
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier.com/locate/cognit

Brief article

Selecting among competing models of talker adaptation: Attention,
cognition, and memory in speech processing efficiency

Alexandra M. Kapadia, Tyler K. Perrachione⁎

Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States of America

A R T I C L E I N F O

Keywords:
Speech perception
Phonetic variability
Processing cost
Talker adaptation
Auditory streaming

A B S T R A C T

Phonetic variability across talkers imposes additional processing costs during speech perception, often measured
by performance decrements between single- and mixed-talker conditions. However, models differ in their pre-
dictions about whether accommodating greater phonetic variability (i.e., more talkers) imposes greater pro-
cessing costs. We measured speech processing efficiency in a speeded word identification task, in which we
manipulated the number of talkers (1, 2, 4, 8, or 16) listeners heard. Word identification was less efficient in
every mixed-talker condition compared to the single-talker condition, but the magnitude of this performance
decrement was not affected by the number of talkers. Furthermore, in a condition with uniform transition
probabilities between two talkers, word identification was more efficient when the talker was the same as the
prior trial compared to trials when the talker switched. These results support an auditory streaming model of
talker adaptation, where processing costs associated with changing talkers result from attentional reorientation.

1. Introduction

Variation in the acoustic realization of speech across talkers is the
principal source of phonetic variability in speech signals (Kleinschmidt,
2019). Listeners are nonetheless highly successful in extracting stable
phonemic information from talkers' speech despite the lack of con-
sistent acoustic-phonetic mapping (Pierrehumbert, 2003). However, it
has been shown that listening to speech from a variety of talkers incurs
additional processing costs to accommodate utterance-to-utterance
variation and maintain phonetic constancy (Johnson, 2005; Nusbaum &
Magnuson, 1997). These processing costs have been repeatedly de-
monstrated through interference effects—slower response times and re-
duced accuracy during mixed-talker speech processing tasks (Green
et al., 1997; Mullennix & Pisoni, 1990; Nusbaum & Morin, 1992).

Current models of speech processing under uncertainty appeal to
different mechanisms to explain the increased costs associated with
processing mixed-talker speech, ranging from allocation of cognitive
resources (Heald & Nusbaum, 2014; Nusbaum & Magnuson, 1997) to
accessing memories (Kleinschmidt & Jaeger, 2015; Pierrehumbert,
2016) to feedforward auditory streaming (Bressler et al., 2014; Choi &
Perrachione, 2019a). However, the different mechanisms implicated by
these models make conflicting predictions about how speech processing
efficiency should be affected by increasing phonetic uncertainty. We

aimed to evaluate these predictions by investigating how speech pro-
cessing costs scale when identifying words spoken by increasing num-
bers of possible talkers and thereby increasing acoustic-phonemic un-
certainty.

Resolving talker variability has been proposed to employ an active
control process (Heald & Nusbaum, 2014; Nusbaum & Magnuson, 1997;
Nusbaum & Schwab, 1986). Here, cognitive resources are allocated by
listeners to accommodate processing of new information as uncertainty
arises, allowing the perceptual system to remain flexible in situations
where acoustic-phonemic correspondences are variable or uncertain.
Under this account, listeners' expectation of variability imposes a cost on
speech processing, as the system pre-allocates some of its limited cog-
nitive resources in anticipation of resolving variability.

Another preeminent model of processing variability in speech—the
ideal adapter framework (Kleinschmidt & Jaeger, 2015)—posits that
processing efficiency depends on costs associated with resolving the
number of possible competing interpretations of a speech signal. Under
this model, a listener uses available indexical information, such as re-
levant talker-specific representations, to pare down the number of po-
tential interpretations. Here, memories (“models”) of talker character-
istics, established through prior experiences with individuals or classes
of talkers, are accessed for comparison with incoming acoustic in-
formation. Reducing the number of possible internal models of an
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acoustic signal reduces the decision space for choosing the correct in-
terpretation, thereby making speech processing more efficient.

