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Abstract

Gross primary productivity (GPP) is jointly controlled by the structural and physiological
properties of the vegetation canopy and the changing environment. Recent studies showed notable
changes in global GPP during recent decades and attributed it to dramatic environmental changes.
Environmental changes can affect GPP by altering not only the biogeochemical characteristics of
the photosynthesis system (direct effects) but also the structure of the vegetation canopy (indirect
effects). However, comprehensively quantifying the multi-pathway effects of environmental change
on GPP is currently challenging. We proposed a framework to analyse the changes in global GPP
by combining a nested machine-learning model and a theoretical photosynthesis model. We
quantified the direct and indirect effects of changes in key environmental factors (atmospheric
CO2 concentration, temperature, solar radiation, vapour pressure deficit (VPD), and soil moisture
(SM)) on global GPP from 1982 to 2020. The results showed that direct and indirect absolute
contributions of environmental changes on global GPP were 0.2819 Pg C yr�2 and
0.1078 Pg C yr�2. Direct and indirect effects for single environmental factors accounted for
1.36%–51.96% and 0.56%–18.37% of the total environmental effect. Among the direct effects, the
positive contribution of elevated CO2 concentration on GPP was the highest; and
warming-induced GPP increase counteracted the negative effects. There was also a notable indirect
effect, mainly through the influence of the leaf area index. In particular, the rising VPD and
declining SM negatively impacted GPP more through the indirect pathway rather than the direct
pathway, but not sufficient to offset the boost of warming over the past four decades. We provide
new insights for understanding the effects of environmental changes on vegetation photosynthesis,
which could help modelling and projection of the global carbon cycle in the context of dramatic
global environmental change.

1. Introduction

Gross primary productivity (GPP), defined as the
amount of organic matter produced by photosyn-
thesis in an ecosystem over a given period, is the start-
ing point of the terrestrial carbon cycle (Beer et al
2010, He et al 2013). The formation of GPP is driven
by multiple factors, including the canopy structure of

plants, physiological properties, and the surrounding
environmental variables (Chen et al 2019, Smith et al
2019a, Song et al 2022, Zhao et al 2022). The canopy
structure affects the photosynthesis of vegetation by
influencing light interception and distribution. The
physiological properties of vegetation determine the
maximum efficiency of photosynthesis after sunlight
is intercepted. Environmental variables constrain the
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whole photosynthesis process through temperature,
light, water, and CO2 conditions.

For past years, GPP contributions from the can-
opy structure and physiological properties have been
extensively studied. It has been found that the can-
opy structure is the primary explanatory factor for
the maximum productivity of an ecosystem (Long
et al 2006, Zhu et al 2010, Ort et al 2015, Migliavacca
et al 2021, Zhao et al 2021). As the amount and size
of leaves largely determine the light interception by
the canopy, leaf area index (LAI) has been a pop-
ular variable in studying GPP variations (Zhu et al
2013, 2016, Zhao et al 2021). A major advantage of
LAI is that it could be retrieved from satellite-based
remote sensing observations available since the early
1970s. This advantage enables the possibility of accur-
ately estimating GPP at a global scale and on a reg-
ular basis (Myneni et al 2002), using process-based
models, light-use efficiency models, and data-driven
models (Ruimy et al 1994, Running et al 2004). The
main physiological properties that influence photo-
synthesis include nitrogen (N), phosphorus (P), and
the maximum rate of Rubisco carboxylation (V cmax).
N and P have been shown to strongly limit plant
growth and productivity (Vitousek et al 2010, Yan et al
2018, Du et al 2020). V cmax defines the capacity of
leaves to utilize the energy excited by chlorophyll for
photosynthesis (Chen et al 2022b). N, P, and V cmax are
thus closely related to the photosynthetic capacity of
plants (LeBauer and Treseder 2008, Dong et al 2017,
Yan et al 2022).

