Remote Sensing of Amazon Forests

  1. Fan et al., 2019. Satellite-observed pantropical carbon dynamics. Nature Plants, doi:10.1038/s41477-019-0478-9
  2. Yang et al., 2018. Post-drought decline of the Amazon carbon sink. Nature Communications, doi:10.1038/s41467-018-05668-6
  3. Bi et al., 2016. Amazon Forests’ Response to Droughts: A Perspective from the MAIAC Product, Remote Sensing, doi:10.3390/rs8040356
  4. Yang et al., 2016. Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height, Remote Sensing, doi:10.3390/rs8060494
  5. Bi et al., 2015. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett., 2015 (doi: 10.1088/1748-9326/10/6/064014)
  6. Xu et al., 2015. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett., 2015 (doi: 10.1088/1748-9326/10/8/084005)
  7. Hilker et al., 2015. On the measurability of change in Amazon vegetation from MODIS. Remote Sens. Environ., 2015 (http://dx.doi.org/10.1016/j.rse.2015.05.020)
  8. Hilker et al., 2015. Reply to Gonsamo et al.: Effect of the Eastern Atlantic-West Russia pattern on Amazon vegetation has not been demonstrated, Proc. Nat. Acad. Sci. USA, 2015 (www.pnas.org/cgi/doi/10.1073/pnas.1423471112)
  9. Hilker et al., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon, Proc. Natnl. Acad. Sci. USA (www.pnas.org/cgi/doi/10.1073/pnas.1404870111)
  10. Fu et al., 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, PNAS, doi: 10.1073/pnas.1302584110
  11. Saatchi et al., 2012. Persistent Effects of a Severe Drought on Amazonian Forest Canopy, Proc. Natl. Acad. Sci. USA, www.pnas.org/cgi/doi/10.1073/pnas.1204651110
  12. Samanta et al., 2012. Why is remote sensing of Amazon forest greenness so challenging? Earth Int., doi:10.1175/2012EI440.1
  13. W. Yang and R.B. Myneni, 2012. Analysis, Improvement and Application of the MODIS LAI Products, LAP Lambert Academic Publishing GmbH and Co., Saarbruecken, Germany, ISBN: 978-3-659-00068-3.
  14. Samanta et al., 2012. Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009, Environ. Res. Lett., doi:10.1088/1748-9326/7/2/024018
  15. Samanta et al., 2012. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission, J. Geophys. Res. VOL. doi:10.1029/2011JG001818
  16. Xu and Samanta et al., 2011. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought, Geophys. Res. Lett., doi:10.1029/2011GL046824
  17. Samanta et al., 2010. MODIS Enhanced Vegetation Index data do not show greening of Amazon forests during the 2005 drought, New Phytologist, doi: 10.1111/j.1469-8137.2010.03516.x, 2010
  18. Samanta et al., 2010. Amazon forests did not green-up during the 2005 drought, Geophys. Res. Lett.,  doi:10.1029/2009GL042154
    Supplemental Information
  19. Robinson et al., 2008. An empirical approach to retrieve monthly evapotranspiration over Amazonia, Int. J. Remote Sens., Vol. 29:7045–7063, 2008.
  20. Myneni et al., 2007. Large seasonal changes in leaf area of amazonrainforests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.0611338104.
  21. Ichii et al., 2007. Constraining rooting depths in tropical rainforestsusing satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality, Global Change Biology, doi: 10.1111/j.1365-2486.2006.01277.x
  22. Huete et al., 2006. Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., doi:10.1029/2005GL025583
  23. Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563.