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A B S T R A C T   

The Amazon forests play an integral role in the global carbon cycle and have a substantial impact on Earth’s 
climate. However, it is increasingly susceptible to the effects of prolonged droughts, exacerbated by climate 
change and human activities. This vulnerability underscores the importance of understanding the forests’ re-
action to such environmental stressors. Despite their significance, comprehensive cross-comparisons of the 
climate and vegetation responses during the 2005, 2010, and 2015/2016 drought episodes are not well- 
established. Here we utilize a range of gridded vegetation and climate datasets—including leaf area index 
(LAI), solar-induced chlorophyll fluorescence (SIF), enhanced vegetation index (EVI), vegetation optical depth 
(VOD), self-calibrating Palmer drought severity index (scPDSI), precipitation (P), land surface temperature (LST), 
and photosynthetically active radiation (PAR)—to thoroughly assess the climate and vegetation response to these 
three drought events. Our findings reveal that the extent of drought inhibition in the Amazon forests was 74.7 % 
in 2015, increasing to 81.3 % in 2016, a significant escalation from 49.6 % in 2005 and 57.7 % in 2010. The 
effects of these three droughts on vegetation varied in both physiological and structural aspects. The Amazon 
forests’ photosynthetic activity, greenness, and leaf area experienced comparable suppression in 2010 and 2015/ 
2016 droughts. However, canopy water content exhibited more extensive and severe impacts during the 2015/ 
2016 drought. Our findings indicate that varying sensitivities to water deficit and solar radiation lead to diverse 
spatial patterns and intensities of vegetation response, highlighting the complex dynamics of the Amazon forests 
under drought stress.   

1. Introduction 

The Amazon basin holds a critical position in global carbon and 
water cycles, accounting for nearly 50 % of the tropical forest carbon 
stocks. It is renowned as the most productive and biodiverse terrestrial 
ecosystem (Qin et al., 2021; Saatchi et al., 2011). Recent studies indicate 
a potential shift in the Amazon forests from being a carbon sink to a 
carbon source (Aragao et al., 2018; Brienen et al., 2015). Droughts are 
increasingly acknowledged as a critical factor regulating the short-term 
variability and long-term trend of carbon fluxes and stocks (Yang et al., 

2018b). The projected increase in droughts’ frequency and severity 
highlights the importance of investigating the impacts of droughts on 
Amazon forests (Dai, 2013; Lewis et al., 2011; Zhou et al., 2019). 

The responses of tropical forests (especially Amazon forests) to 
droughts are not fully understood, presenting significant knowledge 
gaps in both observational and modeling studies. Historically, research 
has shown that droughts can lead to changes in forest structure and 
function, impacting tree mortality (Phillips et al., 2010), species 
composition (Engelbrecht et al., 2007), and carbon sequestration capa-
bilities (Doughty et al., 2015). Field observations have provided 

* Corresponding author at: Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest 
University, Chongqing 400715, China. 

E-mail address: liyao7@swu.edu.cn (Y. Li).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2024.110051 
Received 26 January 2024; Received in revised form 23 April 2024; Accepted 6 May 2024   

mailto:liyao7@swu.edu.cn
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2024.110051
https://doi.org/10.1016/j.agrformet.2024.110051
https://doi.org/10.1016/j.agrformet.2024.110051


Agricultural and Forest Meteorology 353 (2024) 110051

2

valuable insights into the immediate effects of drought on tropical forest 
ecosystems (Bennett et al., 2023). However, the lack of abundant in situ 
observations hinders a comprehensive understanding of the Amazon 
rainforest ecosystem (Atkinson et al., 2011). On the modeling front, 
efforts have been made to incorporate drought responses into ecosystem 
and climate models. Yet, significant gaps remain, particularly in accu-
rately simulating the complex interactions between climate variability, 
forest dynamics, and biogeochemical cycles (Huntingford et al., 2013). 
Models often struggle to represent the diversity of tree species and their 
varying responses to drought, leading to uncertainties in predictions 
(Koch et al., 2021). Satellite observations have complemented these 
findings by offering a broader perspective on changes in forest canopy 
cover and biomass over larger areas and longer time scales (Atkinson 
et al., 2011; Xie et al., 2022). 