In contrast with the models above, recent work has begun to con-
sider talker variability in the context of models of auditory attention and
streaming (Shinn-Cunningham, 2008; Winkler et al., 2009). This fra-
mework suggests that the additional processing costs associated with
mixed talkers primarily reflect the costs of attentional switching when
reorienting from one auditory source (talker) to another. That is, speech
processing is most efficient when listeners' attention to a single, con-
tinuous talker is undisrupted, whereas the auditory stream dis-
continuity associated with a talker change incurs additional processing
costs as listeners switch their attention from one source to another
(Bressler et al., 2014; Choi & Perrachione, 2019a, 2019b; Lim, Shinn-
Cunningham, & Perrachione, 2019; Mehraei et al., 2018).

Although these models all account for the presence of increased
processing costs, they make different predictions about how processing
costs should scale with increasing numbers of talkers. The active control
hypothesis predicts that there will be a decrement in speech processing
efficiency whenever there is the potential for talker variability, because
cognitive resources are pre-allocated based on either the expectation or
experience of variability (Magnuson & Nusbaum, 2007). Under the
ideal adapter framework, processing speech from a limited number of
potential talkers (e.g., 2 or 4) should be more efficient than a larger
number of talkers (e.g., 8 or 16) because more constraints on model
selection reduce the number of possible interpretations of the acoustic
signal. An auditory streaming interpretation, however, predicts that
listening to any number of mixed talkers will be equally inefficient
compared to a single talker, as the processing costs of mixed-talker
speech are specifically associated with auditory stream disruption
arising from talker discontinuity. Thus, decreases in speech processing
efficiency should not depend on the number of different talkers, but on
the occurrence of talker switches.

Moreover, these models make different predictions about the effect
of listeners' expectations about the upcoming talker. The active control
hypothesis predicts that processing costs will be incurred any time there
is potential uncertainty (Magnuson & Nusbaum, 2007), whereas the
ideal adapter framework predicts that specific expectations about the
identity of an upcoming talker will facilitate speech processing by
constraining the model selection process (Kleinschmidt & Jaeger,
2015). Auditory streaming predicts that continuity in an auditory
source, whether expected or unexpected, will facilitate speech proces-
sing, whereas any discontinuity, such as a talker change, will incur
processing costs, even if expected (Carter et al., 2019; Mehraei et al.,
2018).

Existing empirical observations about talker variability-induced

processing costs are insufficient to evaluate the predictions of the var-
ious models or favor one potential mechanism over another. Most prior
studies have not parametrized the number of talkers, instead opting to
operationalize talker variability via mixed-talker conditions with fixed
numbers of talkers. However, numerous methodological differences
preclude the ability to compare the effect sizes of talker variability
across such studies, including differences regarding stimuli, task, re-
sponse type, dependent variable, and, especially, whether talker
variability was tested as a within- vs. between-subjects variable
(Bradlow et al., 1999; Choi et al., 2018; Green et al., 1997; Mullennix &
Howe, 1999; Mullennix & Pisoni, 1990; Morton et al., 2015;
Perrachione et al., 2016; Sommers et al., 1997; Sommers et al., 1994;
Wong et al., 2004, Zhang & Chen, 2016; inter alia).

Due to models' diverging predictions and the lack of empirical work
addressing this question, we investigated how processing costs vary
with respect to the amount of talker variability, operationalized as
number of talkers. Specifically, we tested whether speech processing
efficiency decreases monotonically as a function of the number of
talkers, as predicted by the ideal adapter framework, or whether a fixed
loss of efficiency occurs in the presence of any variability, as predicted
by the active control hypothesis and auditory streaming framework. We
also tested the models' diverging predictions about whether speech
processing efficiency is affected by expectations of talker continuity vs.
change, particularly whether an expected talker change can make speech
processing more efficient (as predicted by the ideal adapter framework,
but not the active control hypothesis or auditory streaming framework),
or whether unexpected talker continuity can make speech processing
more efficient (as predicted by the auditory streaming framework, but
not the active control hypothesis or ideal adaptor framework).

