs \neq CO_2fos$, even in L.A.
- Remote-sensing and in situ approaches for urban CO₂ fluxes need to account for biospheric CO₂.
- 3. CO₂bio varies throughout the year, and likely year to year.
- 4. Continued and widespread measurement of urban biosphere fluxes will be required to isolate the fossil fuel emissions signal.
- 5. CO₂fos:CO ratios will also change with time requiring ¹⁴C to be measured going forward.

Challenges and Opportunities

- 1. Use of other tracers such as CO:
 - 1. How stable or model-able are the Gas-X:14C ratios?
 - For example: a) Power plants and diesels have little or no CO;
 b) off road vehicles have lots; c) biogenic CO can be significant.
 - 3. Generally in cities, emissions are not truly co-located.
- 2. Multi-tracer approaches may be tough *in* cities due to poor source mixing but better further away. This means they may work better for megalopoli, which is still a worthy goal.
- 3. Multi-tracer approaches may work for sectoral apportionment if source signatures and their time variations are known.
- Dilution of emissions into concentrations: 50 ppm CO2 changes in a day are *NOT* due to emissions changes!
- 5. ... But, can using multiple tracers help deal with transport uncertainties?

Other measurements

• In situ Tracers:

– Pollutants (HCs, NOx), halo-carbons, O2:N2

- Remotely sensed GHGs from: OCO-2, -3*, GeoCarb*, Tropomi
- Plant chorlophyll fluorescence: same satellites

High correlation of Bio and Fossil components consistent with co-located distributed sources.

- Fossil fuels (and ethanol), and human population are similarly distributed throughout the Basin.
- Urban ecosystems may also be.
- N.B.: Correlation is analyzed in winter to avoid near zero CO₂bio signal resulting from net photosynthesis.

Nighttime signals show more biogenic signal and small signals overall.

Same approach to calculate Bio flux

Four county bio flux

Annual mean = + 1.87