Over the last two decades, the Amazon basin has experienced three 
significant drought extremes in 2005, 2010, and 2015/2016, leading to 
a profound impact on the global carbon cycle (Panisset et al., 2018). 
These droughts varied not only in duration but also in their underlying 
mechanisms. The 2005 and 2010 events were short-term droughts, each 
lasting less than three months, while the 2015/2016 event was a pro-
longed period of aridity, extending over six months (Jimenez-Munoz 
et al., 2016; Lewis et al., 2011; Marengo et al., 2008). The effects of each 
drought event on the Amazon forests have been thoroughly investigated 
(Anderson et al., 2010; Phillips et al., 2009; Saleska et al., 2007; 
Samanta et al., 2010; Wigneron et al., 2020). However, comprehensive 
cross-comparisons of these three droughts and their cumulative impacts 
on the forests remain unexplored (Anderegg et al., 2020). This absence 
of comparative analysis creates a significant gap in our understanding of 
the forests’ sensitivity and resilience to varying drought patterns, 
particularly in the context of climate change (Shi et al., 2019; Wigneron 
et al., 2020). Addressing this gap is crucial for a more nuanced under-
standing of Amazon’s response to environmental stressors. Moreover, 
the effects of these three extreme droughts on vegetation manifest 
differently, influencing factors such as photosynthetic activity (Koren 
et al., 2018), greenness (Anderson et al., 2010), biomass (Chen et al., 
2019), and the capability for carbon sequestration (Doughty et al., 
2015). Vegetation responses to drought conditions can vary signifi-
cantly, both physiologically and structurally, across different levels from 
individual leaves to entire canopies (Zhang et al., 2013). Satellite remote 
sensing offers a comprehensive way to assess the drought impacts on 
vegetation across various scales (Asner and Alencar, 2010; Atkinson 
et al., 2011; Huete et al., 2006). Such satellite-based measurements 
enable a detailed evaluation of vegetation response to these extreme 
drought events, providing consistent temporal and spatial insights (Jiao 
et al., 2021; Zhou et al., 2014). 

This study aims to comprehensively evaluate the impacts of the three 
extreme droughts on the Amazon forests, focusing on both physiological 
and structural aspects. To this end, we cross-compared the dynamics of 
Amazon forests during 2005, 2010, and 2015/2016 drought periods, 
utilizing a range of vegetation and climate related variables, including 
satellite-based leaf area index (LAI), solar-induced chlorophyll fluores-
cence (SIF), enhanced vegetation index (EVI), vegetation optical depth 
(VOD), land surface temperature (LST), photosynthetically active radi-
ation (PAR), gridded self-calibrating Palmer drought severity index 
(scPDSI), and precipitation (P). Our objects are to 1) comprehensively 
quantify the variations in precipitation, temperature, radiation, and 
water balance anomalies across the three major drought events and 2) 
assess the impacts of these droughts on vegetation greenness, photo-
synthesis, canopy structure, and canopy water content of the Amazon 
forests. 

2. Data and methods 

2.1. Study area 

The Amazon basin (18◦S-8◦N, 80◦W-45◦W) encompasses an area of 

~6.3 million km2 (Fig. 1). In this study, we focused on the evergreen 
broadleaf forest (EBF) regions, which account for 83.3 % of the basin 
according to the MODIS land cover data (MCD12C1.006). We utilized 
the MODIS land cover product from 2002 to 2018 to delineate the study 
area. Specifically, we selected the EBF category, identified by the LAI 
scheme with a value of 5, from each year’s dataset. We then extracted 
the consistently overlapping regions across all selected years to define 
our study area. Our analysis is centered on the selected forest areas 
within the Amazon basin to evaluate the forests’ resistance and response 
to droughts. Savannas and Grasslands were excluded due to their sus-
ceptibility to human activities. 

