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Abstract. Leaf area index (LAI) with an explicit biophysical meaning is a critical variable to characterize ter-
restrial ecosystems. Long-term global datasets of LAI have served as fundamental data support for monitoring
vegetation dynamics and exploring its interactions with other Earth components. However, current LAI products
face several limitations associated with spatiotemporal consistency. In this study, we employed the back propaga-
tion neural network (BPNN) and a data consolidation method to generate a new version of the half-month 1/12◦

Global Inventory Modeling and Mapping Studies (GIMMS) LAI product, i.e., GIMMS LAI4g, for the period
1982–2020. The significance of the GIMMS LAI4g was the use of the latest PKU GIMMS normalized differ-
ence vegetation index (NDVI) product and 3.6 million high-quality global Landsat LAI samples to remove the
effects of satellite orbital drift and sensor degradation and to develop spatiotemporally consistent BPNN models.
The results showed that the GIMMS LAI4g exhibited overall higher accuracy and lower underestimation than its
predecessor (GIMMS LAI3g) and two mainstream LAI products (Global LAnd Surface Satellite (GLASS) LAI
and Long-term Global Mapping (GLOBMAP) LAI) using field LAI measurements and Landsat LAI samples.
Its validation against Landsat LAI samples revealed an R2 of 0.96, root mean square error of 0.32 m2 m−2, mean
absolute error of 0.16 m2 m−2, and mean absolute percentage error of 13.6 % which meets the accuracy target
proposed by the Global Climate Observation System. It outperformed other LAI products for most vegetation
biomes in a majority area of the land. It efficiently eliminated the effects of satellite orbital drift and sensor
degradation and presented a better temporal consistency before and after the year 2000. The consolidation with
the reprocessed MODIS LAI allows the GIMMS LAI4g to extend the temporal coverage from 2015 to a recent
period (2020), producing the LAI trend that maintains high consistency before and after 2000 and aligns with the
reprocessed MODIS LAI trend during the MODIS era. The GIMMS LAI4g product could potentially facilitate
mitigating the disagreements between studies of the long-term global vegetation changes and could also benefit
the model development in earth and environmental sciences. The GIMMS LAI4g product is open access and
available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023).
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1 Introduction

Leaf area index (LAI), defined as half of the total green leaf
area per unit of horizontal surface, is a key variable in veg-
etation change monitoring (Piao et al., 2015; Valderrama-
Landeros et al., 2016; Zhu et al., 2016), land surface mod-
eling (Boussetta et al., 2013, 2015; Chen et al., 2015), and
crop yield estimation (De Wit et al., 2012; Dente et al., 2008),
etc. It is one of the basic terrestrial climate variables se-
lected by the Global Climate Observation System (GCOS)
(WMO et al., 2022). Remote sensing observation has been
the only reliable means of obtaining spatiotemporally contin-
uous LAI products at the global scale (Ma and Liang, 2022).
The common practice is to relate remote sensing data with
ground LAI measurements or other remote sensing products
of higher reliability (as LAI reference), using methods in-
cluding statistical modeling (Liu et al., 2012; Kimura et al.,
2004; Broge and Leblanc, 2001), physical modeling (My-
neni et al., 2002), and machine learning (Xiao et al., 2014;
Zhu et al., 2013; Ma and Liang, 2022; Kang et al., 2021). A
number of long-term global LAI products, such as the third-
generation Global Inventory Modeling and Mapping Stud-
ies (GIMMS) LAI (GIMMS LAI3g) (Zhu et al., 2013), the
Global LAnd Surface Satellite (GLASS) LAI (Xiao et al.,
2016), the Long-term Global Mapping (GLOBMAP) LAI
(Liu et al., 2012), and the Terrestrial Climate Data Record
(TCDR) LAI (Claverie et al., 2016), have been released.
These products have provided many in-depth insights into
how global vegetation responds to human disturbances and
global warming (Zhu et al., 2016; Piao et al., 2015; Chen et
al., 2019a). Specifically, the GIMMS LAI3g has been one of
the core data references in the IPCC Sixth Assessment Re-
port for the assessment of global vegetation changes (Eyring
et al., 2021).

However, the accuracies of the current LAI products have
been limited by uncertainties primarily in the remote sens-
ing data and the LAI reference data (Fang et al., 2019; Jiang
et al., 2017). First, the remote sensing data being used have
some common issues. For example, false gradual signals and
mutations have been widely observed in the LAI time series
prior to the late 1990s for mainstream long-term LAI prod-
ucts, as most of them utilized data from the Advanced Very
High Resolution Radiometer (AVHRR) (Wang et al., 2022).
The AVHRR sensors on board National Oceanic and Atmo-
spheric Administration (NOAA) satellites were the only re-
mote sensing data sources before the late 1990s that provided
spatiotemporally continuous observations over the globe.
Nevertheless, they suffered from issues of NOAA satellite
orbital drift and AVHRR sensor degradation, particularly in
the tropical area of evergreen broadleaf forests (Pinzon and
Tucker, 2014). Second, the LAI reference data used to build
LAI models have been scarce, particularly before the late
1990s. After the year 2000, global LAI products became in-

creasingly available from advanced sensors such as the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (My-
neni et al., 2002), the Système Pour l’Observation de la Terre
(SPOT) (Baret et al., 2007), and the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) (Yan et al., 2018). These LAI
products have been elaborately and collaboratively validated
albeit with a short time span. Current studies employed them
as the LAI reference to build post-2000 AVHRR-LAI mod-
els and extrapolated the models onto pre-2000 AVHRR data
so that long-term LAI products could be produced (Chen et
al., 2019a). Nonetheless, the validity of the extrapolation re-
mains questioned since the AVHRR-LAI relationship could
change with time.

The uncertainties in the remote sensing and LAI refer-
ence data, together with the differences in modeling al-
gorithms, have resulted in the performance of long-term
global LAI products varying from one another. Inconsisten-
cies were continually found between LAI products regardless
of the remote sensing data source used (Jiang et al., 2017).
For example, four popular global data sets of LAI (1982–
2010s), namely, the GLASS LAI, GLOBMAP LAI, GIMMS
LAI3g, and TCDR LAI, showed significant differences in
LAI trends, interannual variabilities, and uncertainty varia-
tions (Jiang et al., 2017; Xiao et al., 2017). In tropical areas,
the average LAI difference can be up to 1 unit (Yan et al.,
2016). These differences between LAI products have raised
many concerns about the robustness of existing vegetation
change analysis and land surface modeling (Alkama et al.,
2022; Jiang et al., 2017; Piao et al., 2015).