2. Methods

2.1. Participants

Native speakers of American English (N = 72; 55 female, 17 male;
mean age = 20.3 ± 2.5, 18–30 years) participated in this study. All
participants reported a history free from speech, language, or hearing
disorders. Participants provided informed written consent, approved
and overseen by the Institutional Review Board at Boston University.

2.2. Stimuli

The naturally spoken English words “boot” and “boat” were re-
corded by 16 native speakers of American English (eight female, eight
male). These words were chosen because their minimally contrastive

Fig. 1. A. Phonetic variation across all 16 talkers for the target words (“boot” and “boat”). Circles indicate the location of each talker's vowel (/u/ or /o/) in F1-F2
space. B. Box plots show the fundamental frequency (f0) range for these stimuli across talkers. Filled and empty points/boxes for male and female talkers, re-
spectively, with unique colors for each talker. C. Schematic representation of stimulus delivery. Participants performed a speeded word identification task while
listening to speech produced by a single talker or mixed talkers. Mixed talker conditions included 2, 4, 8, or 16 talkers (depicted by different fonts and colors). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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vowels (/u/ vs. /o/) have the greatest potential acoustic-phonemic
ambiguity across talkers (Choi et al., 2018; Hillenbrand et al., 1995).
Phonetic variability across all 16 talkers for both words is illustrated in
Fig. 1A–B.

Recordings were made in a sound-attenuated booth using a Shure
MX153 microphone and Roland Quad Capture sound card, sampled at
44.1 kHz and 16-bit resolution. Recordings were normalized in Praat
(Boersma, 2001) such that the RMS presentation level of each stimulus
was 65 dB SPL. Stimulus durations ranged from 220 to 788 ms
(mean ± s.d.: 390 ± 130 ms).

2.3. Procedure

Participants performed a speeded word-identification task in which
they identified the target word (“boot” or “boat”) as quickly and ac-
curately as possible by pressing a corresponding number on a keypad.
Participants received verbal instructions at the beginning of the ex-
periment. Written directions assigning a number to each target word
were displayed on the screen throughout the experiment (Fig. 1C).
Words were presented with a 2000 ms stimulus onset asynchrony, and
stimulus delivery was controlled using PsychoPy2 (v1.85.2) (Peirce,
2007) via Sennheiser HD-380 Pro headphones.

The task was divided into separate blocks, with the number of
talkers (1, 2, 4, 8, or 16) varying parametrically across blocks. Written
directions at the beginning of each block informed participants of the
number of talkers in that block (Magnuson & Nusbaum, 2007). Each
block was 64 trials long, with each target word presented 32 times per
block. Stimuli were presented in a pseudorandom order such that the
same word did not repeat more than three times in a row and the same
talker did not repeat on adjacent trials during the 4-, 8-, or 16-talker
conditions.

Natural limitations on how stimuli can be ordered in a 2-talker
condition provided an additional opportunity to explore how listeners'
expectations of talker repetition affect speech processing efficiency. If,
like the other mixed-talker conditions, the same talker did not repeat on
adjacent trials, then the two talkers would alternate predictably be-
tween trials (ABABABAB …); thus, listeners could anticipate the iden-
tity of the upcoming talker with perfect certainty, eliminating the po-
tential ambiguity in interpreting speech associated with a talker switch.
Alternatively, by presenting two talkers in a pseudorandom order
(AABABBAB …), the same talker would occur on adjacent trials, po-
tentially affecting processing efficiency via feedforward benefits of
talker continuity. To evaluate the various models' predictions of speech
processing efficiency under these different trial structures, each parti-
cipant completed both variations of the 2-talker condition within the
overall experiment. These two variations were always presented one
after another. In the alternating 2-talker condition, the two talkers ap-
peared consistently on every other trial. In the random 2-talker condi-
tion, the transition probability of a talker repeat or a talker switch was
equal: there were 32 trials with the same talker as the previous trial and
32 trials with a different talker from the previous trial. All participants
completed all six conditions.