2.2. Datasets 

The datasets used in this study are summarized in Table 1. We 
selected the gridded scPDSI, P, LST, and PAR as key climate indicators to 
delineate the differences in water balance, rainfall, temperature, and 
radiation among the three drought events. The scPDSI dataset, 
employing the Penman-Monteith parameterization for the potential 
evapotranspiration calculation, has been extensively used to assess 
ecosystem water balance and drought conditions (Blunden and Arndt, 
2020; van der Schrier et al., 2013). This dataset, originally at a 0.5◦

spatial resolution from 2000 to 2019, was resampled to a finer 0.05◦

resolution. To assess the water deficit during the droughts, we used 
precipitation data collected by the Tropical Rainfall Measuring Mission 
(TRMM, 3B43 Version 7) at a 0.25◦ spatial resolution from 2000 to 
2019. This dataset was subjected to the same spatial resampling pro-
cedure to match the 0.05◦ resolution. Daytime LST data, derived from 
Collection 6 (C6) Aqua MODIS (MYD11C3) product from 2002 to 2019, 
were used to quantify temperature variations associated with vegetation 
and other climatic factors (Wan et al., 2015). The selection of Aqua 
MYD11C3 over Terra MOD11C3 was due to the pronounced distinction 
between vegetation and non-vegetation around 1:30 pm (Zhou et al., 
2014). Additionally, we adopted monthly downward surface PAR values 
from Clouds and the Earth’s Radiant Energy System (CERES, SYN1-
deg_L3) at a 1◦ resolution between 2000 and 2019. The total incident 
all-sky PAR values were calculated by integrating direct and diffuse PAR 
fluxes (Rutan et al., 2015). Similar to the other datasets, the PAR data 
underwent spatial resampling to achieve the standard 0.05◦ resolution. 

Satellite-based LAI, SIF, EVI, and VOD measurements were employed 
to represent canopy structure, vegetation photosynthesis, greenness, 
and canopy water content, respectively. LAI data were sourced from the 
Terra and Aqua MODIS LAI products (MOD15A2H and MYD15A2H) 
from 2000 to 2019 (Myneni et al., 2015a). These LAI datasets provide 
8-day composite values with a 500 m global coverage. Following the 
method outlined by Chen et al. (2019), rigorous data quality control was 

Fig. 1. Distribution of evergreen broadleaf forest (EBF) over the Amazon Basin 
based on the MODIS land cover data (MCD12C1.006). 
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implemented to achieve clean 16-day composite 0.05◦ LAI values. 
Subsequently, these 16-day values were composited into monthly 
datasets by weighing the days within each month. The spatially 
contiguous SIF (CSIF) dataset was provided by Zhang et al. (2018) at 
moderate resolutions (0.05◦ and 4-day) during the MODIS era. The 
4-day CSIF dataset was then processed into monthly observations ac-
cording to the day of year (DOY). The EVI dataset was derived using 
multi-angle implementation of atmospheric correction (MAIAC) MODIS 
land surface bidirectional reflectance factor (BRF) daily L2G global data 
(MCD19A1 v006) from 2000 to 2017 (Lyapustin et al., 2012). The 
MAIAC EVI products underwent stringent atmosphere, aerosol, and 
cloud corrections, along with bidirectional reflection distribution func-
tion (BRDF) correction (Guan et al., 2015; Lyapustin et al., 2012). In this 
way, the majority of artifacts in the MAIAC dataset were effectively 
removed. The global long-term microwave vegetation optical depth 
climate archive (VODCA) Ku-band (~19 GHz) dataset between 2000 
and 2017 was obtained from Moesinger et al. (2020). This daily VOD 
dataset was aggregated into monthly data, corresponding to the DOY of 
each year. A uniform spatial resampling procedure was applied to the 
VOD data to obtain a consistent 0.05◦ dataset. 

2.3. Methods 

To assess the response of vegetation and climate variables to drought 
effects, we computed the standardized anomaly (SA) for each variable. 
The SA value was calculated using Eq. (1), where the multi-year average 
of valid monthly values from non-drought years served as the baseline. 
The years 2005, 2010, 2015, and 2016 were identified as drought years, 
with the remaining years from 2000 to 2019 serving as baseline years. 

SA =
Vy,m − Vm

σ (1)  

where SA denotes the standardized anomaly, V represents the value of 
the variables (scPDSI, P, LST, PAR, LAI, SIF, EVI, and VOD), y stands for 
the year (ranging from 2000 to 2019), m is the month (Jan, Feb, …, 
Dec), Vm is the average value of the baseline years for month m, and σ is 
the standard deviation (SD) of the baseline values. To categorize the 
drought severity levels, the following thresholds were applied: incipient 
(− 1< SA < − 0.5), slight (− 2 < SA < − 1), moderate (− 3 < SA < − 2), 
severe (− 4 < SA < − 3), and extreme (SA < − 4). Note that LST and PAR 
used the corresponding positive anomalies. The threshold divisions were 
based on a synthesis of criteria from previous studies (van der Schrier 
et al., 2013). 