Recent advances in land data products have provided path-
ways to address the uncertainties. In particular, the PKU
GIMMS normalized difference vegetation index (NDVI)
product (1982–2022) by Li et al. (2023a) efficiently elim-
inated the evident NOAA orbital drift and AVHRR sensor
degradation effects. It demonstrates higher accuracy than its
predecessor (GIMMS NDVI3g) and shows a high temporal
consistency with MODIS NDVI. Zha et al. (2023) developed
a set of global reference LAI data from 1984 to 2020, which
comprise approximately ∼ 4.9 million high-quality Landsat
LAI samples. The validation against LAI field measurements
showed an R2 of 0.76. Although these Landsat LAI sam-
ples can hardly be used to characterize the global vegeta-
tion change because they are not spatiotemporally continu-
ous, they can serve as reliable LAI references.

In this context, the objective of this study is to derive a
new generation of GIMMS LAI products (GIMMS LAI4g,
1982–2020) using machine learning models based on the
PKU GIMMS NDVI product and massive high-quality Land-
sat LAI samples and a data consolidation method based on
the reprocessed MODIS LAI product. We employ the PKU
GIMMS NDVI and the Landsat LAI samples to address the
uncertainties in remote sensing and LAI reference data. With
these data, biome-specific back propagation neural network
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(BPNN) models are developed with additional explanatory
variables (the longitude and latitude, the NDVI month, and
the NOAA number and years since launch). The GIMMS
LAI4g product is then generated from the BPNN models.
Finally, the GIMMS LAI4g is consolidated with the repro-
cessed MODIS NDVI product via a pixel-wise fusion method
to extend the temporal coverage to the year 2020. We eval-
uate the accuracy of the GIMMS LAI4g by a direct valida-
tion method and compare its accuracy with that of three other
global LAI products, i.e., GIMMS LAI3g, GLASS LAI, and
GLOBMAP LAI. The temporal consistency of the global
LAI products and their LAI trends are also analyzed.

2 Data

A total of eight global datasets were used in this study,
namely, the PKU GIMMS NDVI, Landsat LAI sample
dataset, MODIS Land-Cover Type, reprocessed MODIS
LAI, GLASS LAI, GLOBMAP LAI, GIMMS LAI3g, and
field LAI measurements. The PKU GIMMS NDVI was the
primary data source from which the GIMMS LAI4g was
generated. The Landsat LAI sample dataset was used as the
LAI reference in machine learning model establishment and
product evaluation. The field LAI measurements were also
employed for product evaluation. The MODIS Land-Cover
Type product provided vegetation biome types in the LAI
modeling. The reprocessed MODIS LAI was used to extend
the temporal coverage of the GIMMS LAI4g. The GLASS
LAI, GLOBMAP LAI, and GIMMS LAI3g are three main-
stream global LAI products that were included for an inter-
comparison purpose.

2.1 PKU GIMMS NDVI

The PKU version of the GIMMS NDVI product (PKU
GIMMS NDVI) was employed in this study (Li et al., 2023a,
b). It has a spatial resolution of 1/12◦ and a temporal resolu-
tion of half-month. In the generation of PKU GIMMS NDVI,
Landsat NDVI from Thematic Mapper (TM), Enhanced The-
matic Mapper Plus (ETM+), and Operational Land Imager
(OLI) were first cross-calibrated by adjusting the TM and
OLI NDVI to the ETM+ level via random sample locations
and the BPNN model (Berner et al., 2020). The sample loca-
tions were refined by removing those with high atmospheric
opacity and low quality, which was defined by the occurrence
of clouds, cloud shadows, water, or snow and implausible ra-
diation performance. In the BPNN model, the explanatory
variables included the NDVI of TM or OLI, the image acqui-
sition day of the year, and the sample location longitude and
latitude; the target variable was the NDVI of ETM+.

After cross-calibration, massive high-quality Landsat
NDVI samples were extracted by screening out samples that
suffered from the Mount Pinatubo eruption (August 1991 to
December 1992) as well a high atmospheric opacity and a
bad quality (same as sample screening in cross-calibration).

The Landsat NDVI samples were employed to calibrate the
GIMMS NDVI3g product with other explanatory variables
(the longitude and latitude, NDVI month, and NOAA satel-
lite number and years since its launch) using biome-specific
BPNN models. The calibrated NDVI product was finally
consolidated with the MODIS NDVI product to extend the
temporal coverage to the year 2022.

The major improvement of PKU GIMMS NDVI over its
counterparts is that it removed well the NOAA orbital drift
and AVHRR sensor degradation effects, especially in tropical
regions (Fig. S1 in the Supplement). Its overall R2, root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are 0.97, 0.05, 0.03, and
9 %, respectively. It is highly consistent with MODIS NDVI
in terms of pixel value (R2

= 0.96, RMSE = 0.05, MAE
= 0.03, and MAPE = 6%) and global vegetation trend. The
PKU GIMMS NDVI record during AVHRR missions from
1982 to 2015 (before consolidation with MODIS NDVI) was
used in this study. It inherited the quality control (QC) in-
formation from the GIMMS NDVI3g. A QC value of 0,
1, and 2 indicates NDVI of good quality, NDVI retrieved
from spline interpolation, and NDVI retrieved from aver-
age seasonal profile, respectively. The dataset is available at
https://doi.org/10.5281/zenodo.7441558 (Li et al., 2023b).

2.2 Landsat LAI sample dataset

The Landsat LAI sample dataset provides approximately
4.9 million high-quality samples with a spatial resolution of
1/12◦ and a temporal resolution of half a month (Zha et al.,
2023). It covers the global vegetated area with all vegetation
biome types defined in the MODIS land cover product (the
third classification scheme; see Sect. 2.4) and a long time
span from 1984 to 2020. In the generation of Landsat LAI
samples, 70 000 sample locations for deciduous needleleaf
forests (DNF) and 100 000 sample locations for each of the
other vegetation biome types were randomly selected based
on the MODIS land cover product. At the sample locations,
MODIS LAI (MCD15A2H Collection 6 in 500 m resolution)
and Landsat surface reflectance from TM, ETM+, and OLI
scenes (20×20 pixels in 30 m resolution) were extracted, cre-
ating massive sample pairs. The sample pairs were then rig-
orously screened by criteria that were not limited to those
mentioned in Sect. 2.1 (i.e., clouds, cloud shadows, etc.) but
also included Landsat sample purity, NDVI–LAI relation-
ship, and the saturation state of the MODIS LAI. Biome-
and Landsat sensor-specific random forest models with other
explanatory variables (NDVI, normalized difference water
index (NDWI), enhanced vegetation index (EVI), the lon-
gitude and latitude, and the solar zenith and azimuth an-
gles) were built based on the sample pairs. The models were
applied to historical Landsat data at 40 000 random sam-
ple locations (1/12◦) to create the final Landsat LAI sample
dataset. Validation of the dataset through observations from
the BEnchmark Land Multisite ANalysis and Intercompari-
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son of Products (BELMANIP) network (Baret et al., 2006)
and the Oak Ridge National Laboratory (ORNL) (Scurlock
et al., 2001) showed high absolute accuracies (R2

= 0.76,
MAE = 0.45 m2 m−2, RMSE = 0.66 m2 m−2). The inter-
comparison with the MODIS LAI shows a high temporal
consistency. This study selected 3.6 million Landsat LAI
samples between 1984 and 2015.