Talkers were randomly selected for each participant, such that there
were an equal number of female and male voices in each condition (the
single talker block was split into a female talker half and a male talker

half). The order of talker-number conditions was randomized across
participants.

2.4. Data analysis

Accuracy and response time data were collected on each trial.
Response time (RT) was measured as the time delay between the onset
of the stimulus and the participant's keypad response. RT was log
transformed to more closely approximate a normal distribution. Trials
with incorrect responses or log-transformed RTs exceeding three stan-
dard deviations from the participant's mean for that condition were
excluded from RT analysis (4.0% of all trials). Efficiency was calculated
as the quotient of mean accuracy and mean RT per participant per
condition (Lim, Shinn-Cunningham, & Perrachione, 2019; Townsend &
Ashby, 1978). Accuracy and response time data from every included
trial were analyzed in (generalized) linear mixed-effects models in R
using the packages lme4 and lmerTest. Because efficiency was calculated
as a summary statistic over all trials, resulting in one value per parti-
cipant per condition, these data were analyzed in repeated-measures
analyses of variance (ANOVA) using the package ez.

3. Results

3.1. Effects of talker variability

3.1.1. Efficiency
We assessed how the number of talkers affected processing effi-

ciency, and differentially affected both RT and accuracy (Table 1). We
conducted a repeated-measures ANOVA on the efficiency measure
using a within-subjects factor of number of talkers (1, 2, 4, 8, and 16).
Significant effects were evaluated by post-hoc paired t-tests.

There was a significant effect of number of talkers (F(4,
284) = 40.30; p ≪ 0.0001; η2G = 0.092; Fig. 2A). Post-hoc tests re-
vealed that efficiency was significantly reduced in the 2-talker condi-
tion compared to a single talker (t(71) = 11.28; p ≪ 0.0001), but that
there was no further reduction in efficiency for increasing numbers of
talkers (4-talker vs. 2-talker: t(71) = −0.26; p = 0.80; 8-talker vs. 4-
talker: t(71) = 1.35; p = 0.18; 16-talker vs. 8-talker: t(71) = −1.57;
p = 0.12).

3.1.2. Accuracy
We analyzed accuracy in a generalized linear mixed-effects model

with fixed-effects terms including the categorical factor number of
talkers (1, 2, 4, 8, or 16) and a continuous covariate for condition order;
random-effects terms included by-participant intercepts and by-parti-
cipant slopes for all fixed factors, and by-stimulus intercepts. The sig-
nificance of fixed effects was tested in a type-III ANOVA using Wald chi-
square tests followed by contrasts on the factor levels that coded for
successive differences (i.e., 1-vs.-2, 2-vs.-4, etc.). We adopted the sig-
nificance criterion α = 0.05, with p-values based on the Satterthwaite
approximation for degrees of freedom.

There was a significant effect of number of talkers (χ2(4) = 12.96,
p= 0.011; Fig. 2B). Successive-differences contrasts on the levels of the
number of talkers factor in the model revealed that accuracy fell sig-
nificantly when talker variability was introduced (2-talker vs. 1-talker:
β = −0.46, s.e. = 0.13, z = −3.46, p = 0.0005) but did not change
further with increasing numbers of talkers (4-talker vs. 2-talker:
β = 0.12, s.e. = 0.12, z = 0.95, p = 0.34; 8-talker vs. 4-talker:
β = −0.074, s.e. = 0.12, z = −0.61, p = 0.54; 16-talker vs. 8-talker:
β = 0.16, s.e. = 0.14, z = 1.13, p = 0.26).

