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Climate-induced tree-mortality pulses  
are obscured by broad-scale and  
long-term greening

Yuchao Yan1, Shilong Piao    1,2 , William M. Hammond    3, Anping Chen    4 , 
Songbai Hong1, Hao Xu1, Seth M. Munson    5, Ranga B. Myneni6 & 
Craig D. Allen    7

Vegetation greening has been suggested to be a dominant trend over recent 
decades, but severe pulses of tree mortality in forests after droughts 
and heatwaves have also been extensively reported. These observations 
raise the question of to what extent the observed severe pulses of tree 
mortality induced by climate could affect overall vegetation greenness across 
spatial grains and temporal extents. To address this issue, here we analyse 
three satellite-based datasets of detrended growing-season normalized 
difference vegetation index (NDVIGS) with spatial resolutions ranging from 
30 m to 8 km for 1,303 field-documented sites experiencing severe drought- 
or heat-induced tree-mortality events around the globe. We find that severe 
tree-mortality events have distinctive but localized imprints on vegetation 
greenness over annual timescales, which are obscured by broad-scale and 
long-term greening. Specifically, although anomalies in NDVIGS (ΔNDVI) are 
negative during tree-mortality years, this reduction diminishes at coarser 
spatial resolutions (that is, 250 m and 8 km). Notably, tree-mortality-induced 
reductions in NDVIGS (|ΔNDVI|) at 30-m resolution are negatively related to native 
plant species richness and forest height, whereas topographic heterogeneity is 
the major factor affecting ΔNDVI differences across various spatial grain sizes. 
Over time periods of a decade or longer, greening consistently dominates all 
spatial resolutions. The findings underscore the fundamental importance of 
spatio-temporal scales for cohesively understanding the effects of climate change 
on forest productivity and tree mortality under both gradual and abrupt changes.

Climate change has led to many more extreme events with disastrous 
consequences on ecosystems and society1,2. In particular, increases in 
the frequency and severity of global drought and heat episodes have 
caused rising forest stress and extensive pulses of tree mortality3–7 

(Fig. 1a). These pulses of tree mortality can lead to reductions in for-
est productivity and carbon storage8–13. However, at the regional and 
global scales, greening rather than browning has more often been 
observed14–17, frequently leading to enhanced global vegetation 
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the influence of climatic variations19,20. But attempts to quantify the 
stabilization effect of heterogeneity under extreme climate events on 
the global scale are still rare, owing largely to the lack of a precisely geo-
referenced global dataset of extreme climate impacts on ecosystems.

Here we aimed to fill these crucial knowledge gaps by applying 
remote-sensing time-series observations to field-documented for-
est tree die-off events, using a dataset of 1,303 precisely georefer-
enced forest sites where drought- or heat-induced tree mortality had 
been documented in the scientific literature from 1970–2018 (ref. 7)  
(Fig. 1a). These sites spanned all major forest types and climate zones 
on all continents except for Antarctica. We hypothesized that (1) the 

productivity and carbon storage in terrestrial ecosystems1,18. These con-
trasting observations raise the question of to what extent the detected 
severe pulses of tree mortality have affected the overall vegetation 
greenness across temporal and spatial scales. Addressing this question 
is key for a better understanding of current ecosystem dynamics and 
long-term trends under the influences of both gradual (for example, 
warming and CO2 increase) and abrupt (for example, drought and  
heatwaves) global change factors, and to realistically forecast the 
responses of forests to ongoing and projected climate change.

Furthermore, environmental and ecosystem heterogeneity has 
been suggested to have a crucial role in stabilizing ecosystems under 

1970s

1980s

1990s

2000s

2010s

a

cb

–0
.01–0

–0
.02–

–0
.01

–0
.03––

0.02

–0
.04––

0.03

–0
.05––

0.04

–0
.06––

0.05

–0
.07–

–0
.06

–0
.08––

0.07

–0
.09––

0.08

–0
.1–

–0
.09

 < 
–0

.1
0

10

20

30

40

Fr
eq

ue
nc

y 
(%

)

GIMMS MODIS Landsat

∆NDVI

La
ndsa

t

MODIS

GIM
MS

La
ndsa

t

MODIS

GIM
MS

La
ndsa

t

MODIS

GIM
MS

Greening Browning No trend

0

20

40

60

80

59.21

44.92

38.51

4.61
1.69

10.81

36.18

53.39
50.68

Fig. 1 | Changes in NDVIGS from multiscale sensors corresponding to locations 
of tree-mortality sites. a, Geographical locations of 1,303 sites across the globe 
where tree mortality has occurred owing to drought and/or extreme heat since 
the 1970s (data from a previous study7). The background vegetation map shows 
the distribution of forest (dark green) and shrubland (light green), based on 
data from the European Space Agency/Climate Change Initiative Land Cover 
(ESA/CCI-LC) (http://maps.elie.ucl.ac.be/CCI/viewer/). The world continental 
boundaries were derived from https://hub.arcgis.com/datasets/esri::world-

continents/about. b, Frequency distributions of NDVIGS anomaly (ΔNDVI) in the 
occurrence years of tree-mortality events, calculated from detrended NDVIGS 
time series of the three sensors. c, Global fraction of positive (greening), negative 
(browning), and nonsignificant trends in NDVIGS from Landsat (1984–2020), 
MODIS (2000–2020) and GIMMS (1982–2015), for locations of tree-mortality 
sites. Greening (or browning) trends were identified using Mann–Kendall trend 
analyses at the P < 0.05 level (two-sided test).
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effect of documented tree-mortality events on vegetation greenness 
would be patchy and detectable at fine spatio-temporal resolutions, 
but would be obscured by an overall greening trend at coarse spatial 
and temporal resolutions; and (2) this effect of severe climate-induced 
tree-mortality events could be further mitigated by environmental and 
ecosystem heterogeneities (for example, topography heterogeneity, 
forest structure and species diversity), resulting in larger cross-scale 
differences in vegetation greenness responses for more heterogene-
ous systems.

To test these hypotheses, we compared the variation in the 
growing-season normalized difference vegetation index (NDVIGS) 
(refs. 21–23) for 1,303 georeferenced sites across different temporal 
and spatial scales. For each of these sites, we calculated its NDVIGS for 
each year from three commonly used satellite sensors that constitute 
a fine-to-coarse sequence in spatial resolution: Landsat (30 m); the 
Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m); 
and the Advanced Very-High-Resolution Radiometer (AVHRR, 8 km, 
Global Inventory Modeling and Mapping Studies (GIMMS) products) 
(see Methods). Using these NDVIGS time series, we then compared their 
differences across spatial scales and between long-term (decades) 
trends and short-term (years) NDVIGS responses for each combination 
of site and tree-mortality event. Furthermore, because we expected to 
see variations in NDVIGS responses to mortality events across different 
temporal and spatial scales, we also used machine-learning algorithms 
to determine major environmental and ecosystem factors that help 
to explain these variations (see Methods). To verify the robustness of 
our findings, we also conducted a series of validation analyses using 
different datasets and methods, including the reconstruction of com-
bined grids using Landsat data only; the use of the annual maximum 
NDVI (NDVImax) in place of the fixed growing-season NDVI; and the use 
of the growing-season enhanced vegetation index (EVIGS) in place of 
NDVIGS (see Methods).