In the ever-changing global environment, there
has been a growing recognition of the significance
of environmental factors in influencing GPP vari-
ations. Current studies have highlighted the substan-
tial impacts from atmospheric CO2, temperature,
water availability, and solar radiation, which are pro-
jected to persist in the coming decades (IPCC 2013,
2018, Friedlingstein et al 2019). The impacts can work
in several pathways. First, the increasing atmospheric
CO2 concentration has a positive fertilization effect
that promotes the photosynthesis rate while limiting
leaf transpiration, producing a notably higher GPP at
regional and global scales (Sitch et al 2015, Zhu et al
2021). Second, global warming can benefit vegeta-
tion productivity by further improving the maximum
photosynthetic rate of plants and lengthening the act-
ive growing season in the northern latitudes (Nemani
et al 2003, Thomas et al 2016). Third, recent stud-
ies have demonstrated the limitations of vegetation
growth due to increasing atmospheric dryness and
decreasing soil moisture (SM) caused by warming
(Zhang et al 2016, Ballantyne et al 2017, Schwalm
et al 2017, Liu et al 2018). Global warming could also
lower GPP in tropical regions where the temperature
is already close to optimal (Huang et al 2015, Zhu et al
2016, Bastos et al 2019, Gonsamo et al 2021, Song
et al 2022). Furthermore, the abovementioned path-
ways could be complicated by a variety of processes

operating at different time scales and in different dir-
ections (Denissen et al 2022). All current findings put
forward the urgent need to thoroughly investigate the
mechanisms of GPP regulation under climate change
for future climate policies.

Environmental changes can not only directly act
on the photosynthesis system (direct effects) but also
indirectly affect photosynthesis by altering the canopy
structure (indirect effects) (figure 1). Most GPP stud-
ies directly employed vegetation indices (VIs) that are
related to canopy structure, such as LAI, normalized
difference vegetation index (NDVI), or near-infrared
reflectance of vegetation (Badgley et al 2017, Burrell
et al 2020, Pierrat et al 2022), neglecting the fact that
the canopy structure is also a function of environ-
mental variables among others. The quantification of
indirect effects can be difficult and has been rarely dis-
cussed (Smith et al 2019b). On the one hand, canopy
structure and physiological properties of the vegeta-
tion jointly determine GPP, but their synergistic effect
is still not well understood. On the other hand, strong
coupling exists between key environmental factors,
including temperature (Tmp), surface solar radiation
downwards (SRAD), vapour pressure deficit (VPD),
and SM. Identifying the direct and indirect effects of
individual environmental variables requires compre-
hensively considering the collaborative regulation of
vegetation productivity and carefully decoupling the
constituting components in GPP.

In this context, this study aims to systematically
investigate the direct and indirect effects of envir-
onmental factors on global GPP during 1982–2020.
We propose a framework that combines a nested
machine-learning model and a theoretical photo-
synthesis model so that direct and indirect effects
of environmental factors (EN) including CO2, Tmp,
SRAD, VPD, and SM can be decoupled, compared,
and evaluated.

2. Methods

As the CO2 fertilization effect (CFE) may not be well
explained in machine-learning-based (ML-based)
models (Anav et al 2015, Fernández-Martínez et al
2018, Wang et al 2020, Chen et al 2022a), our meth-
odology first removed CFE from LAI and GPP and
evaluated the effects of other environmental factors.
The evaluation was based on fixing the environmental
variable, one at a time, in LAI and GPP estimation
models. Then, CFE was added back to the predicted
GPP to assess its contribution (figure 1(a)). A descrip-
tion of the satellite- and site-based data used in this
study can be found in the supplementary materials.