2.3 Reprocessed MODIS LAI product

The reprocessed MODIS LAI product (version 6) has a
time span of 2000–2020, a temporal resolution of 8 d or
1 month, and a spatial resolution ranging from 500 m to
0.5◦. The product was derived from the MODIS LAI Ver-
sion 6 products (Myneni et al., 2015a, b) and MODIS Land
Cover Type product (Friedl and Sulla-Menashe, 2022) us-
ing an integrated two-step method (Yuan et al., 2011). Com-
pared to the original MODIS LAI products, it is more spa-
tiotemporally continuous and consistent as verified by 44
LAI reference maps which contain true LAI values col-
lected over a subset of 26 ground sites. We downloaded the
8 d 0.05◦ data from http://globalchange.bnu.edu.cn/research/
laiv6#download (last access: 16 September 2023), and re-
sampled the data to have the same spatial resolution (1/12◦)
and temporal resolution (half a month) as the GIMMS
LAI4g. The temporal subset of 2004–2020 was used in this
study because the LAI data in the evergreen broadleaf forest
were found exceptionally low between 2000 and 2003 com-
pared with other years (Fig. S2).

2.4 MODIS Land-Cover Type product (MCD12Q1)

The MODIS Land Cover Type Product (MCD12Q1, version
6.1) supplies global maps of annual land cover with a spatial
resolution of 500 m since 2001 (Friedl et al., 2002; Friedl
and Sulla-Menashe, 2022). It includes five legacy classifi-
cation schemes. This study selected the third classification
scheme (annual LAI classification). The annual LAI classifi-
cation scheme includes eight natural vegetation types (ever-
green needleleaf forests (ENF), evergreen broadleaf forests
(EBF), DNF, deciduous broadleaf forests (DBF), shrub-
lands (SHR), savannas (SAV), grasslands (GRA), croplands
(CRO)), and three non-vegetated lands (water bodies (WAT),
non-vegetated lands (NVG), and urban and built-up lands
(URB)). This study also used GLO in data analysis to rep-
resent the global vegetation biome (the ensemble of the eight
vegetation types). The spatial resolution of MCD12Q1 was
spatially aggregated to 1/12◦ in this study to match that of
PKU GIMMS NDVI. For each 1/12◦ grid, the aggregation
was conducted by calculating frequencies of each biome type
between 2001 and 2019 and identifying the most frequent
one. This generated a global land cover map that was consid-
ered static from 1982 through 2020 in this study (Fig. S3).
With potential errors, this strategy could be the best option at
the time.

2.5 GLASS LAI

The GLASS LAI (version 4) with a temporal resolution of
8 d was generated from the 0.05◦ resolution AVHRR sur-
face reflectance dataset provided by NASA’s Long Term Data
Record (LTDR) project (1982–2000) and the 1 km resolution
Terra MODIS surface reflectance dataset (MOD09) (2000–
2018) (Xiao et al., 2016). In the algorithm, biome-specific
general regression neural networks were built between the
surface reflectance data and LAI reference data which were
created by fusing Terra MODIS LAI (MOD15) with clump-
corrected CYCLOPES LAI over BELMANIP sites (Xiao et
al., 2016). The neural networks were then used to predict
global LAI (Xiao et al., 2014). The GLASS LAI (V4) prod-
uct was acquired from http://www.glass.umd.edu (last ac-
cess: 16 September 2023). It should be noted that version
5 and version 6 of the GLASS LAI product were available
when our study was prepared (Liang et al., 2021; Ma and
Liang, 2022).

2.6 GLOBMAP LAI

The latest GLOBMAP LAI product (version 3) with a spa-
tial resolution of 1/13.75◦ and temporal resolutions of half-
month (1982–2000) or 8 d (2001–present) was generated
based on GIMMS NDVI product (1982–2000) (Tucker et al.,
2005) and Terra MODIS surface reflectance (MOD09A1 C6)
(2001–present). The algorithm established relationships be-
tween MODIS LAI and GIMMS NDVI in a pixel-wise man-
ner during their overlapping period of 2000–2006. The rela-
tionships were then applied to GIMMS NDVI before 2000
(Liu et al., 2012). The GLOBMAP LAI (V3) product was
acquired from https://doi.org/10.5281/zenodo.4700264 (Liu
et al., 2021).

2.7 GIMMS LAI3g

The GIMMS LAI3g product (version 4) (1982–2016)
was generated biweekly in a 1/12◦ spatial resolution
(Zhu et al., 2013). It is available at https://drive.google.
com/drive/folders/0BwL88nwumpqYaFJmR2poS0d1ZDQ?
resourcekey=0-9IRE9s-0tFGfwB5qTpLjZw&usp=sharing/
(last access: 16 September 2023). The algorithm related
the GIMMS third-generation NDVI (NDVI3g) to the re-
processed MODIS LAI product via feed-forward neural
networks (Yuan et al., 2011). Twelve neural networks, one
for each month, were built using monthly averaged LAI and
NDVI data between 2000 and 2009. The GIMMS LAI3g
was then produced from GIMMS NDVI3g by applying the
neural networks to the period of 1982–2016.
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2.8 Field LAI measurements

The field LAI measurements were from three projects,
namely, BELMANIP 2.1 (available at https://calvalportal.
ceos.org/web/olive/site-description, last access: 16 Septem-
ber 2023) (Baret et al., 2006), DIRECT 2.1 (avail-
able at https://calvalportal.ceos.org/lpv-direct-v2.1, last ac-
cess: 16 September 2023) (Garrigues et al., 2008), and
ORNL (available at https://daac.ornl.gov/VEGETATION/
guides/LAI_guide.html, last access: 16 September 2023)
(Scurlock et al., 2001). The BELMANIP 2.1 and DIRECT
2.1 provide 3 km×3 km averaged LAI values derived from
sites in networks of FLUXNET, AERONET, VALERI, Big-
Foot, etc. The upscaling from site-based LAI to 3 km×3 km
LAI used high spatial resolution imageries such as Landsat
and SPOT. Most global long-term LAI products have utilized
the BELMANIP and DIRECT LAI as ground truth for prod-
uct evaluation (Myneni et al., 2002; Liu et al., 2012; Xiao et
al., 2016; Zhu et al., 2013), yet the LAI measurements in both
projects were available only after the late 1990s. Note that
GLASS LAI (version 4) also employed BELMANIP sites for
LAI model training (Xiao et al., 2016). This study further in-
corporated ORNL sites, which provided field LAI measure-
ments during 1932–2020 despite possible scaling effects due
to spatial heterogeneity. We prudently examined all the mea-
surements in BELMANIP 2.1, DIRECT 2.1, and ORNL, and
removed those that were acquired from heterogeneous sites
using an 8 km×8 km window (approximately 1/12◦). Re-
dundant measurements among the three projects were also
removed. In a spatial resolution of 1/12◦ and a temporal res-
olution of half-month, we averaged the measurements falling
in the same spatial or temporal domain. Finally, 113 field
LAI measurements from 49 sites were obtained. Information
on selected field LAI measurements can be found in Table S1
in the Supplement.