The SA of the monthly gridded scPDSI data (SAscPDSI) was utilized to 
assess the spatial distribution of duration and severity for the three 
drought episodes. To mitigate the impact of short-term variations, such 
as an abnormally wet month interrupting a prolonged dry period, we 
applied a three-month moving window to smooth the monthly SAscPDSI 
data for each grid cell (Saft et al., 2015). Following the protocols 
established by Lewis et al. (2011) and Yang et al. (2018a), we set a 
threshold value of − 1 to determine the onset and termination of each 
drought event. The onset of drought was identified when the SAscPDSI 
value first dropped below − 1 in a drought year, while the end was 

marked when the value rose above the threshold (Li et al., 2019). The 
drought duration for each grid cell was calculated by measuring the time 
span between the start and end months. Moreover, to assess the severity 
of each drought at the grid cell level, we computed the average SAscPDSI 
value throughout the drought duration. On a regional scale, the extent of 
the area affected within the Amazon forests was analyzed by counting 
the number of grid cells where the SAscPDSI value fell below the threshold 
of − 1 during the drought episodes. This approach allows for a quanti-
tative evaluation of the regional severity of the droughts. 

3. Results and discussion 

3.1. Cross-comparison of climate response to the three drought events 

From the meteorological perspective, the 2015/2016 drought 
emerged as the most severe event in terms of intensity, duration, and 
spatial extent at both the grid and basin scales, surpassing the 2005 and 
2010 drought events that were relatively shorter and less severe 
(Figs. 2). During the 2015/2016 drought, a substantial 74.7 % of the 
area experienced drought conditions (SAscPDSI < − 1) in 2015, escalating 
to 81.3 % in 2016. Notably, 30.8 % of the forest area suffered moderate 
to extreme drought (SAscPDSI < − 2) in 2016, marking the highest 
drought-affected rate over the last two decades. This drought event 
persisted into 2017 and reverted to pre-drought levels by 2018. In 
contrast, the 2005 and 2010 drought events had a smaller impact, with 
49.6 % of the forest area affected in 2005 and 57.7 % in 2010 (SAscPDSI <

− 1), followed by a rapid return to pre-drought conditions (Fig. 2). 
Regarding the driving factors behind these droughts, the 2015/2016 

event was distinguished by significantly reduced precipitation (de-
creases of 12.7 % and 9.9 %), notably high temperatures (increases of 
0.4 ◦C and 0.6 ◦C), and considerably intense radiation (increases of 1.2 
% and 0.9 %) compared to the baseline of non-drought years. In 
contrast, the 2005 drought experienced a modest decline in precipita-
tion (− 3.2 %), a minor increase in temperature (+0.2 ◦C), and a 
noticeable decrease in radiation (− 1.1 %). The 2010 drought, on the 
other hand, was characterized by a substantial reduction in precipitation 
(− 8.3 %), a remarkable rise in temperature (+0.5 ◦C), and a moderate 
increase in radiation (+0.8 %) (Fig. 3). 

Spatially, the 2015/2016 drought impacted a more extensive area of 
the Amazon forests compared to the droughts of 2005 and 2010. In 
2005, the drought affected 49.6 % of the forest area (SAscPDSI < − 1) 
(Fig. 4a), and 3.9 % of the forests experienced a year-long drought (i.e., 
duration = 12 months), mainly in the central and southern regions 
(Fig. 4b). The 2010 drought was more widespread, impacting 57.7 % of 
the forests (SAscPDSI < − 1), particularly in the western, southeastern, 
and northern edges (Fig. 4c), but only 1.2 % experienced a year-long 
drought (Fig. 4d). The 2015/2016 drought, the most severe in the past 
two decades, astonishingly affected 74.7 % (2015) and 81.3 % (2016) of 
the forest area (SAscPDSI < − 1), nearly encompassing the entire Amazon 
forest (Fig. 4e and 4 g). Additionally, 8.2 % (primarily in central and 
northern regions) in 2015 and 32.7 % (across the study area) in 2016 
endured a year-long drought (Fig. 4f and 4h). More concerning is that 
4.9 % of the forests suffered from drought for up to 24 months, although 

Table 1 
Overview of the meteorological and vegetation datasets used in the study.  

