Articles In High Impact Journals

    1. Ukkola et al., 2015. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2015 (DOI: 10.1038/NCLIMATE2831)
    2. Piao et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015 (doi: 10.1038/ncomms7911)
    3. Shen et al., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 2015 (
    4. Poulter et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 2014 (doi:10.1038/nature13376)
    5. Zhou et al., 2014. Widespread decline of Congo rainforest greenness in the past decade, Nature, 2014 (doi: 10.1038/nature13265)
    6. Wang et al., 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 2014 (doi: 10.1038/nature12915)
    7. Piao et al., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 2014 (doi:10.1038/ncomms6018)
    8. Peng et al., 2014. Afforestation in China cools local land surface temperature, PNAS (
    9. Xu et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, doi: 10.1038/NCLIMATE1836. Supplementary Information
    10. Peng et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation, Nature, doi: 10.1038/nature12434
    11. Fu et al., 2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, PNAS, doi: 10.1073/pnas.1302584110
    12. Wang et al., 2013.Variations in atmospheric CO2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1219683110
    13. Knyazikhin et al., 2013. Reply to Ollinger et al.: Remote Sensing of Leaf Nitrogen and Emergent Ecosystem Properties, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1305930110.
    14. Knyazikhin et al., 2013. Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry. Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1301247110.
    15. Knyazikhin et al., 2012. Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1210196109.
    16. Saatchi et al., 2012. Persistent Effects of a Severe Drought on Amazonian Forest Canopy, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1204651110.
    17. Samanta et al., 2011. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009″, Science, Vol. 333, p. 1093, doi: 10.1126/science.1199048. Supplementary Online Material
    18. Myneni et al., 2007. Large seasonal changes in leaf area of amazon rainforests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.0611338104.
    19. Sundareshwar et al., 2007. Environmental Monitoring Network for India, Science, 316: 204-205.
    20. Zhou et al., 2004. Evidence for a significant urbanization effect on climate in China, Proc. Natl. Acad. Sci. USA, doi: 10.1073pnas.0400357101.
    21. Nemani et al., 2003. Climate driven increases in global net primary production from 1981 to 1991. Science, 300:1560-1563.
    22. Lucht et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296:1687-1689.
    23. Myneni and Dong et al., 2001. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA., 98(26): 14784-14789. supplemental information
    24. Myneni, R. B. et al., 1997. Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386:698-701.