3 Methodology

The methodology includes three key steps (Fig. 1): (1) gener-
ating the GIMMS LAI4g product from biome-specific BPNN
models based on PKU GIMMS NDVI, Landsat LAI sam-
ples, and other explanatory variables; (2) consolidating the
GIMMS LAI4g product with the reprocessed MODIS LAI
product using a pixel-wise fusion method in their overlap-
ping time span (2004–2015); and (3) evaluating the GIMMS
LAI4g product using field LAI measurements and Landsat
LAI samples and comparing it with other global LAI prod-
ucts.

3.1 Generation of GIMMS LAI4g using BPNN

The artificial neural network (ANN) is a machine learning al-
gorithm inspired by the structure and function of biological
neural networks (Basheer and Hajmeer, 2000; Zhang et al.,
1998). It has been frequently used in ecological studies and

the generation of global LAI products (Panda et al., 2010;
Jahan and Gan, 2011; Zhu et al., 2013; Xiao et al., 2014;
Claverie et al., 2016). For example, a typical ANN, general
regression neural network, and BPNN were employed in the
production of TCDR LAI (version 5) (Claverie et al., 2016),
GLASS LAI (version 4) (Xiao et al., 2014), and GIMMS
LAI3g (Zhu et al., 2013), respectively. A typical ANN com-
prises input, output, and hidden layers, with each containing
several artificial neurons. During the model training process,
signals flowed from the input layer to the output layer, af-
ter likely passing through several hidden layers. Errors in the
output layer propagate backward to the previous layers until
they satisfy the user-defined threshold, and the network at-
tempts to minimize the discrepancies between observations
and predictions (Basheer and Hajmeer, 2000; Zhang et al.,
1998).

This study used the BPNN model to predict LAI val-
ues from the PKU GIMMS NDVI (1982–2015). Individual
BPNN models were developed for each vegetation biome.
The target variable in BPNN models was mainly from the
Landsat LAI samples (1984–2015) but also included 40 000
MODIS LAI values in regions and months where Land-
sat LAI samples were lacking. These regions were mostly
located in northern high latitudes that suffer from polar
night phenomena and low solar altitude angles in the winter.
Specifically, 10 000 reprocessed MODIS LAI values were
randomly introduced for each of GRA, SHR, SAV, and ENF
at latitudes > 25◦ N in the winter months (October to April).
Corresponding PKU GIMMS NDVI values of the same time
and at the same locations with the LAI samples were ex-
tracted as the explanatory variable. The LAI samples and
associated PKU GIMMS NDVI were further refined. Loca-
tions with negative NDVI values (e.g., contaminated by snow
and inland water bodies) and non-zero QC values in the PKU
GIMMS NDVI product were removed. After the refinement,
the samples were randomly divided into two groups, i.e., the
dataset for BPNN construction (80 %) and the dataset for
LAI product evaluation (20 %).

In the BPNN models, we also incorporated spatial infor-
mation (the longitude and latitude at the sample location),
temporal information (the NDVI month), and NOAA satellite
information (NOAA satellite number and years since launch)
as additional explanatory variables. A stepwise method was
employed to determine the best combination of explana-
tory variables for each vegetation biome. The PKU GIMMS
NDVI data were first included and evaluated in the BPNN
models (Scenario 1 or S1). Then, the spatial information that
accounts for spatial autocorrelation (S2), temporal informa-
tion that accounts for vegetation dynamic (S3), NOAA satel-
lite number (S4), and years since NOAA launch (S5) that ac-
count for potential satellite and sensor issues were added one
by one. In the model establishment, we repeatedly (50 times)
selected 50 000 random samples with replacement for each
vegetation biome. The 50 000 samples were split into 90 %
for model training and 10 % for model evaluation, in which
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Figure 1. Schematic diagram of the generation and evaluation of the GIMMS LAI4g product.

four error metrics of R2, RMSE (m2 m−2), MAE (m2 m−2),
and MAPE (%), were calculated. The error metrics deter-
mined the optimum combination of explanatory variables
and the optimum parameters for the final BPNN model of
each biome.

3.2 Consolidation of GIMMS LAI4g and MODIS LAI

The GIMMS LAI4g product derived from the PKU GIMMS
NDVI (1982–2015) which was based on AVHRR data did
not include LAI data since 2015. As such, it can hardly be
used to characterize recent vegetation dynamics. A couple
of global products have provided up-to-date LAI data using
satellite sensors available since the late 1990s (Baret et al.,
2007). A common practice to generate the long-term LAI
product is to consolidate the AVHRR-based LAI product
with the post-2000 LAI product. For example, both GLASS
LAI and GLOBMAP LAI consolidated LAI products from
AVHRR and MODIS. MODIS has been one of the most pop-
ular and verified data sources for LAI production. In this
study, the reprocessed MODIS LAI product (2004–2020)
was employed to extend the time span of the GIMMS LAI4g.

The consolidation method was inherited from the pixel-
wise linear fusion method proposed by Mao et al. (2012).
Compared to the global or biome-specific regression mod-
els, the pixel-wise method has demonstrated excellent accu-
racies, especially in regulating the temporal consistency be-
tween datasets (Mao et al., 2012). First, LAI values in the
overlapping period of 2004–2015 were extracted from the
GIMMS LAI4g and the MODIS LAI. Then, the most ap-
propriate random forest regression model (Breiman, 2001)

(instead of the linear model) was determined from the LAI
values at an 11× 11 window (approximately 1◦ equivalent)
around each pixel location, with GIMMS LAI4g data and
the pixel coordinates as the explanatory variables and repro-
cessed MODIS LAI data as the target variable. The final LAI
product comprised the GIMMS LAI4g (after consolidation)
(1982–2003) and the reprocessed MODIS LAI (2004–2020).