Dataset Products/Sensor Spatial resolution Temporal resolution Period Refs. 

Land Cover MCD12C1.006 0.05 ◦ yearly 2002–2018 Friedl and Sulla-Menashe (2015) 
Drought Index scPDSI, CRU TS 4.05 0.5 ◦ monthly 2000–2019 van der Schrier et al. (2013) 
Precipitation TRMM, 3B43 V7 0.25 ◦ monthly 2000–2019 Huffman et al. (2007) 
LST MYD11C3 0.05 ◦ monthly 2002–2019 Wan et al. (2015) 
PAR CERES, SYN1deg_L3 1 ◦ monthly 2000–2019 Doelling et al. (2016) 
LAI MOD15, MYD15 0.05 ◦ 8-day 2000–2019 Myneni et al. (2015b) 
SIF OCO-2 0.05 ◦ 4-day 2000–2018 Zhang et al. (2018) 
EVI MCD19A1 v006 0.05 ◦ 8-day 2000–2017 Lyapustin et al. (2012) 
VOD VODCA Ku-band 0.25 ◦ daily 2000–2017 Moesinger et al. (2020)  
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they did not exhibit a clear spatial pattern. 
Temporally, the 2005 and 2010 droughts primarily occurred during 

the dry season (July-September), whereas the 2015/2016 drought 
spanned from the late dry season into the wet season (September-May) 
across the Amazon forests. This variation in timing, as shown in Fig. 5, 
reflects the different meteorological factors driving each drought event. 
In the 2005 drought, drought conditions (scPDSI < − 1) began in June, 

peaking in July (21.2 %), followed by August (20.7 %) and September 
(19.8 %) according to the scPDSI data (Fig. 5a) when the largest area 
experienced a precipitation deficit (Fig. 5b). This peak period of July to 
September aligns with the findings of Marengo et al. (2008). The 2005 
drought event was caused by the combination of El Niño and a dry spell 
attributable to a warm subtropical North Atlantic Ocean (Zeng et al., 
2008). Unlike the Pacific influence, which is usually limited to the wet 
season, the impact of the 2005 Atlantic event was focused on the 
Amazon dry season when its hydroecosystem was particularly vulner-
able. The 2010 drought, influenced by warmer sea surface temperature 
(SST) in the Atlantic Ocean (Jimenez et al., 2018), saw 18.7 % 
(September) and 17.8 % (October) of the area experience drought 
(Fig. 5a). An additional peak occurred in the wet season (19.4 % in 
March), attributed to a moderate to strong positive El Niño Southern 
Oscillation (ENSO) in late 2009, exacerbating drought conditions in the 
2010 dry season (Jimenez et al., 2018). The 2015/2016 drought, 
starting in September 2015 (29.3 %) and peaking in January 2016 (46.2 
%), coincided with P (Fig. 5b) and LST (Fig. 5c). Although P and LST 
returned to normal levels within 2016, the drought’s impact persisted 
until the end of 2017 according to scPDSI. The extended period of low 
precipitation and extremely high temperatures resulted in the most se-
vere drought since 2000 (Jimenez-Munoz et al., 2016). Prior to 2015, 
increases in SST in the equatorial region had raised concerns about 
intensified ENSO events and shifts in the intertropical convergence zone, 
which could potentially alter the precipitation patterns in the Amazon. 
This could lead to longer dry seasons and more frequent severe droughts 
(Fu et al., 2013; Hilker et al., 2014). 

3.2. Cross-comparison of vegetation response to the three drought events 

The responses of Amazon forests to 2005, 2010, and 2015/2016 
droughts, as indicated by four vegetation parameters, can be categorized 
into two distinct cases. First, canopy water content represented by VOD 
showed that the 2015/2016 drought had the most severe and wide-
spread impacts, aligning with climate observations. Approximately 49 % 
of the Amazon forests experienced canopy water suppression (SAVOD <