2.1. Quantifying and removing the CFEs

We used the FvCB C3 photosynthesis model to
quantify the LAI and GPP increments induced by
CFE. The increments were then removed from the
LAI reference data (the GIMMS Leaf Area Index,
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Figure 1. Schematic diagram of the methodology. (a) The direct (red) and indirect (blue) pathways by which environmental
changes affect gross primary productivity (GPP). The workflow hierarchically nests the LAI and GPP models (RF_LAI and
RF_GPP). (b) Schematic illustration for quantifying the direct, indirect, and total effects of environmental factors on GPP.
Temperature (Tmp) was taken as an example. The dashed Tmp indicates a fixed value as the monthly average of the first five years
(1982–1986), and the solid Tmp is the observed value. The dashed LAIpre indicates the predicted value of LAI after fixing Tmp. For
better illustration, other variables including the soil nutrient, plant vegetation type (PFT) in the LAI model, and the canopy
physiological factors and PFT in the GPP model were hidden in the diagrams.

GIMMS LAI4g, Cao et al 2023; section S1.2) and GPP
reference data (FLUXNET-GPP; figure S1; section
S1.1.1), respectively. The FvCB C3 photosynthesis
model describes the long-term response of plant pho-
tosynthesis to a changing atmospheric CO2 con-
centration using relationships between the atmo-
spheric CO2 concentration, plant carbon uptake, and
plant water use (Farquhar et al 1980, Franks et al
2013, Burrell et al 2020). More details are available
in section S2.1. The LAI and GPP models below
(section 2.2) thus would not account for the CFEs.

2.2. LAI and GPP estimation models

This study created random forest (RF) models to
estimate global LAI and GPP (Breiman 2001, Pierrat
et al 2022, Zhao and Zhu 2022). The RF model was
chosen due to its interpretable and non-parametric
nature, high accuracy and robustness, and the ability
to estimate the feature contribution (Breiman 2001,
Pierrat et al 2022). Our LAI models used GIMMS
LAI4g data as the dependent variable and meteoro-
logical factors (MFs), (including Tmp, SRAD, VPD,
and SM), soil nutrient factors (Nsoil and Psoil; section
S1.4), PFT (section S1.5), and temporal informa-
tion (year and month (YrMon)) as the explanat-
ory variables. We constructed pixel-wise RF models
for LAI (RF_LAI; section S2.2), as global ones were
less adequate in predicting interannual variation and
trend benchmarking (Kelley et al 2013, Li et al 2016).

In the GPP model (RF_GPP), the dependent vari-
able was the FLUXNET-GPP, and the explanatory
variables included canopy structure (LAI), canopy
physiological factors (foliar nitrogen and phosphorus
concentration per unit dry mass (Nm and Pm); and
the maximum rate of Rubisco carboxylation (V cmax)),
MFs, PFT, geographic location (latitude (Lat), longit-
ude (Lon)), and temporal information (table S1). We
used partial dependence plots to analyse and inter-
pret the variations of RF modelled GPP with envir-
onmental factors (Friedman 2001, Hastie et al 2001;
figure S3; section S2.2).

The RF_LAI and RF_GPP can be hierarchically
nested because LAI was the dependent variable in the
LAI model and the explanatory variable in the GPP
model (figure 1(a)). For both LAI and GPP models,
the data were divided into 70% for training and 30%
for validation, where R2 and RMSE were calculated.
The LAI and GPP global maps were evaluated using
the GIMMS LAI4g dataset (LAIact, section S1.2) and
the Global GPP dataset (GPPact, see section S1.1.2).
As both LAIact and GPPact included CFE, the CFE was
added to predicted LAI and GPP exclusively in the
evaluation.

2.3. Quantifying the environmental effects (except

CO2) on GPP

Based on the RF models, we used multiple simula-
tion scenarios to disentangle and quantify the dir-
ect and indirect effects of key environmental factors
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on GPP (Chen 2023). Monthly data between 1982
and 2020 were used. The first simulation (S1) pro-
duced two GPP baselines. With the same physiolo-
gical and environmental data, the difference between
the baselines was the choice of LAI data. We used
GPPpre to represent the GPP baseline produced from
GIMMS LAI4g and GPPLAIpre to represent the GPP
baseline produced from RF-modelled LAI (LAIpre)
(figure 1(a), table S2).