Results and discussion
NDVIGS responses to tree mortality at different timescales
We found negative anomalies of detrended NDVIGS (ΔNDVI) in the 
occurrence years of field-documented tree-mortality events across 
all the sites with all three satellite products (Fig. 1b). This finding indi-
cates that tree-mortality events indeed caused decreases in NDVIGS in 
the short term. However, when the timescale of the analysis shifted 
from a few years (that is, the years of and immediately following the 
mortality event documented in the literature, most of which were 
shorter than five years) to a decade or longer, we found significant 
greening trends of long-term NDVIGS time series consistently among 
the three remote-sensing products of different resolutions for a large 
proportion (Landsat, 59.21%; MODIS, 44.92%; GIMMS, 38.51%) of these 
mortality-affected sites (Fig. 1c, Mann–Kendall test, P < 0.05). The 
results suggest that vegetation greening dominates long-term signals 
even at places that have episodically experienced major tree-mortality 
events. Furthermore, if the sites were grouped according to the decade 
in which tree mortality occurred, these long-term greening trends were 
also consistently observed across different groups (Supplementary 
Fig. 1)—except for GIMMS NDVIGS during the 2010s, when there were 
more sites showing browning compared with greening (Supplementary 
Fig. 1d). Note that the time series of GIMMS NDVIGS in the 2010s was 
only five years, which might be insufficient for the greening signal to 
re-emerge. This limitation, together with differences in sensor charac-
teristics and data-processing techniques, helps to explain the higher 
proportion of sites showing a statistically significant overall browning 
trend during the entire study period with GIMMS (10.81%; 1982–2015) 
than with Landsat (4.61%; 1984–2020) or MODIS (1.69%; 2000–2020) 
time series (Fig. 1c). Together, these results indicate that long-term 
trends of vegetation greening can obscure intermittent disturbances 
like tree-mortality events, confirming our first hypothesis from the 
temporal-scale perspective.

NDVIGS responses at different spatial resolutions
Notably, we also found large discrepancies in the magnitude of NDVIGS 
decrease during the occurrence years of tree-mortality events across 
the three different satellite products (Fig. 1b). Specifically, the decrease 
in NDVIGS was larger than 0.05 (ΔNDVI < −0.05) for more than 80% of 
the sites with the finer-resolution Landsat dataset (30 m). However, 
the same large NDVIGS decrease (ΔNDVI < −0.05) was only observed 
for about 42.79% and 23.15% of the sites with coarser MODIS (250 m) 
and GIMMS (8 km) products, respectively. Consistent results were also 
observed using different thresholds (−0.04, −0.06 and −0.07; Supple-
mentary Table 1). The mortality-related ΔNDVI of Landsat was signifi-
cantly greater than that of the other two products (P < 0.001, one-way 
analysis of variance (ANOVA)). Averaged across the sites, Landsat ΔNDVI 
(−0.0924) was about 1.56 times MODIS ΔNDVI (−0.0592), and 2.36 times 
GIMMS ΔNDVI (−0.0391). Considering that the three products covered 
different time periods, we further compared ΔNDVI for each pair of the 
products during their overlapping period (Supplementary Fig. 2), and 
the results again confirmed the finding of a larger decrease in NDVIGS 
with finer-resolution products. Therefore, tree-mortality events seem 
to be mostly patchy in nature, with mortality-impaired NDVI signals 
often diluted and even overshadowed at coarser spatial scales. These 
confirm our first hypothesis from the spatial-scale perspective.

On the basis of how NDVIGS changed across the multiscale sensors, 
we divided these sites of ground-observed severe tree mortality into 
four categories: (1) NDVIGS decreased sharply (ΔNDVI < −0.05) across all 
the satellite products; (2) NDVIGS decreased sharply according to Land-
sat and MODIS but slightly (−0.05 < ΔNDVI < 0) according to GIMMS; 
(3) NDVIGS decreased sharply according to Landsat but slightly accord-
ing to MODIS and GIMMS; and (4) NDVIGS decreased slightly across all 
the satellite products (Fig. 2; see Supplementary Table 2 for details). 
We used digitized Google Earth sub-metre high-resolution satellite 
images for example sites of the four categories (Supplementary Fig. 3) 
to illustrate the validity of the classification. For instance, for a site in 
category 1, we found that the area of tree mortality obtained by manual 
visual interpretation accounted for 96.23%, 96.2% or 84.44% of the area 
of a 30 m × 30 m, 250 m × 250 m or 8 km × 8 km pixel, respectively, all 
centred at the chosen site (Supplementary Fig. 3a,e,i). For a category 2 
site, the area of tree mortality accounted for 100% or 84.28% of the area 
of a 30 m × 30 m or 250 m × 250 m pixel, respectively, but accounted 
for only 17.55% of the area of an 8 km × 8 km pixel (Supplementary  
Fig. 3b,f,j). In other words, these categories indicate to what spatial 
extent the tree mortality of a site is confined (and observed). It is note-
worthy that the categories did not show a clear spatial pattern (Fig. 2a–d)  
and category 1 accounted for only 18.6% of all the sites. This result sug-
gests that only a small percentage of tree-mortality events occurred 
near-uniformly at broad spatial scales, further confirming that most 
tree-mortality events are patchy at spatial scales greater than or equal 
to pixel sizes of 250 m.

Factors determining ΔNDVI differences across spatial scales
We then examined factors that affect tree mortality using a combina-
tion of extreme gradient boosting (XGBoost) and Shapley additive 
explanations (SHAP) models24,25, and considered 15 factors that are 
associated with vegetation, topography, soil and climate (see Methods). 
Here the intensity of tree mortality was approximated with ΔNDVI. At 
the 30-m resolution, where the mortality-induced NDVIGS decrease 
was most significant, we found that vegetation-associated factors—of 
which native plant species richness (NSR) and forest height were the 
two most important variables—contributed the most in explaining 
|ΔNDVILandsat| (Fig. 3a), the absolute value of ΔNDVI based on Landsat 
data, which measures the magnitude of NDVIGS decrease induced by 
tree-mortality events. The SHAP value analysis suggested that higher 
NSR and taller community canopy height were associated with a smaller 
decrease in Landsat ΔNDVI (Fig. 3b,c), providing empirical support for 
the hypothesis that more diverse26,27 and taller28–30 forest communities 
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are more resistant to severe disturbances. It is noteworthy that this 
evidence was based on field observations of natural tree-mortality 
events on a global scale, which currently remain inadequately docu-
mented in the literature.