3.3 Evaluation of the GIMMS LAI4g product

In this study, the LAI reference samples were evaluated in
terms of their number, spatial distribution, and temporal dis-
tribution under different vegetation biome types. To assess
the representativeness of the samples, we also compared LAI
reference values at the sample locations with those from the
GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI using a
frequency histogram.

The performance of our GIMMS LAI4g product generated
from the BPNN model was evaluated and compared with
three other global long-term LAI products (i.e., the GIMMS
LAI3g, GLASS LAI, and GLOBMAP LAI) using field LAI
measurements and Landsat LAI samples. Four measures of
error were used: R2, RMSE (m2 m−2), MAE (m2 m−2), and
MAPE (%). R2 measures the percentage of variations that
models can explain; RMSE quantifies the variance of errors;
and MAE and MAPE measure absolute and relative error val-
ues at the sample level. For inter-comparison between the
GIMMS LAI4g and other LAI products, the spatial resolu-
tion and temporal resolution of all LAI products were uni-
fied to 1/12◦ and half a month, respectively. In the valida-
tion against Landsat LAI samples, the remaining 20 % Land-
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sat sample points with a spatial resolution of 1/12◦ were
employed for each vegetation biome. Based on the Land-
sat sample points, we used a dominance map to demonstrate
the global distribution of products with higher accuracy. The
map was drawn with 2◦× 2◦ grids using MAE values from
the GIMMS LAI4g, GIMMS LAI3g, and GLASS LAI. The
color of each grid was composed of reciprocal MAE aver-
ages of the LAI products, i.e., a lower MAE average can
lead to a higher weight in the composite. The GLOBMAP
LAI was not included because of its much higher MAE than
other products. We also showcased the spatial consistencies
between the four global LAI products by their spatial average
along latitude (at an interval of 1◦) in January and July of the
years 1990, 2000, and 2010.

The temporal consistency of the GIMMS LAI4g was eval-
uated from three perspectives. First, LAI bias was used to
examine whether the NOAA orbital drift and AVHRR sen-
sor degradation effects were alleviated in different vegeta-
tion biomes. The bias was calculated as the mean value of
LAI deviation relative to Landsat LAI in percentage (Helder
et al., 2013). If there is orbital drift or sensor degradation, the
bias will drastically fluctuate; otherwise, it remains constant.
Seasonal fluctuations in the time series of LAI bias were first
removed via the multi-year averaging method. Then, inter-
annual trends of the bias were extracted via the ensemble
empirical mode decomposition (EEMD) approach (Huang et
al., 1998). Second, the efficiency of data consolidation be-
tween the GIMMS LAI4g and MODIS LAI was reported.
We also checked the self-consistency of the GIMMS LAI4g
product over time in some hotspot regions including Europe
(Ciais et al., 2005), the Amazon (Wang et al., 2013), Congo
(Zhou et al., 2014), China, and India (Chen et al., 2019a).
Third, we used the Landsat LAI samples as the reference to
evaluate the consistency of the GIMMS NDVI4g between
different periods (p1: 1984–2015; p2: 1984–2000; and p3:
2001–2015) and compared the consistency with the other
three LAI products. The consistency was quantified by tem-
poral changes in R2, RMSE, MAE, and MAPE. To inves-
tigate whether the data consolidation alters the LAI trend,
we compared the annual anomalies and trends of GIMMS
LAI4g before consolidation (1982–2015), GIMMS LAI4g
after consolidation (1982–2020), reprocessed MODIS LAI
(2004–2020), and PKU GIMMS NDVI (1982–2015).

The LAI trends between 1982 and 2015 were derived and
compared between the four global LAI products. Linear re-
gression analysis was performed on the LAI time series at the
pixel level. The trend was calculated as the slope of the fitting
line, which indicates greening (positive slope) or browning
(negative slope). This produced a global map of LAI trend-
ing. We also analyzed annual LAI variations during 1982–
2015 and paid special attention to vegetation trends before
and after 2000 for all vegetation biome types. The annual
LAI value is an area-weighted average based on the vegeta-
tion biome type.

4 Results

4.1 Examination of LAI reference data

The spatial and temporal distributions of the LAI reference
data were determined mostly by the availability of Landsat
images but also by the occurrence of cloud cover, aerosol,
and other factors. Figure 2a shows the spatial distribution of
the 3.6 million LAI samples primarily from the Landsat LAI
dataset. The sample size for each vegetation biome, ranging
from 116 873 (ENF) to 1 503 768 (GRA), is also listed.
The sample locations spanned all latitudes of the vegetated
area, and no samples were selected from non-vegetation
regions. The sample size per biome was approximately
proportionate to the biome area (Fig. 2b). In northern
high latitudes, Landsat images were scarce throughout the
winter due to the polar night phenomenon and the low solar
altitude angle; and in the tropical area, Landsat images were
frequently contaminated by precipitation and clouds. As
a result, the number of available samples was limited in
these two areas (Fig. 2a). We addressed this issue by intro-
ducing 40 000 samples from the reprocessed MODIS LAI
at locations and months when Landsat LAI samples were
scarce. During 1984–2015, the Landsat LAI sample size per
year increased from 28,323 in 1984, peaked at 200 315 in
2001 when both Landsat 5 and Landsat 7 were available,
and then leveled off until 2012 (sample size: 22 106)
(Fig. 2b). From November 2011 to May 2012, very few
images were acquired with Landsat 5’s decommissioning,
(https://www.usgs.gov/centers/eros/science/usgs-eros-
archive-landsat-archives-landsat-4-5-thematic-mapper-tm-
level-1-data, last access: 16 September 2023). Since the
launch of Landsat 8 in 2013, the Landsat LAI sample
became steadily available again.

To evaluate the representativeness of the Landsat LAI sam-
ples, we calculated a frequency histogram based on all Land-
sat LAI sample values between 1984 and 2015 and compared
it with those based on GIMMS LAI3g, GLASS LAI, and
GLOBMAP LAI (Fig. 2c). During 1984–2015, the LAI value
distribution in the Landsat samples was similar to those in the
other three products at global vegetation pixels (Fig. 2c), in-
dicating that the Landsat LAI samples used in this study have
good representativeness.