The second simulation (S2) was used to evalu-
ate the effects of Tmp on GPP (figure 1(b), table S3).
For the direct effect, GPPdir

Tmp was derived from the
RF_GPP with the Tmp value fixed as the monthly
average of the first five years (1982–1986) and other
variables (including LAI) from the observation. The
five-year-average was used to mitigate potential cli-
mate fluctuations in a particular year (Song et al 2018,
Sun et al 2018). For the indirect effect, GPPind

Tmp was
also derived from the RF_GPP but with observed Tmp
and estimated LAI from the RF_LAI (LAITmp) where
Tmp was fixed as the average. For the overall effect,
GPPall

Tmp was derived with Tmp fixed as the average in
both RF_GPP and RF_LAI. Similar to S2, the effect
of SRAD, VPD, and SM were evaluated by simula-
tions S3 to S5. We also conducted simulation 6 (S6),
where MFs were fixed, to analyse the total effects of
four environmental factors on LAI and GPP. Based on
the simulations and equations (1)–(4) (figure 1(b)),
the contributions of the environmental factors on
LAI (�LAIX) and their direct, indirect, and over-
all contributions on GPP (�GPPdir

X , �GPPind
X , and

�GPPall
X ) can be obtained (figure 1(b)). Multiple lin-

ear regression was applied to annual averages of the
contributions. Slopes of the regressions were used to
determine contribution trends of the environmental
factors, denominated as ConLAI

X , Condir
X , Conind

X , and
Conall

X , respectively. The relative dominance of indi-
vidual Condir

X and Conind
X was further evaluated via

their absolute values and the sum (section S2.2).

2.4. Direct and indirect effects of CO2 on global

GPP

We used the nested machine-learning model and the
FvCB C3 photosynthesis model (section S2.1) to cal-
culate the predicted GPP that accounted for CFE,
obtaining GPP + CFE

LAIpre from GPPLAIpre. We also derived
GPPLAIact using RF_GPP and LAI before removing
the CFE (LAIact). The direct effect of CO2 (Condir

CO2
)

was calculated as the trend of the difference between
GPP + CFE

pre and GPPpre; the indirect effect (Conind
CO2

)
was the trend of the difference between GPPLAIact and
GPPLAIpre; and the overall effect was the trend of the
difference between GPP + CFE

LAIact and GPPLAIpre.

3. Results

3.1. LAI and GPP from RF models

The LAI and GPP predicted by the hierarchical nes-
ted RF models (RF_LAI and RF_GPP) had high

accuracies compared to the observed LAI from
Cao et al (2023) and observed GPP from Zhao and
Zhu (2022), with the fitting lines close to the 1:1
line (figure 2). The models were also considered
robust with high Out-Of-Bag R2 (LAI: 0.8841; GPP:
0.8488) and low RMSE (LAI: 0.1929 m2 m�2; GPP:
43.5791 g C m�2 mon�1) (figure 3).

In RF_LAI, MFs and temporal information were
the dominant variables (figure 3(a)). In RF_GPP, LAI
was more influential than others (figure 3(b)). The
spatial distribution of RF-predicted LAI and GPP can
be found in section S3.1 (figure S4). While our models
boasted a high level of accuracy overall, they could be
less accurate in predicting LAI/GPP trends over cer-
tain areas. For GPP, lower absolute values (underes-
timation) of the trend can be found in northeast and
southern Africa, southern and eastern Australia, and
southern North America (figures 4(d) and (e)).