Scaling up from the 30-m resolution Landsat data to coarser 
MODIS and GIMMS products, we found that the differences between 
the coarser MODIS ΔNDVI and GIMMS ΔNDVI compared with the 
Landsat ΔNDVI (that is, YLandsat-MODIS and YLandsat-GIMMS; see Methods) 
were dominated by topographic factors (44.29% and 44.27%, respec-
tively), of which the variable coefficient of elevation (elevation_cv) 
was most important (Fig. 3d,g). Specifically, a higher elevation_cv cor-
responded to larger YLandsat-MODIS and YLandsat-GIMMS (Fig. 3f,h), suggesting 
that more complex terrain could confine tree mortality to finer scales. 
More complex terrain, together with fine-scale spatial heterogeneity 
in topoclimatic and hydrological variations, provides ‘microrefugia’ 
(that is, safe islands)31–35 for forest trees during extreme drought, 
and thus is more likely to sustain the stability of forest ecosystems 

at broad scales36–38. Nonetheless, an alternative possibility could 
be the increasing challenge of detecting fine-scale tree-mortality 
events with coarse-resolution satellite imagery in regions that have 
high topographic variation. In addition to topographic factors, veg-
etation factors, including forest canopy height and NSR, were also 
important variables for explaining the variations in YLandsat-MODIS and 
YLandsat-GIMMS (Fig. 3d,g). Both taller forests and higher NSR were more 
likely to have a larger difference in ΔNDVI between fine and coarse 
scales (Fig. 3e,i). Photosynthesis in taller Amazon forests, for exam-
ple, is suggested to be less sensitive to precipitation deficit because 
the deeper roots of taller trees can access deeper soil moisture when 
they are suffering from water stress28. This could explain why taller 
trees are able to sustain their growth during drought. Thus, taller 
forest communities might have more spatial stabilization capac-
ity against fine-scale mortality events. However, we notice that our 
analyses are at the community level and above, which should not be 
confused with the mortality resistance of individual trees. That is, 
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Fig. 2 | Four categories of tree-mortality sites based on ΔNDVI values across 
different sensors. a–d, Spatial distributions of the mortality sites classified into 
four categories (1–4), on the basis of the criteria listed in Supplementary Table 2.  
The world continental boundaries were derived from https://hub.arcgis.com/
datasets/esri::world-continents/about. e–h, ΔNDVI from multiscale sensors 
for four example sites selected from the corresponding category. The example 
sites from categories 1–4 are located at 96.29080833° W, 30.4684708° N; 
111.6126203° W, 35.36789751° N; 109.3074647° W, 41.08904699° N; and 
119.7935082° W, 34.01310507° N, respectively. i–l, The Google Earth sub-metre 
high-resolution satellite images (0.11–0.13 m) for example sites within windows 
of 8 km, 250 m and 30 m, respectively. These satellite images were generated 
during the growing season of the corresponding tree-mortality year (2011, 
2011, 2012 and 2013) recorded at the four example sites, respectively. The 8-km 

window is partially displayed by eight smaller windows around it. Most of the 
trees inside the 8-km window in i have greyish-white canopies and exposed dead 
trunks. In j, the trees with exposed dead trunks are concentrated in the middle 
and south of the 8-km window. In k, the trees with greyish-white canopies and 
exposed dead trunks show a patchy distribution in the central and northern part 
of the 8-km window. In the middle and west of the 8-km window in l, the trees 
with greyish-white canopies and exposed dead trunks are also patchy. These 
features can be observed more clearly on Google Earth by using the latitude and 
longitude of the example sites and the recorded year of tree mortality. The 250-m  
and 30-m windows surrounding the example sites also partially display the 
8-km window. The areas with tree mortality were visually interpreted manually, 
on the basis of observed greyish-white canopies and exposed dead trunks 
(Supplementary Fig. 3).
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forest height here should be viewed as a proxy of forest landscape 
vertical structural diversity—and more diverse (in the sense of vertical 
structure) forest landscapes are more resistant to mortality-induced 
reductions in vegetation greenness. Similarly, higher NSR also pro-
vides crucial stabilization mechanisms, for instance, by involving 
higher diversity in functional traits such as root stratification39 and 
differential stomatal regulation strategies40. These mechanisms allow 
plants in a more diverse community to occupy different ecological 
niches41,42, increase the asynchronous growth dynamics of different 
species43–45 and thus reduce competition for water among species 
during drought26,27,41. Hence, our analyses of factors associated with 
the cross-scale differences in ΔNDVI during fatal drought events 
also highlight the essential contributions of habitat heterogeneity 
and biodiversity to the drought resistance of vegetation greenness 
(that is, resistance to the spread of the drought-induced reduction 
in vegetation greenness).

Verification of results with different methods and datasets
Many factors could influence our observed results, including system-
atic differences, varied spatio-temporal coverages, the resolution of 
sensors, growing-season categories, vegetation index and the selec-
tion of climate datasets, as well as spatial autocorrelation between 
mortality sites. To assess whether these factors might have biased or 
even jeopardized the robustness of our findings, we performed a series 
of verification analyses.

To test whether the observed discrepancies of ΔNDVI between 
different satellite products are indeed caused by their different spatial 
resolutions rather than by systematic differences among sensors, we 
used Landsat NDVIGS to construct combined grids of 270 m (a combined 
grid of 9 × 9 Landsat pixels, which is close to the 250-m resolution of 
a MODIS pixel) and about 8 km (a combined grid of 267 × 267 Landsat 
pixels, which is close to the 8-km resolution of a GIMMS pixel), respec-
tively, centring on the tree-mortality site (Fig. 4a and Supplementary 
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Fig. 3 | Dependence of ΔNDVI from multiscale sensors on potential drivers. 
a,d,g, The importance of driving factors, in descending order, for variations 
of |ΔNDVILandsat|, YLandsat-MODIS and YLandsat-GIMMS, respectively (see Methods). The 
variable importance is assessed with its mean |SHAP| value (see Methods). Inset 
pie charts represent the fractional contributions of vegetation, topographic, 
soil and climate factors. b,c, Partial dependence plots of the SHAP value 
against the two most important variables in a. e,f, As for b,c, but for the two 
most important variables in d. h,i, As for b,c, but for the two most important 
variables in g. SHAP > 0 means that the corresponding driver positively affects 

the dependent variable, and vice versa. The deep pink line represents the fitted 
line, which provides an approximation of the central tendency or average 
value of the data points. The deep pink shadings represent the 95% confidence 
interval of the mean estimate, indicating the range within which we have 95% 
confidence that the true population mean lies. The light pink shadings represent 
the 95% prediction interval, indicating that we expect 95% of observations to fall 
within this interval. PRE, multi-year average precipitation; AWC, available water 
capacity; DI, drought intensity; slope_cv, inter-pixel variability of slope; aspect_
cv, inter-pixel variability of aspect.
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Fig. 4a; see Methods). We found that the central 3 × 3 pixels within the 
combined grid (that is, the 3 × 3 pixels centring on the tree-mortality 
site) had significantly stronger negative anomalies of detrended NDVIGS 
during mortality years than did the surrounding non-central pixels 
(probably having less severe mortality or with no mortality) (Supple-
mentary Fig. 4b, P < 0.001, one-way ANOVA), whereas the long-term 
increasing trends in the central 3 × 3 pixels were significantly weaker 
than those in the surrounding non-central pixels (Supplementary 
Fig. 4c). Therefore, we assumed that the central 3 × 3 pixels within 
each combined grid was the core area in which severe tree mortality 

occurred, and the average ΔNDVI in the core area (that is, ΔNDVIcentral3×3) 
was used as the baseline for identifying pixels with tree mortality.  
A pixel (30-m resolution) was viewed as impaired by tree mortality if 
its ΔNDVI ≤ ΔNDVIcentral3×3; otherwise, it was free from tree-mortality 
effects. We then calculated the percentages of Landsat pixels impaired 
by tree mortality within each 270-m (P270 m) or 8-km (P8 km) combined 
grid for the corresponding tree-mortality site.