− 1) during this period, 18.3 % and 24.9 % more than in 2005 and 2010, 
respectively (Figs. 6 and 7). Conversely, the severities of the three 
droughts appeared comparable when analyzed using three optical var-
iables, including LAI, SIF, and EVI (Figs. 6 and 7). In 2015/2016, an 
anomalously low level of photosynthetic activity (SASIF < − 1) affected 
over 22.2 % of the Amazon forests, in contrast to 12.9 % in 2005 and 
24.5 % in 2010 (Figs. 6 and 7). Notable anomalies in greenness (SAEVI <

− 1) were observed in over 25.1 % of the study area in 2015/2016, in 
contrast to 15.6 % in 2005 and 21.8 % in 2010 (Figs. 6 and 7). The 
proportions of the Amazon forests with significant reductions in leaf 
area (SALAI < − 1) were relatively similar (11.0 %, 15.2 %, and 11.6 %, in 
2005, 2010, and 2015/2016, respectively) (Figs. 6 and 7). 

Fig. 2. Statistical analysis of areas (compared to the total study area) affected by various degrees of droughts from 2000 to 2019.  

Fig. 3. Annual average of (a) precipitation, (b) land surface temperature (LST), 
and (c) photosynthetically active radiation (PAR) in the Amazon forests from 
2002 to 2019. Annual mean and the corresponding standard deviation values 
for the drought years 2005, 2010, 2015, and 2016 are highlighted and anno-
tated. Baseline levels were calculated as average values from 2002 to 2019, 
excluding these four drought years. 
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While the severity and duration of vegetation responses varied across 
each drought, the spatial distributions of the affected areas, as indicated 
by four vegetation parameters, exhibited similar patterns (Fig. 6). The 
2005 drought had a relatively limited impact, mainly confined to the 
southern and southwestern regions of the Amazon forests. This drought 

was identified as the least severe with the shortest duration among the 
three events (Figs. 2 and 4). All four vegetation parameters showed a 
nearly neutral response to the 2005 drought, consistent with findings by 
Samanta et al. (2010) that reported no significant large-scale greening or 
browning of the Amazon forests during the 2005 dry season (Fig. 6). This 

Fig. 4. Spatial distribution of drought severity (inferred by SAscPDSI) and duration (SAscPDSI < − 1) in 2005, 2010, 2015, and 2016.  
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observation is supported by statistical analyses of the anomalies in the 
four vegetation variables (Fig. 7). In comparison, the 2010 drought had 
a more substantial and widespread effect on the forests, particularly in 
the peripheral regions of the basin, across all four parameters (Fig. 6). 
This finding agrees well with the previous studies (Bi et al., 2016; Lewis 
et al., 2011; Xu et al., 2011). The 2015/2016 drought presented diverse 
results according to these four satellite-based vegetation variables 
(Fig. 6). Approximately 10 % of the leaf area experienced effects, while 
over 20 % of the forests saw a decrease in photosynthesis, and as much 
as 25 % showed a reduction in greenness. Meanwhile, nearly 50 % of the 
Amazon forests displayed a shortfall in canopy water content. 

SIF has proven to be more sensitive to environment-induced photo-
synthetic variations than conventional vegetation indices, which mainly 
focus on canopy greenness and chlorophyll content. This heightened 
sensitivity is due to SIF’s direct physiological connection with photo-
synthetic activity (Daumard et al., 2010; Li et al., 2018; Qian et al., 
2019; Yang et al., 2018a; Yoshida et al., 2015). During drought periods, 
the spatial correlation between SIF and PAR was relatively higher than 
other vegetation indicators (Table 2). From the aspect of SIF, the 2010 
drought was more extensive and severe in terms of spatial coverage than 
the 2005 drought (Fig. 6). Compared to the 2010 drought, the 

2015/2016 drought experienced a similar proportion of the area 
affected by slight to moderate conditions. However, there was a 
noticeable increase in the area and duration of severe anomalies during 
the 2015/2016 event. 

The EVI, rather than the normalized difference vegetation index 
(NDVI), is typically preferred for monitoring vegetation greenness in 
tropical rainforests during droughts, as NDVI data often become satu-
rated in these environments (Saleska et al., 2007). EVI derived from the 
MAIAC product is deemed more accurate due to its less conservative 
cloud detection algorithm than the standard Collection 5 and Collection 
6 MODIS products (Hilker et al., 2014). Our findings reveal that the 
proportion of areas experiencing a slight to extreme EVI anomaly (SAEVI 
< − 1) during the 2010 dry season (Jul-Aug-Sep, JAS) was 20.4 %, which 
was higher than the 13.2 % observed in 2005, aligning with the obser-
vations in Lewis et al. (2011) and Xu et al. (2011). Additionally, 
compared to P and PAR, LST had a higher spatial correlation with EVI 
(Table 2), suggesting that LST significantly influences vegetation 
greenness. 