3.2. Direct effects of environmental factors on

global GPP

We found that warming has directly increased GPP by
0.0432 Pg C yr�2, followed by the effects of enhanced
radiation (Condir

SRAD = 0.0227 Pg C yr�2, p � 0.01).
They accounted for 11.09% and 5.82% of the total
effects. The largest negative effect observed was from
elevated VPD with Condir

VPD = �0.0082 Pg C yr�2

(2.10%, p � 0.01), being stronger than the decreased
SM (Condir

SM = �0.0053 Pg C yr�2, p � 0.01, 1.36%)
(figure 5 and table S4). The overall direct effects of
the four factors on GPP showed a significant pos-
itive trend (Condir

MF = 0.0557 Pg C yr�2, p � 0.01,
figure 5(e)). The spatial distribution results showed
that the direct effects of warming were mainly in
the northern mid-high latitudes and, were especially,
noticeable in evergreen needleleaf forests, deciduous
needleleaf forests, deciduous broadleaf forests and
wetlands (figure S7(a)).

The direct effect of changes in the atmospheric
CO2 concentration on GPP was 0.2025 Pg C yr�2

(figure 5(f)), accounting for more than half (51.96%)
of the total contribution (p � 0.01, table S4). With
the MFs being fixed (Condir

MF), GPP also responded
positively to the combined effect of environmental
factors (figure 5(e)). CFE in the last 40 years played a
dominant role in directly promoting the GPP growth
for all vegetation, particularly for evergreen decidu-
ous forests (EBF) (figure S7(b)).

3.3. Indirect effects of environmental factors on

global GPP

Warming was the factor that dominated the indir-
ect effect on GPP. We also found that the rising
VPD and declining SM impact GPP more through
indirect pathway rather than direct pathway. The
indirect effect of increased VPD (�0.0093, 2.39%,
p � 0.01) was higher than its direct effect (�0.0082,
2.10%, p � 0.01) and was half of the indirect effect
of warming (0.0197, 5.06%, p � 0.01). It has also
been found that the negative indirect effect due to
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Figure 2. Performance evaluation of RF_LAI and RF_GPP. (a) and (d) show annual average LAI (LAIpre) from RF_LAI and
annual trends at validation sample locations (SLAIpre) against those from the GIMMS LAI4g (LAIact;SLAIact); (b) and (e) show the
assessment of global GPP fluxes (GPPpre) from RF_GPP and trends at sample locations (SGPPpre) against the GPPact andSGPPact; (c)
and (f) show the assessment of global GPP fluxes (GPPLAIpre) from RF_LAI and RF_GPP and trends at sample locations
(SGPPlaipre) against the GPPact and SGPPlaiact. The black line is the 1:1 line.

Figure 3. The relative importance of explanatory variables involved in (a) RF_LAI and (b) RF_GPP. For RF_LAI, the variables
include soil nutrient factors (Nsoil and Psoil), meteorological factors, PFT, and temporal information. (a) is averaged from the
relative importance of all pixel models. For RF_GPP, the explanatory variables include the canopy structure, canopy physiological,
environmental, geographic location, and temporal factors (see section 2.2).

elevated VPD was particularly significant in open
shrublands and grasslands (figure S7(a)). At the
same time, the indirect effect of SM was approxim-
ately equal to its direct effect (Condir

SM = �0.0053,
Conind

SM = �0.0050). The total indirect effect of MFs
on GPP indicated that the positive effect of Tmp off-
set the negative indirect effects of factors such as
VPD (Conind

MF = 0.0097 Pg C yr�2, p � 0.01; table

S4). Meanwhile, we found that warming could indir-
ectly lead to GPP loss in EBF by lowering LAI (figure
S7(a)). In addition, SRAD had a negative effect on
GPP through LAI, but this effect was very slight
(�0.0022; table S4). The indirect negative response
of GPP to radiation enhancement was observed in
savannas (SAV) and closed shrublands (CSH) (figure
S7(a)).
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Figure 4. Spatial patterns of global LAI and GPP trends during 1982–2020. (a) is the GIMMS LAI4g (LAIact); (b) is LAI predicted
by RF_LAI (LAIpre); (c) is GPPact; (d) is GPPpre; (e) is GPPLAIpre. The two numbers in each subplot represent the 10th and 90th
percentile values, respectively. (f) is the distribution of observed or modelled trends. Black dots indicate trends that are
statistically significant (p� 0.05).