As shown in Fig. 4b, the frequency histogram of P270 m and P8 km 
peaked in 40–50% and 0–10%, respectively. Most of the mortality sites 
(65.48% and 79.82%, respectively) had a P270 m or P8 km value lower than 

c d e

f g h

Soil sand
NSR

AWC
Soil clay

PRE
Slope

DI
Slope_cv

Tree density
Elevation

Aspect_cv
Root depth

Aspect
Elevation_cv

Height

0 0.5 1.0 1.5

Mean (|SHAP| value)

Climate
9.15%

Vegetation
32.97%

Soil
5.67%

Topography
52.22%

10 20 30 40
–6

–4

–2

0

2

4

6

Height (m)

SH
AP

 v
al

ue
 fo

r h
ei

gh
t

0 0.2 0.4 0.6

–6

–4

–2

0

2

4

6

SH
AP

 v
al

ue
 fo

r e
le

va
tio

n_
cv

Elevation_cv

AWC
Soils and

DI
Soil clay

Root depth
Slope

Tree density
Aspect
Height

Elevation
Aspect_cv

Slope_cv
PRE
NSR

Elevation_cv

0 0.5 1.0 1.5 2.0 2.5

Mean (|SHAP| value)

Climate
14.62%

Vegetation
30.24%

Soil
6.67%

Topography
48.48%

0 0.2 0.4 0.6

–10

–5

0

5

10

SH
AP

 v
al

ue
 fo

r e
le

va
tio

n_
cv

Elevation_cv
1,000 2,000 3,000 4,000

–5

0

5

10

NSR

SH
AP

 v
al

ue
 fo

r N
SR

a b

270 m

8 km

Pixeli Pixeli

Pixeli

Pixeli

Pixel with mortality, ∆NDVIi ≤ ∆NDVIcentral3 × 3

Tree-mortality site

Pixel without mortality, ∆NDVIi > ∆NDVIcentral3 × 3

0–10
10

–2
0

20
–3

0

30–4
0

40–5
0

50–6
0

60–7
0

70
–8

0

80–9
0

90–10
0

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
(%

)

Landsat pixels with tree mortality (%)

8 km 270 m

Fig. 4 | Percentage of Landsat pixels with tree mortality within 270-m (P270 m) 
and 8-km (P8 km) combined grids and its drivers. a, Schematic diagram showing 
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red dotted box), whereas Landsat pixels without tree mortality are considered 
as those characterized by ΔNDVI > ΔNDVIcentral3×3. b, Frequency distributions of 
P270 m and P8 km across tree-mortality sites. c,f, The importance of driving factors, 
in descending order, for the spatial variations of P270 m and P8 km, respectively (see 
Methods). The variable importance is assessed with its mean |SHAP| value (see 

Methods). Inset pie charts represent the fractional contributions of vegetation, 
topographic, soil and climate factors. d,e and g,h are the partial dependence 
plots of the SHAP value against the two most important variables in c and f, 
respectively. SHAP > 0 means that the corresponding driver positively affects 
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of the mean estimate, indicating the range within which we have 95% confidence 
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prediction interval, indicating that we expect 95% of observations to fall within 
this interval. Abbreviations as in Fig. 3.
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50%, and only 19.20% (12.90%) of the sites had a P270 m (P8 km) value higher 
than 60%. Therefore, we again confirmed that most of the tree-mortality 
events are patchy and often spatially dispersed within and between field 
sites. This patchy nature means that over progressively larger scales of 
inquiry, extensive tree-mortality events may become harder to detect 
and thus are underestimated by coarser-resolution sensors.

Consistent with the analyses on YLandsat-MODIS and YLandsat-GIMMS  
(Fig. 3d,g), we also found that topographic factors—in particular, the 
elevation_cv—dominated the variations of P270 m and P8 km (52.22% and 
48.48%; Fig. 4c,f) with the same XGBoost and SHAP models. A higher 
elevation_cv corresponded to lower P270 m and P8 km values (Fig. 4e,g). 
Similarly, vegetation factors such as forest height and NSR also had 
significant roles in controlling P270 m and P8 km (Fig. 4c,f), whereby taller 
forests and greater NSR were associated with lower P270 m and P8 km values 
(Fig. 4d,h). These results further confirmed our findings based on direct 
comparisons of ΔNDVI at different scales, and again emphasized the 
importance of habitat heterogeneity and biodiversity to the drought 
resistance of vegetation greenness.

We also conducted the following verifications to test whether 
spatio-temporal differences in coverage between sensors could 
confuse the results. First, we compared the trends in NDVIGS with dif-
ferent satellite products in their overlapping time periods (the over-
lapping period between Landsat and GIMMS: 1984–2015; between 
Landsat and MODIS: 2000–2020; and among Landsat, MODIS and 
GIMMS: 2000–2015) (Supplementary Fig. 5). The results confirmed 
that there were more tree-mortality sites showing greening than 
there were showing browning trends, especially at longer timescales 
such as 1984–2015 and 2000–2020 (Supplementary Fig. 5a,b). Sec-
ond, we compared different sensors in windows of roughly the same 
size. To do this, we used combined Landsat grids of 270 m and 8 km, 
which were compared to the similarly sized MODIS and GIMMS pixels, 
respectively. As shown in Supplementary Fig. 6, the results based 
on Landsat data still showed generally more negative ΔNDVI than 
did those based on GIMMS and MODIS, confirming that mortality 
events are often spatially quite patchy and can be better captured 
by finer-resolution sensors.