3.1.3. Response time
We analyzed RT in a linear mixed-effects model with the same

structure as that for accuracy. There was again a significant effect of
number of talkers (χ2(4) = 203.89, p ≪ 0.0001; Fig. 2C). Successive-
differences contrasts on the levels of the number of talkers factor in the

Table 1
Measures of speech processing efficiency by number of talkers (mean ± s.d.
across participants).

Number of talkers Efficiency Accuracy Response time

1 1.49 ± 0.27 96.8 ± 4.5% 673 ± 126 ms
2 1.28 ± 0.26 95.5 ± 5.2% 772 ± 140 ms
4 1.29 ± 0.27 96.4 ± 4.1% 781 ± 163 ms
8 1.26 ± 0.25 96.1 ± 4.0% 791 ± 151 ms
16 1.29 ± 0.27 95.6 ± 7.0% 768 ± 144 ms
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model revealed that RT was significantly slower in the 2-talker condi-
tion than in the 1-talker condition (β = 0.057, s.e. = 0.005, t = 11.60,
p ≪ 0.0001), with no significant increase in RT for additional talkers
beyond two (4-talker vs. 2-talker: β = 0.004, s.e. = 0.005, t = 0.83,
p = 0.41; 8-talker vs. 4-talker: β = 0.005, s.e. = 0.006, t = 0.95,
p = 0.35; 16-talker vs. 8-talker: β = −0.009, s.e. = 0.005, t = −1.86,
p = 0.07).

3.2. Effects of talker continuity

Next, we unpacked listeners' performance on the two different de-
signs of the 2-talker condition to understand how talker (dis)continuity

and listeners' expectations about the upcoming talker affected speech
processing (efficiency, accuracy, and RT). Specifically, we compared
those values obtained from the following trial types (examples under-
lined): (i) predictable talker-repeat trials from the 1-talker condition
(AAAAAA), (ii) unpredictable talker-repeat trials from the random 2-
talker condition (ABAABB), (iii) unpredictable talker-change trials from
the random 2-talker condition (ABAABB), and (iv) predictable talker-
change trials from the alternating 2-talker condition (ABABAB).

Statistical analyses and model structures were the same as above.
Here, our within-subjects categorical fixed factor was trial structure (1-
talker, random 2-talker repeats, random 2-talker changes, and alter-
nating 2-talker changes; Table 2).

3.2.1. Efficiency
There was a significant effect of trial structure (F(3,213) = 65.33;

p ≪ 0.0001 η2G = 0.11; Fig. 3A). Efficiency was significantly greater for
anticipated talker continuity compared to unanticipated talker con-
tinuity (1-talker vs. random 2-talker repeats; t(71) = 5.37; p≪ 0.0001).
Efficiency was also significantly greater on trials when the talker re-
peated than when it changed, notwithstanding listeners' inability to
have anticipated any such repetition (random 2-talker repeats vs.
random 2-talker changes; t(71) = 9.37; p ≪ 0.0001). However, even
when listeners could perfectly predict the upcoming talker, their word
recognition efficiency did not improve compared to trials where the
talker change could not be anticipated (alternating 2-talker vs. random
2-talker changes; t(71) = 1.33; p = 0.19).

3.2.2. Accuracy
There was no difference in accuracy when talker repetition could be

reliably anticipated versus when the talker repeated unexpectedly (1-
talker vs. random 2-talker repeats; β = 0.14, s.e. = 0.16, z = 0.90,
p = 0.37; Fig. 3B). However, listeners were significantly more accurate
when the talker repeated than when the talker changed, notwith-
standing their inability to anticipate the upcoming talker (random 2-
talker repeats vs. random 2-talker changes; β = −0.64, s.e. = 0.16,
z = −3.99, p ≪ 0.0001). Accuracy did not differ on trials where the
talker change was unpredictable vs. predictable (random 2-talker
changes vs. alternating 2-talker; β = −0.05, s.e. = 0.16, z = −0.31,
p = 0.75).