Figure 5. Effects of environmental change on GPP during 1982�2020.�GPPX represents the difference between the predicted
GPP value after fixing the environmental factors (S2�S6) and the actual predicted GPP value (S1). The unit of contribution is Pg
C yr�2. (a)–(f) refers to Tmp, SRAD, VPD, SM, MF, and CO2, respectively. ∗∗ represents significance at 99% confidence interval
(p� 0.01).
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The indirect effect of elevated atmospheric CO2

concentration on GPP was higher than warming
(figure 5(f)), accounting for 18.37% of the total
effects. The percentage was much less than the direct
effect yet still remarkable. The combined positive
effects of elevated atmospheric CO2 concentration
and warming outweighed the negative effects of elev-
ated VPD and decreased SM (table S4).

3.4. The overall effects of environmental factors on

global GPP

During 1982–2020, overall GPP growth has been
primarily driven by increased CO2 concentration and
warming, with the hidden negative effects dominated
by rising VPD and decreasing SM (figure 7). The GPP
trend decrease due to rising VPD (�0.0179 Pg C yr�2,
4.59%) was far smaller than the increase due to warm-
ing (0.0642 Pg C yr�2, 16.47%); and both of them
were much smaller than the increase due to elev-
ated CO2 concentration (0.2102 Pg C yr�2, p� 0.01,
53.94%; figure 7).

Overall, the direct contribution of elevated CO2

concentration was higher than the indirect contribu-
tion (table S4; direct: 51.96%, indirect: 18.37%). The
direct contribution of warming to global GPP trends
was more than twice as large as the indirect contribu-
tion (direct: 11.09%, indirect: 5.06%). In contrast, the
indirect pathways were more essential for VPD (dir-
ect: 2.10%, indirect: 2.39%) and SM (1.36%, 1.28%).

4. Discussion

4.1. The important role of temperature and VPD in

regulating global GPP

The direct and indirect warming contributions to the
GPP trend had a ratio of approximately 2:1. Climate
warming directly promotes the increase of plant
internal temperature, which promotes the activity of
the enzymes (plant photosynthesis) and consequently
increases the maximum photosynthetic rate (Nemani
et al 2003, Thomas et al 2016). The results of large-
scale leaf-level photosynthesis experiments in differ-
ent biomes by Liang et al (2013) also showed that cli-
mate warming increased the net photosynthetic rate
by 6.13%. At the same time, a higher temperature
may extend the length of the growing season and
alter photosynthetic carbon assimilation and increase
vegetation production (Myneni et al 1997, Bastos
et al 2019, Gu et al 2022). The early spring phen-
ology of trees has been widely reported in response
to the increasing temperature in recent decades. The
lengthened growing season allowed plants to have
longer time for photosynthesis. This aligns with the
indirect pathway of warming. In addition, warming-
induced GPP promotion was manifested in most
parts of the globe, especially in the high latitudes of
the northern hemisphere, mainly through the direct
effect (figures 6 and S6). This is also consistent with

previous findings that productivity in high north-
ern latitudes is mainly limited by low temperatures
(Liu et al 2018). However, warming may also exert a
negative influence on terrestrial ecosystems. Leaf and
canopy photosynthesis are inhibited when temper-
ature reaches a certain threshold (Kattge and Knorr
2007, Lloyd and Farquhar 2008, Huang et al 2019).
A recent study by Doughty et al (2023) showed that
tropical forest leaves are more vulnerable to increas-
ing temperatures, which may close stomata and cause
leaf browning and necrosis (Wilson and Raven 1988,
Doughty et al 2008, Hubau et al 2020). Meanwhile, we
also found that warming could indirectly lead to GPP
loss in EBF by lowering LAI (figure S7(a)).