We also used different vegetation indices and climate data to 
verify the results. For example, using NDVImax and EVIGS, we obtained 
results that were consistent with those based on NDVIGS (Supplemen-
tary Figs. 7 and 8). We also used precipitation and the standardized 
precipitation–evapotranspiration index (SPEI) with a spatial resolu-
tion of 0.5° in place of precipitation and the Palmer drought severity 
index (PDSI) in the TerraClimate database with a spatial resolution of 
4 km, and reran the XGBoost and SHAP models. As shown in Supple-
mentary Fig. 9, the dominant factors explaining variation are consist-
ent with those based on TerraClimate, suggesting that the choice and 
resolution of climate data did not confound our findings. Finally, to 
overcome the problem that some tree-mortality sites might occur in a 
same pixel (especially for coarse MODIS and GIMMS datasets), and the 
issue of spatial autocorrelation, we conducted two types of additional 
analyses. First, when two or more sites co-occur in the same GIMMS 
or MODIS pixel, we randomly selected one tree-mortality site within 
each of these pixels to compare the difference between the coarser 
MODIS-derived (or GIMMS-derived) ΔNDVI and the Landsat-derived 
ΔNDVI. We then also reran the XGBoost and SHAP models with only 
one site from each pixel. We still obtained similar results, including the 
generally lower ΔNDVI with Landsat than with GIMMS and MODIS (Sup-
plementary Fig. 10), and the dominant factors explaining YLandsat-MODIS 
and YLandsat-GIMMS with the machine-learning model (Supplementary 
Fig. 11). Second, we aggregated the dependent and independent vari-
ables of these sites to a common grid (250 m, 500 m and 1,000 m) (see 
Methods), and then reran the XGBoost and SHAP models. As shown 
in Supplementary Fig. 12, the dominant factors explaining variation 
based on the aggregation data are still consistent with those based 
on the original data.

There are a few caveats and possible limitations of our analysis 
that need to be noted. First, the recovery in NDVIGS could be due to 
the growth of non-forest components (for example, shrubs or herba-
ceous plants) or much younger forests, which might not provide the 
same ecosystem services or productivity, structural characteristics 
or carbon storage as pre-mortality forests, even with the same NDVI 
values. Hence, our greenness-based findings should be interpreted 
with caution, and they do not necessarily imply that ecosystem 
function is resistant to or can fully recover from climate-induced 
mortality events.

It is also crucial to acknowledge potential limitations of our 
machine-learning analyses, as a result of the variations in spatial reso-
lution among data sources. In particular, the data for climate, soil and 
vegetation attributes all have a relatively coarse spatial resolution, 
which makes it challenging to accurately capture fine-scale variations 
within individual grid cells. However, it is worth noting that we partially 
addressed this limitation by incorporating topography heterogene-
ity represented by digital elevation model (DEM) data at 30-metre 
resolution. This high-resolution proxy could partially capture the 
within-grid variations in climate, soil and vegetation attributes for 
the topographical influences on microclimatic conditions and soil 
properties46. The proxy role of topographical heterogeneity for some 
aspects of climate, soil and vegetation attributes could provide valu-
able insights into cross-scale ΔNDVI relationships, including the role of 
fine-scale habitat variations in modulating the responses of vegetation 
greenness and its potential underlying ecosystem processes to severe 
climate-induced mortality events. Nevertheless, topography data alone 
may still be insufficient to fully capture the direct effects of climate 
soil and vegetation attributes. Future research should investigate 
possible synergistic effects by incorporating higher-resolution data 
for climate, soil and vegetation attributes, and topography, to gain a 
more comprehensive understanding of the mechanisms that underlie 
the responses of vegetation to severe climate disasters across spatial 
and temporal scales.

Summary
Through a comparison of remotely sensed vegetation greening 
and browning trends at different spatio-temporal scales across 
1,303 tree-mortality sites, we have shown that seemingly contrast-
ing observations—global vegetation greening versus increasing 
tree mortality—generally manifest at different temporal and spatial 
scales. Severe tree-mortality events have short-term negative effects 
on remote-sensing-derived vegetation greenness at a fine spatial reso-
lution. These effects, however, can be partly or even entirely obscured 
when examined at coarser spatial scales or over longer timescales. 
Our findings highlight the key roles of topographic heterogeneity and 
species richness in confining the impact of tree-mortality events to 
fine scales. This underscores the importance of preserving habitat 
heterogeneity and biodiversity to enhance the resistance of ecosystems 
to climate extremes on broad scales. Furthermore, it is worth noting 
that current dynamic global vegetation models which typically oper-
ate at coarse spatial grains18,47 (for example, 0.5°) and often neglect 
within-grid spatial heterogeneity, may underestimate or even overlook 
mortality-induced carbon loss at finer spatial scales. However, it is also 
essential to recognize that the recovery of NDVIGS after tree-mortality 
events does not necessarily imply a return to the pre-mortality state in 
terms of forest structure and functioning48,49. Thus, relying solely on the 
greening trend does not provide a comprehensive understanding of 
post-mortality forest recovery. Our study also highlights the necessity 
for high spatial resolutions (for example, 30 m or finer) of field-based 
observational data and more realistic, process-based model simula-
tions of vegetation growth and dieback. These are urgently needed to 
enable us to gain a better understanding of—and to more accurately 
predict—ecosystem dynamics and their carbon-cycle consequences 
under current and future climate change.
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Methods
Tree-mortality sites
The global dataset of tree-mortality sites used in this study was 
obtained from a meta-analysis of previously reported tree-mortality 
events7. This dataset records the georeferenced locations of 1,303 
sites that document the timing of tree-mortality events resulting 
from extreme drought and heat stress from 1970–2018, which were 
collected from 154 peer-reviewed studies. These sites encompass a 
wide range of forest types and climate zones across all continents 
except Antarctica. Detailed information about the dataset can be 
found in a previous report7, and at https://www.iufro.org/science/
task-forces/tree-mortality-patterns. Because these 1,303 sites were 
from published studies that included on-the-ground assessments of 
tree mortality and climatic association with hotter drought stress, 
they are not spatially representative of all mortality events, and like 
most published field data, show a bias for the northern hemisphere, 
and for drier field sites (for more details, see ref. 7). Note that only 27 
sites involved mortality events before 1982 and hence cannot be used 
to explore mortality-induced negative anomalies in NDVI. However, 
these few data points still provide supporting evidence of decadal-scale 
vegetation greening trends, even when their immediate responses to 
tree-mortality events cannot be captured by satellite imagery.

NDVI and EVI datasets
NDVI and EVI are widely used remote-sensing proxies to detect 
changes in terrestrial vegetation activity15,16, including the responses 
to drought and/or heat stress50. The NDVI and EVI datasets from differ-
ent satellite sensors (AVHRR, MODIS and Landsat) and with different 
spatio-temporal resolutions were included in our analysis. Detailed 
information about the three NDVI and EVI products is provided below.

We obtained the AVHRR-based NDVI data from Global Inventory 
Modeling and Mapping Studies version 3 (GIMMS 3g; https://poles.
tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/). This 
product is available at a spatial resolution of 1/12° (about 8 km) and 
a temporal resolution of 15 days from 1982 to 2015 (ref. 51). MODIS 
NDVI and EVI are derived from the Collection 6 vegetation indices 
product MOD13Q1 with a spatial resolution of 250 m and a temporal 
resolution of 16 days between 2000 and 2020, which is computed 
from atmospherically corrected bidirectional surface reflectance. We 
aggregated biweekly NDVI and EVI values to monthly using the maxi-
mum value composite method to eliminate the contamination from 
cloud, atmosphere and changes in solar altitude angle52. In our study, 
we averaged the monthly NDVI values from the GIMMS dataset and the 
monthly NDVI and EVI values from the MODIS dataset over the entire 
growing season. The growing season was considered as April–October 
for landmass north of 23.5° N, October–April for south of 23.5° S, and 
year-round for between 23.5° N and 23.5° S (refs. 21–23).