LAI showed the least sensitivity to droughts among the vegetation 
parameters (Table 2). Influenced by leaf flushing and abscission, LAI 
exhibited notable seasonal phenology in Amazon forests (Myneni et al., 

Fig. 5. Monthly statistics of Amazon forests area under different anomaly levels (incipient, slight, moderate, severe, and extreme) for four meteorological param-
eters: (a) self-calibrating Palmer drought severity index (scPDSI), (b) precipitation (P), (c) land surface temperature (LST), and (d) photosynthetically active radiation 
(PAR) from 2003 to 2017. 
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2007; Samanta et al., 2012), and there was not a significant increase in 
tree mortality during the 2015/2016 drought (Bennett et al., 2021). 
Moreover, the spatial correlation between LAI and P was very weak 
during these four drought periods (Table 2). This weak correlation 
partially accounts for LAI’s relative insensitivity to drought conditions, 
suggesting that factors other than precipitation significantly influence 
LAI dynamics in the Amazon forests. 

3.3. Divergent responses across satellite-based measurements 

The divergent results between VOD and other vegetation indicators 
for the 2015/2016 drought might be attributed to two reasons. First, an 
increase in at-surface solar radiation during this period potentially 
enhanced vegetation photosynthesis. Solar radiation showed a signifi-
cant rise during the water deficit months of 2015 and 2016 (Fig. 3). 
Higher levels of absorbed solar radiation could partially counteract the 
adverse effects of water stress on Amazon forests’ photosynthesis during 
drought conditions (Green et al., 2020; Li et al., 2018; Yan et al., 2019). 
It has been reported that solar radiation plays a crucial role in forest 
photosynthesis and leaf flushing during dry periods (Bi et al., 2015; 
Doughty et al., 2019; Myneni et al., 2007). The second reason pertains to 
the deep roots of evergreen rainforests that are more resistant to water 
deficits (Bennett et al., 2021). These forests with deep roots can sustain 
evapotranspiration by drawing water from soil depths exceeding eight 
meters for up to five months during dry periods (Giardina et al., 2018; 

Nepstad et al., 1994). The microwave variable (VOD) is sensitive to 
changes in the soil’s dielectric properties due to water content fluctua-
tions (Zhang et al., 2013), a measured feature not detectable by optical 
sensors. Hence, while optical parameters (LAI, SIF, and EVI) effectively 
capture the impact of solar radiation on seasonal phenology, they are 
susceptible to weather and atmospheric conditions. In contrast, canopy 
water content, as measured by microwave sensor data (VOD), can pro-
vide earlier and more pronounced water stress indicators due to its su-
perior penetration ability (Fig. 7). 

The diverse responses of vegetation indices to droughts align with 
understanding plant physiological responses to water stress. Droughts 
can trigger stomatal closure, thereby impeding the photosynthetic pro-
cess. When soil moisture decreases due to insufficient rainfall, plants 
tend to respond by closing the stomata. This response can cause a 
temporary reduction in photosynthesis, which might quickly recover or 
result in a delayed onset of the subsequent wet season (Shi et al., 2019). 
Prolonged droughts may lead to a reduction in enzymatic activity within 
plants (Zhang et al., 2013), and in extreme cases, sustained drought 
stress can affect the leaf area of canopies, potentially culminating in 
forest die-offs (Phillips et al., 2009, 2010). Thus, areas impacted by se-
vere and extreme droughts may indicate forest degradation, with severe 
anomalies predominantly observed in drought years (i.e., 2005, 2010, 
2015, and 2016). The extent of areas with moderate anomalies was 
notably larger during drought years compared to non-drought years. 
However, it remains challenging to distinguish drought periods based on 

Fig. 6. Spatial distribution of standardized anomaly in (a-c) leaf area index (LAI), (d-f) solar-induced chlorophyll fluorescence (SIF), (g-i) enhanced vegetation index 
(EVI), and (j-l) vegetation optical depth (VOD) during the 2005, 2010, and 2015/2016 drought events. 
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Fig. 7. Monthly statistics of Amazon forest areas under different drought levels (incipient, slight, moderate, severe, and extreme) based on four vegetation pa-
rameters: (a) leaf area index (LAI), (b) solar-induced chlorophyll fluorescence (SIF), (c) enhanced vegetation index (EVI), and (d) vegetation optical depth (VOD) 
from 2003 to 2017. 