3.2.3. Response time
RT was faster in the 1-talker condition than when the talker un-

predictably repeated in the random 2-talker condition (β = 0.037, s.e.
= 0.006, t = 6.33, p≪ 0.0001; Fig. 3C). RT was also significantly faster
for trials when the talker repeated than when the talker changed, not-
withstanding listeners' inability to anticipate the upcoming talker
(random 2-talker repeats vs. random 2-talker changes; β = 0.034, s.e.
= 0.004, t = 9.65, p ≪ 0.0001). However, even when listeners could
perfectly anticipate who the next talker would be, their RT did not
differ compared to when the talker change was unpredictable (random
2-talker changes vs. alternating 2-talker; β = −0.007, s.e. = 0.005,
t = −1.46, p = 0.15).

Fig. 2. Processing cost as a function of number of talkers. A. Mean efficiency,
calculated as mean accuracy divided by mean response time for each partici-
pant for each condition. B. Mean accuracy, as percent of trials. C. Mean RT to
correct trials. Greater processing costs are indicated by decreases in efficiency
and accuracy and increases in RT. Significance of pairwise contrasts is indicated
above each line. Error bars indicate± 1 SEM across participants.

Table 2
Measures of speech processing efficiency by talker (dis)continuity (mean ±
s.d. across participants).

Trial type Efficiency Accuracy Response time

1-talker (AAAA) 1.49 ± 0.27 96.8 ± 4.5% 673 ± 126 ms
Random 2-talker repeats

(ABBA)
1.37 ± 0.30 96.5 ± 5.8% 735 ± 146 ms

Random 2-talker changes
(ABBA)

1.24 ± 0.27 95.0 ± 6.5% 795 ± 149 ms

Alternating 2-talker (ABAB) 1.27 ± 0.27 95.2 ± 5.9% 780 ± 144 ms
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4. Discussion

In this study, we found that the costs associated with processing
talker variability do not increase as a function of the amount of po-
tential variability faced by the speech perception system. Listeners
incur processing costs in both accuracy and response time for word
identification when the number of possible talkers increases from one to
two, but do not incur any additional processing costs as the number of
talkers increases from two to 16. Furthermore, these processing costs
appear to be primarily a result of feedforward disruption of talker

continuity, rather than a result of selecting top-down interpretations to
guide acoustic-phonemic mappings.

Neither of these observations appears consistent with a speech
processing framework positing that acoustic-phonemic mappings be-
come more efficient as the decision space of possible interpretations of
an acoustic signal is reduced in a top-down, expectation-driven way
(Kleinschmidt & Jaeger, 2015). Reducing the number of potential in-
terpretations of an incoming speech signal does not offer any im-
provement in efficiency until that number is reduced to one. Further-
more, even when listeners could perfectly anticipate which new talker
would speak on the next trial, word recognition was not more efficient
than when the next talker was unpredictable. These two results suggest
that, while the ideal adapter framework offers considerable explanatory
power for the decision outcomes of speech perception when faced with
signal uncertainty, the predictions of this model ultimately do not ap-
pear to account for the large literature on differences in processing
efficiency for single- vs. mixed-talker speech (Choi & Perrachione,
2019a; Johnson, 1990; Green et al., 1997; Magnuson & Nusbaum, 2007;
Mullennix & Pisoni, 1990; inter alia).

Instead, these observations appear consistent with an attentional
model of speech processing, where processing costs are incurred when
the auditory stream is disrupted, such as in talker discontinuity and,
inversely, where efficiency gains are realized when there is continuity
in the auditory source of speech (Bressler et al., 2014; Choi &
Perrachione, 2019a; Lim, Shinn-Cunningham, & Perrachione, 2019;
Shinn-Cunningham, 2008). Listeners incur a processing cost whenever
auditory stream coherence is disrupted, and the magnitude of this cost
does not vary with the number of potential new interpretations of the
signal after disruption. Furthermore, word recognition was more effi-
cient (both faster and more accurate) when the same talker spoke on
two consecutive trials, even when such continuity was not predictable.
This result suggests an automatic, feedforward facilitatory effect of
talker continuity on speech processing efficiency (Choi & Perrachione,
2019a; Mullennix & Howe, 1999) such that continuity in an auditory
source drives attentional capture and offers a processing advantage
over attentional reorientation (Bressler et al., 2014; Mehraei et al.,
2018; Uddin et al., 2020). Indeed, many effects previously described as
“extrinsic” talker normalization may reflect processing gains associated
with auditory streaming (Choi & Perrachione, 2019a; Sjerps et al.,
2011a, 2011b).