Global warming generally leads to higher VPD
and evaporation rates (Huang et al 2015). It has been
found that there has been a significant increase in
VPD globally over the last 40 years, due to an increase
in saturated water vapor pressure and a decrease in
actual vapor pressure (Willett et al 2014, Yuan et al
2019, Franklin et al 2020). The increase in VPD
potentially limits vegetation photosynthesis at the leaf
scale by reducing stomatal conductance and increas-
ing nonphotochemical quenching (Flexas et al 2002,
Lu et al 2018, Song et al 2022). This effect is primar-
ily observed as negatively impacting LAI. In Yuan’s
study, VPD was negatively correlated with LAI when
the effects of Tmp, SRAD, and atmospheric CO2 con-
centration were excluded (Yuan et al 2019). On the
one hand, increased VPD would trigger stomatal clos-
ure, leading to carbon starvation at the tissue level;
on the other hand, reduced soil water supply coupled
with high evaporation demand dry out plant tissues,
both of which may lead to plant death (McDowell
et al 2008, Yuan et al 2019, Hubau et al 2020). Above
reasons explained the result that the indirect effect of
rising VPD was higher than its direct effect in this
study. Meanwhile, our results were also consistent
with other studies that found global GPP was sig-
nificantly controlled by a higher atmospheric VPD
after 2000 (Madani et al 2020). This was confirmed
by our funding that indirect negative effect of rising
VPD on GPP over the last 20 years offset the indir-
ect positive effect of warming over the last 20 years
(figures S2 and S8). Warming could promote photo-
synthesis while exacerbating the water crisis to lessen
GPP, especially in relatively arid ecosystems (e.g. CSH,
SAV, and grasslands (GRA)), which is also found in
this study (figure S7). In the northern high latitudes,
however, we observed significant positive impact on
GPP from elevated VPD, mainly because high VPD
usually coincides with high temperature. Previous
studies have confirmed their joint effect in increas-
ing vegetation productivity in cold regions (Piao et al
2007, Xia et al 2014) (figure S6).

The correlation between SM and VPD arises
because of the linkage and feedback between SM,
plant stomatal conductance, and transpiration
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Figure 6. Spatial patterns of the contributions of environmental changes on GPP during 1982�2020. (a)–(c) are contributions of
meteorological factors (including Tmp, SRAD, VPD, and SM); (d)–(f) are contributions of changes in the atmospheric CO2

concentration on GPP. The two numbers in each subplot represent the 10th and 90th percentile values, respectively. The insets in
(a), (c), (d), and (f) indicate the corresponding data distributions. Black dots indicate trends that are statistically significant
(p� 0.05).

Figure 7. A comparison of contributions from environmental factors on GPP during 1982–2020. Red: direct effect; blue: indirect
effect; black: total effect. See sections 2.3 and 2.4 for quantification of multi-pathway effects.
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(Seneviratne et al 2010, Stocker et al 2018). An
increasing VPD implies an increase in the amount
of water vapour lost by plants to the atmosphere
through transpiration and soil evapotranspiration.
Stocker et al (2018) simulated lower SM on the reduc-
tion of light energy utilization, which reduced annual
photosynthesis by about 15% globally. His results
emphasized the limiting effect of SM on vegetation
productivity, especially when drought occurs. In con-
trast, Yuan et al (2019) used different simulation
models to show a significant VPD increase in the
future. A recent study using flux tower observations
also found that a decrease in GPP was not gener-
ally associated with a decrease in SM but was, rather,
dominated by an increase in VPD (Fu et al 2022).
Our study indicated that the increase in atmospheric
dryness would have a greater impact on GPP than the
decrease in SM, and the significant upward trend in
VPD over the last 20 years reminds us to emphasize
the critical impact of future changes in atmospheric
dryness on GPP (Yuan et al 2019).