The Landsat retrievals with a spatial resolution of 30 m and tempo-
ral resolution of 16 days are ideally suited for regional- to global-scale 
time-series analysis, particularly with the release of higher-level sur-
face reflectance products from Landsat 5 Thematic Mapper (TM), 
7 Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land 
Imager (OLI) since 1984. Surface reflectance from Landsat 5 and 7 
has been atmospherically corrected using the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS)53,54, and that from 
Landsat 8 has been atmospherically corrected using the Landsat Sur-
face Reflectance Code (LaSRC)55. The Landsat surface reflectance prod-
ucts also provide pixel-scale data-quality flag information indicating 
clear-sky, water, snow, cloud or shadow conditions, as determined by 
the C Function of Mask (CFMASK) algorithm56. We applied the quality 
flag information to remove the effects of clouds and their shadows in 
Landsat imagery. In total, 114,786 Landsat surface reflectance images 
(Collection 1 Tier 1) during the growing season from 1984 to 2020 
were used. Surface reflectance images from Landsat 5, Landsat 7 and 
Landsat 8 were used for the periods of 1984–2011, 1999–2002 and 2012, 

and 2013–2020, respectively. Landsat 7 images are not available from 
31 May 2003, owing to the failure of the Scan Line Corrector (SLC); 
the gaps of Landsat 7 SLC-off images in 2012 were filled using a focal 
mean function provided by Google Earth Engine (GEE). We adjusted 
the surface reflectance products among sensors (that is, Landsat  
5 TM, 7 ETM + , and 8 OLI) to be more consistent using ordinary least 
squares transformation functions57, and estimated Landsat-based 
NDVIGS and EVIGS. To avoid systematic errors in site geolocation, we 
averaged Landsat NDVIGS and EVIGS from a 3 × 3-pixel window centring 
on each tree-mortality site. Moreover, we also obtained the annual 
maximum of GIMMS-, MODIS- and Landsat-based NDVI values using 
the maximum value composite method52.

Note that owing to the large volumes of Landsat images, the pro-
cessing of the satellite data was implemented in GEE, a cloud computing 
platform capable of analysing remote-sensing data on a global scale58,59. 
In this study, the NDVIGS, NDVImax and EVIGS values of Landsat and MODIS 
were acquired and preprocessed through the JavaScript application 
programming interface in GEE60.

Climatic datasets
Global gridded monthly precipitation and PDSI product in the  
TerraClimate database61, with a spatial resolution of 4 km and cover-
ing the period 1970–2020, were provided by GEE (IDAHO_EPSCOR/
TERRACLIMATE). Gridded data of the SPEI were obtained from SPEI-
base v.2.6 (https://digital.csic.es/handle/10261/202305) with a 0.5° 
spatial resolution and a monthly temporal resolution from 1901 to 2018  
(ref. 62). The SPEI products were produced across a range of timescales 
from 1 to 48 months. The hydraulic failure and dieback of woody trees 
often react to drought stress in a time-lagged manner, so SPEI data 
integrated over 12-month timescales were chosen as an indicator of 
vegetation water stress in this study63. For each tree-mortality event, 
we calculated the average PDSI and SPEI of the growing season and also 
recorded the lowest value during the corresponding tree-mortality 
years, as a measure of drought intensity. We also obtained monthly 
precipitation data, with a spatial resolution of 0.5° and covering the 
period 1980–2015, from the Climatic Research Unit (CRU)64 (https://
data.ceda.ac.uk/badc/cru/data/cru_ts). We calculated the multi-year 
average precipitation patterns during their period. We extracted the 
PDSI, SPEI and precipitation from the above climatic datasets for the 
locations of tree-mortality sites.

Soil datasets
Global maps of AWC, soil clay and soil sand, all with a spatial resolution 
of 0.05°, were downloaded from the Regridded Harmonized World Soil 
Database v.1.2 (ref. 65) (https://daac.ornl.gov/SOILS/guides/HWSD.
html). The AWC identifies seven textural classes representing capaci-
ties of 150, 125, 100, 75, 50, 15 and 0 mm water per m of the soil unit, 
respectively. In general, soil clay has a stronger water retention capacity 
than does soil sand. We extracted the soil information from gridded 
data according to the locations of tree-mortality sites.

Datasets of tree attributes
Canopy height was obtained from the Global Forest Canopy Height 
dataset66 (https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1). 
Global maximum rooting depth was derived from the project of 
Global Earth Observation for Integrated Water Resource Assessment 
(Earth2Observe, https://wci.earth2observe.eu/thredds/catalog/usc/
root-depth/catalog.html). Tree density was derived from a global prod-
uct generated from ground-sourced measurements of tree density67 
(https://elischolar.library.yale.edu/yale_fes_data/1/), which is used as 
a measure of competitive pressure among individual trees. All three 
datasets have a spatial resolution of 1 km. When the data were used at 
30-m and 250-m scales, we directly extracted these tree attributes on 
the basis of the locations of tree-mortality sites. To be consistent with 
the data analyses conducted at the 8-km scale, we averaged the original 
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data for each 8 × 8 grid centred on each tree-mortality site. A global map 
of NSR composed by equal-area hexagonal grid cells of 7,800 km2 was 
downloaded from the Anthroecology Lab68 (https://anthroecology.
org/). We used the locations of tree-mortality sites to extract the NSR 
values of the corresponding hexagonal grid cell. In this study, owing 
to the unavailability of realized species richness data, NSR data were 
used to indirectly indicate the global plant species richness gradient. 
NSR is a metric that measures the abundance of native plant species in 
a given region or area, and is often used to compare plant biodiversity 
across different locations69. Although NSR does not directly reflect 
the actual plant species richness of a particular location or area, it can 
provide valuable information for studying global plant species richness 
when actual data are not available.

Topographic datasets
Elevation, slope and aspect were extracted from the Shuttle Radar 
Topography Mission (SRTM) 30-m-resolution DEM data. We averaged 
the elevation, slope and aspect values for a 3 × 3-pixel window, 9 ×  
9-pixel window (270 m × 270 m) and 267 × 267-pixel window (about 
8 km × 8 km) centring on each tree-mortality site, for data analyses 
conducted at 30-m, 250-m and 8-km scales, respectively. We further 
calculated the inter-pixel variability of elevation (that is, elevation_cv), 
slope (that is, slope_cv) and aspect (that is, aspect_cv) within the 267 ×  
267-pixel window, representing the regional terrain complexity sur-
rounding each site. We used the coefficient of variation as a measure 
representing the ratio of the standard deviation to the mean. The 
calculations of topographic factors were performed on GEE.

Data analyses
We performed the following analyses to characterize the relation-
ship between tree mortality and greening trends. First, we conducted 
Mann–Kendall trend analysis to examine the long-term trends of 
NDVIGS, NDVImax and EVIGS at the locations of tree-mortality sites (Fig. 1c  
and Supplementary Figs. 1, 4c, 5, 7a and 8a,b). The Mann–Kendall test 
is a non-parametric test method that has been widely used to detect 
the change trend in satellite-based vegetation index time series14,17. In 
this study, we used the Mann–Kendall trend test modified to account 
for temporal autocorrelation70 in the time-series data, and identified 
significant trends in Mann–Kendall trend analysis at the P < 0.05 level.