4.2 The optimum BPNN models

For each vegetation biome, different combinations of ex-
planatory variables (S1–S5, see Sect. 3.1) were tested in
BPNN models. The variations in accuracy are shown in Fig. 3
and Table 1. The inclusion of spatial information and tem-
poral information has significantly improved the model per-
formance with much higher R2, lower RMSE, lower MAE,
and lower MAPE for most vegetation biomes (Fig. 3). The
improvement from spatial information was slight for DNF,
probably because of its relative concentration in certain
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Figure 2. Spatial, temporal, and value distribution of the LAI reference data. (a) The global distribution of LAI samples in 2◦ grids. The LAI
sample size for each vegetation biome is listed. (b) The temporal distribution of LAI samples for the eight vegetation biome types and the
annual variation of LAI sample size. (c) The distribution of LAI values in percentage (bin width = 0.1) for Landsat LAI samples, GIMMS
LAI3g, GLASS LAI, and GLOBMAP LAI. For GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI, the value distribution was calculated
based on all terrestrial vegetation pixels. It should be noted that 40 000 reprocessed MODIS LAI samples were introduced at locations and
months when Landsat LAI samples were scarce.

middle- and high-latitudes of Eurasia (Fig. S3). The inclu-
sion of NOAA satellite number and years since its launch
brought subtle but discernible improvements toward the ac-
curacy of BPNN models.

Using all explanatory variables in the BPNN model (S5)
resulted in R2 values > 0.80 for most biome types except
EBF (0.53) and ENF (0.68), RMSE values < 0.66 m2 m−2,
MAE < 0.51 m2 m−2, and MAPE values < 20% (Table 1).
MAPE of EBF was as low as 3.43 %. For the global veg-
etation biome as a whole, accuracies of the BPNN model
in S5 were R2 of 0.95, RMSE of 0.45 m2 m−2, MAE of
0.27 m2 m−2, and MAPE of 11.98 % (Table 1). As such, for
most periods during 1982–2015, the BPNN models adopted
the combination of all explanatory variables (S5), includ-

ing NDVI, longitude, latitude, month, NOAA satellite num-
ber, and NOAA satellite in orbit duration. For the period of
1982–1984, the BPNN models adopted the combination of
NDVI, longitude, latitude, and month (S3) because of the
acceptable accuracies (Fig. 3 and Table 1) and the absence
(before 1984) and scarce (1984) Landsat LAI samples (see
Sect. 4.1), which could lead to a biased derivation of LAI.
Similarly, S3 was also adopted in the winter of ENF (North-
ern Hemisphere: October to April; Southern Hemisphere:
May to September) and October to April of EBF due to the
limited Landsat LAI samples (Fig. 2).
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Figure 3. Performance of different combinations of explanatory variables (S1 to S5) in BPNN models for each vegetation biome. (a),
(b), (c), and (d) shows the R2, RMSE, MAE, and MAPE, respectively, calculated based on Landsat LAI samples. GLO represents the
global vegetation biome. The combinations of explanatory variables are (S1) NDVI alone; (S2) NDVI and spatial information (longitude
and latitude); (S3) NDVI, spatial information, and temporal information (month); (S4) NDVI, spatial information, temporal information, and
NOAA satellite number; and (S5) NDVI, spatial information, temporal information, NOAA satellite number and years since its launch.
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Table 1. Error metric values for different combinations of explanatory variables (S1 to S5) in BPNN of each vegetation biome. Values in this
table correspond to Fig. 3. The combinations of explanatory variables are (S1) NDVI alone; (S2) NDVI and spatial information (longitude
and latitude); (S3) NDVI, spatial information, and temporal information (month); (S4) NDVI, spatial information, temporal information, and
NOAA satellite number; and (S5) NDVI, spatial information, temporal information, NOAA satellite number and years since its launch. GLO
represents the global vegetation biome.

Biome type

Metrics Combinations GRA SHR CRO SAV EBF DBF ENF DNF GLO

R2

S1 0.76 0.86 0.68 0.66 0.09 0.64 0.49 0.63 0.91
S2 0.79 0.88 0.77 0.73 0.36 0.74 0.56 0.65 0.92
S3 0.83 0.91 0.83 0.81 0.52 0.87 0.65 0.78 0.95
S4 0.83 0.91 0.84 0.81 0.53 0.87 0.68 0.79 0.95
S5 0.83 0.91 0.84 0.82 0.53 0.87 0.68 0.80 0.95

RMSE (m2 m−2)

S1 0.17 0.10 0.21 0.48 0.50 1.10 0.84 0.89 0.64
S2 0.16 0.09 0.17 0.42 0.42 0.93 0.78 0.87 0.57
S3 0.14 0.08 0.15 0.35 0.36 0.66 0.69 0.69 0.46
S4 0.14 0.08 0.15 0.35 0.36 0.65 0.67 0.67 0.45
S5 0.14 0.08 0.14 0.35 0.36 0.65 0.66 0.66 0.45

MAE (m2 m−2)

S1 0.11 0.05 0.13 0.33 0.30 0.83 0.66 0.70 0.39
S2 0.10 0.05 0.10 0.29 0.26 0.65 0.60 0.68 0.34
S3 0.09 0.05 0.09 0.24 0.21 0.45 0.53 0.53 0.27
S4 0.09 0.05 0.09 0.24 0.20 0.44 0.51 0.51 0.27
S5 0.09 0.05 0.09 0.24 0.20 0.45 0.50 0.51 0.27

MAPE (%)

S1 24.36 16.75 28.06 23.09 5.06 24.60 23.16 24.33 17.61
S2 22.18 15.95 22.59 19.82 4.33 19.29 21.16 23.40 15.40
S3 19.85 14.55 19.17 16.50 3.51 13.15 18.64 18.26 12.27
S4 19.88 14.36 19.11 16.45 3.44 13.09 17.94 17.73 12.02
S5 19.88 14.45 19.03 16.46 3.43 13.16 17.79 17.56 11.98

4.3 Validation of the GIMMS LAI4g and other LAI
products

Based on field LAI measurements, GIMMS LAI4g generated
from the BPNN models presented comparable accuracies
(R2
= 0.70, RMSE = 0.86 m2 m−2, MAE = 0.60 m2 m−2,

MAPE = 32.8%) with GIMMS LAI3g (R2
= 0.72, RMSE

= 0.78 m2 m−2, MAE = 0.56 m2 m−2, MAPE = 30.4%)
and GLASS LAI (R2

= 0.68, RMSE = 0.83 m2 m−2, MAE
= 0.60 m2 m−2, MAPE = 32.8%) (Fig. 4). GIMMS LAI3g
had the best performance in error measures (i.e., R2, RMSE,
MAE, and MAPE), but GIMMS LAI4g had the lowest un-
derestimation for the fitting line with a slope of 0.90 and
an intercept of 0.03 (Fig. 4). GLOBMAP LAI presented the
largest discrepancies from the LAI measurements.

