Lidar Remote Sensing of Tree Heights and Biomass

  1. Zhang et al., 2019. Mapping Maximum Tree Height of the Great Khingan Mountain, Inner Mongolia Using the Allometric Scaling and Resource Limitations Model. Forests, doi:10.3390/f10050380
  2. Yang et al., 2018. Post-drought decline of the Amazon carbon sink. Nature Communications, doi:10.1038/s41467-018-05668-6
  3. Choi et al., 2016. Application of the metabolic scaling theory and water–energy balance equation to model large-scale patterns of maximum forest canopy height. Global Ecol. Biogeography, doi:10.1111/geb.12503
  4. Yang et al., 2016. Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height, Remote Sensing, doi:10.3390/rs8060494
  5. Wu et al., 2015. A comparative study of predicting DBH and stem volume of individual trees in a temperate forest using airborne waveform LiDAR, IEEE Geoscience and Remote Sensing, 2015 (doi: 10.1109/LGRS.2015.2466464)
  6. Ni et al., 2015. Mapping forest canopy height over continental China using multi-source remote sensing data. Remote Sensing, 2015 (doi: 10.3390/rs70708436)
  7. Park et al., 2014. Application of physically-based slope correction for maximum forest canopy height estimation using waveform lidar across different footprint sizes and locations: Tests on LVIS and GLAS, Remote Sensing, 6: 6566-6586 (doi:10.3390/rs6076566).
  8. Ni and Park et al., 2014. Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China, Remote Sens. 2014 (doi: 10.3390/rs6053533)
  9. Choi & Ni et al., 2013. Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model, Remote Sens. 2013, 5, 202-223; doi:10.3390/rs5010202
  10. Shi & Choi et al., 2013. Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA, Remote Sens. 2013, 5, 284-306;doi:10.3390/rs5010284