4.2. The contribution of increasing CO2

concentration on global GPP

The highly significant upward trend in observed LAI
and GPP over the 40 years, as shown in previous
studies as well as in this study, prompted a continu-
ous increase in vegetation greenness and productiv-
ity (Piao et al 2015, Zhu et al 2016, Haverd et al
2020, Fu et al 2022). Previous studies have emphas-
ized the important role of atmospheric CO2 concen-
tration, Tmp, and VPD on vegetation productivity
formation, but the results varied greatly across the
globe. Haverd et al (2020) identified rising atmo-
spheric CO2 concentration as the dominant driver
in global GPP, revealing a global CFE on photosyn-
thesis of 30% since 1900. A small fraction (∼8.1%–
15.0%) of the warming and CO2-induced elevation
in solar-induced fluorescence (SIF) (or GPP) was off-
set by the negative effect of increased VPD in more
than 50% of vegetated areas globally over the last
two decades (Song et al 2022). However, other stud-
ies showed that more than half of the CFE was offset
by the strong effect of elevated VPD on GPP (Yuan
et al 2019, He et al 2022). The comparative analysis
by Song et al (2022) suggested that the inconsistent
results in current studies, despite with similar meth-
ods, may be related to different proxies for vegetation
productivity.

This study concluded that the effect of CO2

changes occupies an absolutely important position
compared to other environmental factors. The sig-
nificant increase in the atmospheric CO2 concentra-
tion over the last 40 years caused GPP to increase
at a rate of 0.2102 Pg C yr�2. In terms of direct
effects, the increase in GPP driven by CFE far out-
weighed the multifaceted negative effects induced by
the increased VPD and reduced SM. It has been repor-
ted that the effect of CO2 fertilization accounted for

47.0% of the cumulative change in the terrestrial car-
bon sink (Chen et al 2019), which was consistent with
our results for the direct response of GPP to an elev-
ated CO2 concentration. The increase in CO2 could
improve the water use efficiency of plants (Reich et al
2014), which compensates for the deficiency of water
use to some extent. The CFE in semi-arid ecosystems
also counteracted the negative effects of water stress.
Meanwhile, elevated CO2 concentration can increase
vegetation biomass fixation and promote the expan-
sion of leaf area. The indirect effect of increased CO2

concentration in our results accounted for 34% of its
total effect and accounted for 18.37% of total effects,
confirming this essential indirect role. This was con-
sistent with previous findings that 70% of the global
greening trend was attributed to CFEs (Zhu et al
2016). The total effect of CFE accounted for 53.94% of
the total effect of all factors, confirming the important
driving role of rising CO2 on vegetation productivity
growth (figure 6 and table S4).

4.3. Uncertainty analysis

The sources of uncertainty in this study may include
(1) the RF machine learning models that lack sup-
port for physiological mechanisms and the interac-
tion between LAI and GPP requires further explora-
tion (see supplementary section 4.1); (2) the FvCB C3
photosynthesis model that does not directly explore
the indirect effect of the increased CO2 concentra-
tion on GPP through LAI; (3) the unavailability of
monthly or seasonal physiological data for the leaf
nutrient and photosynthetic characterization (Yan
et al 2022); and (4) the lack of sufficient FLUXNET
sites for GPP modelling in certain regions such as East
Asia, and the tropics.

5. Conclusion

This study quantified the direct and indirect effects of
key environmental factors on global GPP by machine
learning models and a theoretical photosynthesis
model. The results showed that the direct contribu-
tion of environmental change on global GPP was
0.2819 Pg C yr�2, with individual direct impact
ranged from 1.36% to 51.96% of the total effects.
Among the direct effects, the positive contribution of
elevated CO2 concentration on GPP was the highest.
The direct promotion of GPP by warming was suf-
ficient to offset the negative direct effect caused by
the increased VPD and decreased SM. There were also
notable indirect influences of environmental factors
on global GPP (0.1078 Pg C yr�2), which contrib-
uted 0.56%–18.37% of the total effects. In particular,
the rising VPD and declining SM negatively impacted
GPP more through the indirect pathway rather than
the direct pathway, but these negative effects were
counteracted by the boost of warming over the past
four decades. Our results underscored the importance
of evaluating the indirect effects of environmental
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factors on GPP and would benefit future studies of
climate change’s impacts on terrestrial vegetation.
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