Figure 5 shows the validation results for the four global
LAI products using the remaining 20 % Landsat sam-
ple points. In general, GIMMS LAI4g (R2

= 0.96, RMSE
= 0.32 m2 m−2, MAE = 0.16 m2 m−2, MAPE = 13.6%)
had the highest accuracy, followed by GIMMS LAI3g
(R2
= 0.92, RMSE = 0.47 m2 m−2, MAE = 0.26 m2 m−2,

MAPE = 22.2%) and GLASS LAI (R2
= 0.91, RMSE

= 0.50 m2 m−2, MAE = 0.29 m2 m−2, MAPE = 24.2%).
GLOBMAP LAI (R2

= 0.77, RMSE = 0.84 m2 m−2, MAE

= 0.46 m2 m−2, MAPE = 39.1%) had the lowest accuracy.
The MAPE value of 13.6 % in GIMMS LAI4g achieved the
LAI accuracy target proposed by GCOS.

The GIMMS LAI4g product also outperformed the other
three regarding individual vegetation biome types (Fig. 5).
The most accurate vegetation biome varied with error metrics
for all LAI products. In the GIMMS LAI4g, GIMMS LAI3g,
and GLOBMAP LAI products, SHR had the highest accu-
racies in R2, RMSE, and MAE (R2

= 0.91, 0.74, and 0.55,
respectively; RMSE = 0.08, 0.14, and 0.25 m2 m−2, respec-
tively; MAE = 0.05, 0.09, and 0.20 m2 m−2, respectively);
while EBF had the highest accuracies in MAPE (MAPE
= 4.0%, 10.4 %, and 24.2 %, respectively). The most accu-
rate vegetation biome in GLASS LAI could be DBF, SHR,
or EBF, determined by R2, RMSE/MAE, or MAPE, respec-
tively. This discrepancy was attributed to the nature of the er-
ror metrics. For instance, EBF with higher absolute LAI val-
ues generally produced the lowest MAPE. However, the R2,
RMSE, and MAE proposed that EBF could be the most in-
accurate vegetation biome (R2

= 0.55, 0.06, 0.20, and 0.05,
respectively; RMSE= 0.40, 0.81, 0.89, and 1.97 m2 m−2, re-
spectively; MAE = 0.23, 0.61, 0.78, and 1.42 m2 m−2, re-
spectively). The LAI accuracy in EBF was low because it is
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Figure 4. Validation of the (a) GIMMS LAI4g, (b) GIMMS LAI3g, (c) GLASS LAI, and (d) GLOBMAP LAI products using 113 field
LAI measurements from 49 sites in the projects of BELMANIP 2.1, DIRECT 2.1, and ORNL. Sites of different vegetation biome types are
marked by colors. The error metrics are R2, RMSE (m2 m−2), MAE (m2 m−2), and MAPE (%). The blue fitting lines and dashed 1 : 1 lines
are drawn.

primarily distributed in tropical areas where the quality of re-
mote sensing data is poor owing to frequent clouds and rains.

Compared to Landsat LAI samples, the four global LAI
products were underestimated in almost all the vegetation
types except for CRO of GLASS LAI (Fig. 5). We found
certain levels of saturation in GIMMS LAI4g and GIMMS
LAI3g, such as for high values of GRA, SHR, CRO, and SAV
and medium values of EBF, DBF, ENF, and DNF (Fig. 5).
This could be attributed to the use of NDVI data in LAI mod-
els. However, we also observed the saturation effect in EBF,
DBF, ENF, and DNF of GLASS LAI, which was not derived
from NDVI data. For GIMMS LAI4g, the saturation was rel-
atively subtle at a majority of sample locations (red dots) and
was obvious for locations whose LAI values deviated from
the average (yellow and blue dots). The LAI fitting line of
the global vegetation biome in GIMMS LAI4g (Fig. 5a-9)
was close to the 1:1 line.

Figure 6 shows the dominance map of global LAI products
composited by reciprocal averages of MAE from GIMMS
LAI4g (green), GIMMS LAI3g (red), and GLASS LAI
(blue). Grids with a small Landsat LAI sample size (< 100)
were excluded as they may not provide a reliable evaluation.
Within each valid 2◦× 2◦ grid, the color was determined by
the LAI products with a lower MAE, i.e., a higher absolute
LAI accuracy. An immediate observation from Fig. 6 is that
the absolute LAI accuracy of GIMMS LAI4g was signifi-
cantly higher than others in most parts of the world. However,
this advantage was relatively weak in the northern latitudes
of the Eurasian continent (40◦–60◦). The GIMMS LAI3g and
GLASS LAI could show higher accuracy at rather random
locations. We acknowledged that the number of Landsat LAI
samples in certain 2◦×2◦ grids might not be sufficient for ro-
bust accuracy assessment, but that would not alter the overall
outperformance of the GIMMS LAI4g.
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Figure 5. Validation of the (a) GIMMS LAI4g, (b) GIMMS LAI3g, (c) GLASS LAI, and (d) GLOBMAP LAI products in different vegeta-
tion biomes using Landsat LAI samples from 1984 to 2015. The error metrics are R2, RMSE (m2 m−2), MAE (m2 m−2), and MAPE (%).
GLO represents the global vegetation biome. The color of the dots represents LAI value frequencies in a 0.5 m2 m−2 interval.

Figure 7 showcases the spatially averaged LAI along lat-
itude in January and July of the years 1990, 2000, and
2010 for GIMMS LAI4g, GIMMS LAI3g, GLASS LAI, and
GLOBMAP LAI, respectively. The four LAI products were
overall consistent. The GIMMS LAI4g and GIMMS LAI3g
had lower values at northern middle latitudes (35–65◦ N) in
July (Fig. 7b; d; f). Also in July, the GLOBMAP LAI and
GLASS LAI in the Northern Hemisphere maintained good
consistency for the years 1990 and 2010 (Fig. 7b; f), but the
GLOBMAP LAI was systematically lower than GLASS LAI

for the year 2000 (Fig. 7d). The global distribution maps of
LAI in January and July can be found in Figs. S4–S6.

4.4 Temporal consistency analysis

Figure 8 shows the variations of LAI bias in EBF for the
GIMMS LAI4g and the other three LAI products. The LAI
bias during different NOAA satellite missions was distin-
guished. The GIMMS LAI4g demonstrated an outstanding
temporal consistency with minimum bias variations (Fig. 8a),
indicating an efficient removal of satellite orbital drift and
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Figure 6. Dominance map of the GIMMS LAI3g, GIMMS LAI4g, and GLASS LAI based on their MAE. The map was drawn in 2◦× 2◦

grids whose colors were composed of reciprocal averages of MAE from the GIMMS LAI4g (green), GIMMS LAI3g (red), and GLASS LAI
(blue). Non-vegetated grids and grids with small Landsat LAI sample size (< 100) were filled white. A greener grid, for example, indicates
that the GIMMS LAI4g has a lower MAE (or a higher absolute LAI accuracy).