Second, we calculated ΔNDVI values as a measure of the short-term 
effect of tree mortality (Fig. 1b). ΔNDVI is the detrended anomaly of 
NDVIGS in the years of tree-mortality occurrence. Here, after detrend-
ing the NDVIGS time-series data, ΔNDVI was calculated as the devia-
tion of NDVIGS during those specific years from its long-term average. 
This approach allows for the identification and analysis of changes in 
NDVIGS that can be attributed to tree-mortality events, independent 
of any long-term trends or variations present in the entire dataset71. 
Furthermore, we compared ΔNDVI among the three satellite products 
for their entire period using the one-way ANOVA. Considering that the 
three products covered different time periods, we also conducted 
paired comparisons on ΔNDVI for each pair of the three products over 
their overlapping time period using the t-test (Supplementary Fig. 2).

Third, by comparing the ΔNDVI values among satellite products 
with different resolutions, we divided all the available sites into four 
major categories: (1) NDVIGS decreased sharply (ΔNDVIGS < −0.05) across 
all products; (2) NDVIGS decreased sharply according to Landsat and 
MODIS but slightly (−0.05 < ΔNDVIGS < 0) according to GIMMS; (3) 
NDVIGS decreased sharply according to Landsat but slightly accord-
ing to MODIS and GIMMS; and (4) NDVIGS decreased slightly across all 
products (Supplementary Table 2). For each category, an example site 
of tree mortality was displayed with Google Earth sub-metre-resolution 
satellite images (Fig. 2). These tree-mortality sites selected for catego-
ries 1–4 are located at 96.29080833° W, 30.4684708° N; 111.6126203° W, 
35.36789751° N; 109.3074647° W, 41.08904699° N; and 119.7935082° W, 
34.01310507° N, respectively. The areas with tree mortality and without 

tree mortality within the 8-km, 250-m and 30-m windows surround-
ing the example sites were visually interpreted according to the 
greyish-white canopies and exposed dead trunks observed on Google 
Earth (Fig. 2 and Supplementary Fig. 3).

Fourth, to understand the potential factors driving variations in 
|ΔNDVILandsat| (the intensity of tree mortality at a 30-m scale), we used a 
combination of XGBoost and SHAP models to examine the relationship 
between |ΔNDVILandsat| and 15 independent variables (that is, drought 
intensity, average annual precipitation, AWC, soil clay content, soil sand 
content, forest height, root depth, tree density, NSR, elevation, slope, 
aspect, elevation_cv, slope_cv and aspect_cv) (Fig. 3a–c). XGBoost and 
SHAP models are widely used in Earth science research72–76. XGBoost 
is an enhanced version of a gradient-boosting decision tree algorithm 
that has shown superior performance in achieving a fast computation 
speed and the ability to deal with sparse datasets77. XGBoost adopts a 
stepwise shrinkage process that limits overfitting77. SHAP is based on 
the concept of the Shapley value in game theory24,25. SHAP is a unified 
approach to explain the output of any machine-learning model and to 
visualize the complex causal relationship between the dependent vari-
able and its driving factors24,25. In this study, we used SHAP to describe 
the non-linear relationships hidden in the black box model of XGBoost 
and to transform these into interpretable rules, and then explored the 
impact magnitude and direction (positive or negative) of multiple fac-
tors. It is noteworthy that collinearity among independent variables 
could lead to confounding results in the XGBoost and SHAP models. 
Therefore, we tested for the multicollinearity among independent vari-
ables by calculating the variance inflation factor (VIF) values for each 
variable, and only included factors with VIF < 10 as model inputs78. In 
addition, for cross-site comparisons, we used temporally static values 
of independent variables for each site (for example, PRE, soil property, 
forest height and NSR) to explore how the dependent variable changes 
along the broad environmental gradients (for example, climate gradi-
ents, soil gradients and vegetation gradients) of different independent 
variables. Hence, here all the independent variables for a given site (for 
example, PRE is the multi-year average precipitation of a site) should 
be unchanged for the purpose of spatial analysis.

Fifth, the same machine-learning model was also used to analyse 
the influence of driving factors on the difference of tree-mortality 
intensities at different spatial scales (Fig. 3d–i), which was defined  
as follows:

YLandsat-MODIS =
|ΔNDVILandsat − ΔNDVIMODIS|

|ΔNDVILandsat|
(1)

YLandsat-GIMMS =
|ΔNDVILandsat − ΔNDVIGIMMS|

|ΔNDVILandsat|
(2)

where YLandsat-Modis represents the relative difference between Landsat 
and MODIS ΔNDVI during 2000–2020, and YLandsat-GIMMS represents 
the relative difference between Landsat and GIMMS ΔNDVI during 
1984–2015, for each tree-mortality site. ΔNDVILandsat, ΔNDVIMODIS and 
ΔNDVIGIMMS were calculated in the years of tree-mortality occurrence, 
based on detrended anomalies of Landsat, MODIS and GIMMS NDVIGS 
time series, respectively.