Here it is important to acknowledge that, while the stimuli in the
present experiment had substantial acoustic-phonemic variability
across talkers, our participants were nonetheless likely to find these
phonetic-phonemic correspondences to be highly familiar (as all talkers
and listeners were native speakers of American English, with little or no
salient regional or social accent variation present in the stimuli). It is
interesting to consider whether additional variability in phonetic-pho-
nemic mapping, such as that from different regional, social, or foreign-
language accents, would incur additional processing costs, and whether
these, too, would be independent of the number of possible inter-
pretations of the acoustic signal. Indeed, knowing how the processes
that support talker adaptation as listeners encounter each new talker
(e.g., Magnuson & Nusbaum, 2007; Choi & Perrachione, 2019a, 2019b)
are related to the processes that support talker adaptation when the
phonetic-phonemic mappings are unfamiliar to listeners (e.g., Norris
et al., 2003; Xie & Myers, 2017) remains a “missing link” in the lit-
erature on processing and representing variability in speech (Bent &
Holt, 2017).

If efficiency gains attributed to talker adaptation were strictly about
stream coherence afforded by talker continuity, we would have ex-
pected all talker continuity to be equally beneficial. However, the re-
sults of the different 2-talker manipulations revealed that talker con-
tinuity cannot be the only mechanism at play. Accuracy for an
unexpected talker repetition was significantly higher than an expected
talker change, and equally good as for a single continuous talker (see
also Morton et al., 2015). However, while RT was faster when there was

Fig. 3. Processing cost as a function of talker (dis)continuity. A. Mean efficiency,
calculated as mean accuracy divided by mean response time for each partici-
pant for each condition. B. Mean accuracy, as percent of trials. C. Mean RT to
correct trials. Greater processing costs are indicated by decreases in efficiency
and accuracy and increases in RT. Significance of pairwise contrasts is indicated
above each line. The horizontal dashed line in each panel represents the mixed-
talker average (mean of the 4-, 8-, and 16- talker conditions). Error bars in-
dicate± 1 SEM across participants.
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unexpected talker continuity compared to both expected and un-
expected talker changes (Carter et al., 2019), it was still not as fast as
when listening to a single talker. While it may be the case that listeners
need more than a single trial to fully tune in to a new auditory stream
(cf. Lim, Qu, et al., 2019), this result is also consistent with the pre-
dictions of an active control mechanism that prioritizes speech per-
ception accuracy by allocating cognitive resources to processing un-
certainty whenever variability is expected (Heald & Nusbaum, 2014;
Magnuson & Nusbaum, 2007; Nusbaum & Magnuson, 1997; Nusbaum &
Schwab, 1986). Under this framework, the ongoing expectation of un-
certainty requires listeners to pre-allocate cognitive resources to pro-
cessing variability, meaning that these resources were limited even for
talker-repeat trials, slowing processing compared to the single-talker
condition, but maintaining high accuracy.

An integrated view of talker adaptation—incorporating feed-for-
ward attentional facilitation by source continuity with top-down allo-
cation of cognitive resources to resolve anticipated var-
iability—parsimoniously accounts for all the results in the present study
without appealing to memory mechanisms that depend on top-down
predictions about the identity of a talker. These results suggest that
speech processing efficiency gains associated with talker adaptation
may be best understood as effects of feedforward attentional capture via
auditory streaming.
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