Table 2 
Pearson correlation coefficient (r) for spatial standardized anomaly data between four vegetation parameters and three climate parameters during the four drought 
quarter periods (2005 JAS, 2010 JAS, 2015 SON, and 2016 DJF).  

Note that the r values are illustrated using a red-green diverging color scheme, where red indicates a positive correlation, and green denotes a negative correlation. The 
intensity of the color corresponds to the absolute value of r. “N/A” signifies that the results did not satisfy the significance test (p < 0.001). 
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incipient and slight anomalies (Fig. 7). 
In tropical rainforests, sunlight is generally the dominant driver of 

photosynthesis (Huete et al., 2006; Myneni et al., 2007). These forests 
are considered more resistant to droughts due to their deep-root system. 
Since short-term vegetation growth is influenced by factors such as light 
(Smith et al., 2019), CO2 fertilization (Zhu et al., 2016), and soil mois-
ture (Saleska et al., 2007), moderate anomalies caused by precipitation 
deficits in the Amazon may recover more readily (Bi et al., 2015). There 
is a one- to two-month lag between water deficit and vegetation inhi-
bition, attributed to the high soil water holding capacity in forests (Xiao 
et al., 2005). Even during the 2015/2016 event, significant vegetation 
suppression was not observed in the initial stages. A significant anomaly 
emerged during the dry season of 2016, coinciding with the end of the 
drought. This anomaly indicated a lagged response of the vegetation to 
the drought conditions (Fig. 7), consistent with findings that forests in 
the tropical Amazon showed little to no recovery in 2017 (Wigneron 
et al., 2020). 

It is important to note that the findings of this study predominantly 
rely on satellite datasets, which inherently carry some degree of un-
certainty (Galvão et al., 2011). To minimize these uncertainties, we 
meticulously selected satellite-based datasets renowned for their high 
quality. For instance, the MODIS C6 LAI dataset is recognized as one of 
the latest and most reliable products in this category. Furthermore, we 
integrated the MOD15 and MYD15 datasets, applying stringent quality 
control as Chen et al. (2019) outlined. Given the saturation issues of 
NDVI in dense forests, we opted for EVI in our study. The MAIAC EVI 
product, chosen for its accurate representation of vegetation greenness, 
effectively addresses concerns related to observational positioning (Bi 
et al., 2015). The MAIAC data undergo rigorous atmospheric, aerosol, 
and cloud corrections, in addition to BRDF adjustments (Guan et al., 
2015; Lyapustin et al., 2012), significantly reducing the presence of 
artifacts and enhancing the overall data quality. 

4. Conclusions 

From a climate perspective, the 2015/2016 drought ranked as the 
most severe of the three major drought events since 2000. However, 
when evaluated from physiological and structural perspectives, the 
response of the Amazon forests to these droughts showed considerable 
variation. The 2005 drought was the least severe and had the shortest 
duration among the three. Compared to 2005, the Amazon forests 
experienced greater severity and a much broader effect during the 2010 
drought. During the 2015/2016 drought, the patterns observed in op-
tical satellite-based variables (such as leaf area, photosynthetic activity, 
and greenness) and microwave measurements (vegetation optical 
depth) diverged. The impact of the 2015/2016 drought, in terms of 
optical variables, was comparable to that of the 2010 drought. Yet, the 
canopy water content, as measured by microwave data, indicated more 
extensive and severe drought impacts in 2015/2016. This could be 
attributed to the reduced sunlight during this drought period and the 
capability of the deep-rooted, intact evergreen forests to extract water 
from deeper soil layers during prolonged droughts. Among the four 
vegetation parameters analyzed in this study, canopy water content was 
the most responsive to hydrologic stress, followed by photosynthetic 
activity and greenness, with leaf area being the least sensitive to drought 
conditions. 
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