Sixth, we performed a series of additional data analyses to test 
the robustness of our results. (1) To remove potential influences of the 
systematic differences between sensors and verify the robustness of 
associated results, we further analysed NDVIGS from Landsat only with 
constructed combined grids of 270 m (that is, a combined grid of 270 m 
× 270 m from 9 × 9 Landsat pixels) and about 8 km (that is, a combined 
grid of 8 km × 8 km from 267 × 267 Landsat pixels), centring on the 
tree-mortality site (Fig. 4a and Supplementary Fig. 4a). The 270-m and 
8-km combined NDVIGS grids for each tree-mortality site from 1984 to 
2020 (total 92,746 combined images) were calculated using the Landsat 
5, 7 and 8 surface reflectance products in GEE. After detrending Landsat 
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NDVIGS time series pixel by pixel, we obtained ΔNDVI for each pixel 
within the 270-m and 8-km combined grids in the years of tree-mortality 
occurrence (similar methods were used to construct 8-km combined 
EVIGS girds and calculate ΔEVI; Supplementary Fig. 8). The 3 × 3-pixel 
window in the centre of the combined grid (that is, the 3 × 3-pixel win-
dow centring on the tree-mortality site) was assumed to be the core 
area of tree-mortality occurrence, and the average ΔNDVI in the core 
area (that is, ΔNDVIcentral3×3) was used as the baseline to identify the 
pixels with tree mortality within each combined grid. A pixel with 
ΔNDVI ≤ ΔNDVIcentral3×3 was identified to have experienced tree mortal-
ity, otherwise it was identified not to have experienced tree mortality 
(Fig. 4a). Accordingly, we calculated the percentages of Landsat pixels 
with tree mortality within the 270-m (P270 m) or 8 km (P8 km) combined 
grids for each tree-mortality site (Fig. 4b). Finally, we used the XGBoost 
and SHAP models to examine the factors driving the variations in P270 m 
(Fig. 4c–e) and P8 km (Fig. 4f–h). The model performance was evaluated 
by randomly splitting the dataset into 70% for training and 30% for test-
ing. Using regression analysis of predicted and observed values of the 
test dataset, the R², root mean square error (RMSE), relative root mean 
square error (RRMSE) and bias were obtained to measure the model 
accuracy. We repeated this process ten times for each model to avoid 
the contingency (Supplementary Fig. 13). (2) To make a comparison 
over the same time period, we compared the trends in NDVIGS during the 
overlapping time period of different sensors (Supplementary Fig. 5).  
(3) To make a comparison in windows of the same size, we compared the 
combined grids of 270 m and 8 km based on the Landsat data (Fig. 4a  
and Supplementary Fig. 4a), with the corresponding MODIS- and 
GIMMS-derived ΔNDVI (Supplementary Fig. 6). (4) To test the robust-
ness of NDVIGS results, we analysed the trends in NDVImax and EVIGS, and 
compared ΔNDVImax (and ΔEVI) at different resolutions (Supplementary 
Figs. 7 and 8). (5) To test whether the resolution of the climate data 
affected our findings, we used precipitation and SPEI at 0.5° resolu-
tion in place of precipitation and PDSI at 4-km resolution, and reran 
the machine-learning model (Supplementary Fig. 9). To address the 
issues of the different spatial resolution of the datasets and the spa-
tial autocorrelation between mortality sites as much as possible, we 
randomly selected one tree-mortality site within every coarse pixel 
(GIMMS or MODIS) to compare the difference between the coarser 
MODIS-derived (or GIMMS-derived) ΔNDVI and the Landsat-derived 
ΔNDVI (Supplementary Fig. 10), and then reran the machine-learning 
model (Supplementary Fig. 11); furthermore, we aggregated the aver-
age of the dependent variables and independent variables of these 
sites at a common grid (250 m, 500 m and 1,000 m), and then reran the 
machine-learning model. That is, when more than one site was located 
in the same grid (250 m, 500 m and 1,000 m), we calculated the average 
value of these sites and used it as input for the machine-learning model 
(Supplementary Fig. 12).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The tree-mortality sites can be found at https://www.iufro.org/ 
science/task-forces/tree-mortality-patterns (https://doi.org/ 
10.6084/m9.figshare.24847698) (ref. 79). The Google Earth sub- 
metre high-resolution satellite images can be found at https://doi.org/ 
10.6084/m9.figshare.23243915 (ref. 80). The climate, vegetation and 
soil data can be found at https://doi.org/10.6084/m9.figshare.24847788 
(ref. 81). The combined grids of 270 m and about 8 km can be found 
at https://doi.org/10.6084/m9.figshare.24850734 (ref. 82). The 
Landsat NDVI (EVI), MODIS NDVI (EVI), DEM (including elevation, 
slope and aspect) and TerraClimate database (including precipita-
tion and PDSI product) were calculated on GEE, which is available at 
https://code.earthengine.google.com/. The GIMMS NDVI data can 

be obtained from https://poles.tpdc.ac.cn/en/data/9775f2b4-7370-
4e5e-a537-3482c9a83d88/. The land cover data were downloaded 
from http://maps.elie.ucl.ac.be/CCI/viewer/. The world continental 
boundaries were obtained from https://hub.arcgis.com/datasets/
esri::world-continents/about. The sub-metre high-resolution satel-
lite images were downloaded from Google Earth, which is available at 
https://earth.google.com/. The SPEI data are available from https://
digital.csic.es/handle/10261/202305. The precipitation data can be 
retrieved from https://data.ceda.ac.uk/badc/cru/data/cru_ts. The 
available water-storage capacity, soil clay and soil sand data were 
downloaded from https://daac.ornl.gov/SOILS/guides/HWSD.html. 
The canopy height can be obtained from https://webmap.ornl.gov/
ogc/dataset.jsp?dg_id=10023_1. The global maximum rooting depth 
was derived from https://wci.earth2observe.eu/thredds/catalog/usc/
root-depth/catalog.html. The tree density was derived from https://
elischolar.library.yale.edu/yale_fes_data/1/. The native plant species 
richness was downloaded from https://anthroecology.org/.

Code availability
Java, MATLAB, Python and R codes for the analysis of these data can be 
obtained from https://github.com/YCY-github-YCY/Tree.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect data.

Data analysis The analyses and mapping were both performed using Google earth engine (JavaScript), ArcGIS 10.7, MATLAB (R2020b), Pycharm 2017.2.7, 
and Rstudio (R version 4.0.3 ). Codes for processing and analyzing these data can be found in Github (https://github.com/YCY-github-YCY/
Tree).C Function of Mask (CFMASK) algorithm is a cloud masking algorithm available in Google Earth Engine.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The web links for publicly available datasets are present in the data availability statement of the paper. The codes for processing these data is available on GitHub at 
the following repository: https://github.com/YCY-github-YCY/Tree.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Through analyzing 114,786 Landsat surface reflectance images and three satellite-based, Normalized Difference Vegetation Index 
(NDVI) datasets with spatial resolutions that range from 30 m to 8 km for 1,303 field-documented sites of severe tree mortality 
events across the globe, we demonstrate (1) consistent greening trends in growing-season NDVI (NDVIGS) across all spatial 
resolutions over long time-scales (a decade or longer); (2) topographical and forest diversity mitigate the impact of severe tree 
mortality.

Research sample The global dataset of tree mortality sites used in this study was obtained from a meta-analysis of previously reported tree mortality 
events. This dataset records the geo-referenced locations of 1,303 vegetation sites that document the timing of tree mortality events 
resulting from extreme drought and heat stress from 1970-2018, which were collected from 154 peer-reviewed studies.

Sampling strategy N/A

Data collection The Landsat NDVI (EVI), MODIS NDVI (EVI), DEM (elevation, slope, and aspect), and TerraClimate database (including precipitation 
and PDSI product) are calculated on Google earth engine, which is available at https://code.earthengine.google.com/. Other data sets 
were download from the URLs in the data availability statement in the main text.

Timing and spatial scale We used 1,303 sites that document the timing of tree mortality events resulting from extreme drought and heat stress from 
1970-2018. These sites encompass a wide range of forest types and climate zones across all the continents except Antarctica. For 
each of the 1,303 georeferenced sites, we calculated its corresponding mean value of Normalized Difference Vegetation Index of the 
growing season (NDVIGS) of each year from three commonly used satellite sensors that constitute a fine-to-coarse sequence in 
spatial resolution, including Landsat (30 m, 1984-2020), Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m, 
2000-2020), and Advanced Very High Resolution Radiometer (AVHRR, 8 km, 1984-2015).

Data exclusions N/A

Reproducibility Our analyses were based on publicly available satellite data, 1,303 geo-referenced tree mortality sites, and well-defined methods, 
and the results could be reliably reproduced.

Randomization N/A

Blinding N/A

Did the study involve field work? Yes No
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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