Figure 7. Inter-comparison of spatially averaged LAI along latitude between the GIMMS LAI4g, GIMMS LAI3g, GLASS LAI, and
GLOBMAP LAI in January and July of the years 1990 (a), (b), 2000 (c), (d), and 2010 (e), (f). The spatial average was calculated at
an interval of 1◦.

sensor degradation effects. LAI bias significantly fluctu-
ated in the GIMMS LAI3g, GLASS LAI, and GLOBMAP
LAI with different patterns. The GIMMS LAI3g relied on
AVHRR data only and its bias varied with NOAA missions.
The evident AVHRR degradation after the year 2012, as ar-
gued by Wang et al. (2022), can be also observed in our re-

sults (Fig. 8b). The GLASS LAI and GLOBMAP LAI used
different data sources before (AVHRR) and after (MODIS)
the year 2000. For the GLASS LAI, bias variations before
2000 were much larger than those after 2000 (Fig. 8c). The
reason is likely that the data quality from MODIS is bet-
ter than AVHRR. For the GLOBMAP LAI, however, bias
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Figure 8. Temporal variations of LAI bias % in EBF for (a) the GIMMS LAI4g, (b) GIMMS LAI3g, (c) GLASS LAI, and (d) GLOBMAP
LAI. The dashed black line represents the interannual trend extracted by the EEMD method. Values from different NOAA satellite missions
are distinguished with colors.

variations remained large for all periods of NOAA missions
(Fig. 8d). Similar results were found in other vegetation
biome types (Figs. S7–S13).

Figure 9 shows the GIMMS LAI4g time series before (thin
black line) and after (bold colored line) data consolidation at
the global scale and in selected hotspot regions of Europe,
Amazon, Congo, India, and China from 1982 to 2020. The
GIMMS LAI4g shares the same footprint with the repro-
cessed MODIS LAI after the year 2004. Before consolida-
tion, there was a systematic deviation between the GIMMS

LAI4g and MODIS LAI products during 2004–2015 in all
regions. The pixel-wise fusion method successfully matched
the GIMMS LAI4g time series with reprocessed MODIS
LAI, eliminating abnormal shifts in vegetation phenology.
This is especially true for the Amazon rainforests, where the
phenological curve was substantially corrected and enhanced
by the reprocessed MODIS LAI (Fig. 9d). As a result, the
temporal variations of the GIMMS LAI4g after consolidation
were self-consistent in all periods. This temporal consistency
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Figure 9. Temporal variations of the GIMMS LAI4g during 1982–2020 in selected hotspot regions of China (a), India (b), Congo (c),
Amazon (d), and Europe (e), and at the global scale (f). The bold colored line represents the LAI average of GIMMS LAI4g after data
consolidation, with shadow covering the value range between 10 % and 90 % quantiles. The thin black line represents the LAI average of
GIMMS LAI4g before consolidation. It should be noted that the GIMMS LAI4g after consolidation shared the same footprint with the
reprocessed MODIS LAI after the year 2004.

was also evaluated regarding the vegetation biome type and
similar results were found (Fig. S14).

Figure 10 shows the LAI accuracies in three peri-
ods, i.e., 1984–2015 (p1), 1984–2000 (p2), and 2001–
2015 (p3), for the four global LAI products. The re-
sults show good temporal consistency for the GIMMS
LAI4g and GIMMS LAI3g. Their accuracy differences be-
tween p2 and p3 (i.e., 1984–2000 and 2001–2015) were
minimal for most vegetation biomes. In particular, the
global vegetation biome shows constant R2 values (GIMMS
LAI4g: 0.96 (p2) vs. 0.96 (p3); GIMMS LAI3g: 0.92
vs. 0.92) (Fig. 10a) and a small difference in RMSE
(GIMMS LAI4g: 0.31 m2 m−2 vs. 0.34 m2 m−2; GIMMS
LAI3g: 0.45 m2 m−2 vs. 0.48 m2 m−2) (Fig. 10b), MAE
(GIMMS LAI4g: 0.15 m2 m−2 vs. 0.17 m2 m−2; GIMMS
LAI3g: 0.25 m2 m−2 vs. 0.27 m2 m−2) (Fig. 10c), and MAPE
(GIMMS LAI4g: 13.72 % vs. 13.53 %; GIMMS LAI3g:
22.67 % vs. 21.85 %) (Fig. 10d). The temporal consistency of
GLOBMAP LAI in different periods was relatively low. For
the GLASS LAI and GLOBMAP LAI that used different data
sources before (AVHRR) and after (MODIS) the year 2000,
data quality after 2000 was higher than that before 2000 be-
cause of the improvement in satellite sensors. The GIMMS
LAI4g product used Landsat LAI samples that covered the
whole period from 1984 to 2015. This consistency in LAI
reference data resulted in a minimum difference between pe-
riods.

Figure 11 demonstrates a good consistency in the over-
lapping periods between annual variations of the final

GIMMS LAI4g product (GIMMS LAI4g after consolida-
tion) and the input and intermediate products. The shapes
of the anomalies were similar. The LAI trends for GIMMS
LAI4g remained consistent before and after consolidation
(2.2× 10−3 m2 m−2 yr−1 vs. 2.4× 10−3 m2 m−2 yr−1), de-
spite reprocessed MODIS LAI presenting a highly green-
ing trend during 2004–2020 (5.6× 10−3 m2 m−2 yr−1). The
consistency was also found in a biome-specific manner
(Fig. S15). This result indicates that both BPNN modeling
(PKU GIMMS NDVI vs. GIMMS LAI4g before consolida-
tion) and data consolidation (GIMMS LAI4g before consoli-
dation vs. GIMMS LAI4g after consolidation) preserved the
LAI anomaly and trend.

4.5 LAI trend analysis

Figure 12a–d show the slope maps of the LAI time se-
ries from the GIMMS LAI4g (after consolidation), GIMMS
LAI3g, GLASS LAI, and GLOBMAP in the period of 1982–
2015. Figure 12e–g show the slope differences between the
GIMMS LAI4g and the other three LAI products. In gen-
eral, the GIMMS LAI4g, GIMMS LAI3g, and GLASS LAI
showed a similar spatial pattern that agreed on the green-
ing trend in global hotspot areas such as China and India.
The GIMMS LAI4g demonstrated a more significant green-
ing trend in the high-latitude regions of northern Europe and
Asia.

Figure 13a shows the annual average LAI trends during
1982–2015 (p1), 1982–2000 (p2), and 2001–2015 (p3) for
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Figure 10. Temporal consistencies between different periods for the global LAI products. The global LAI products include GIMMS LAI4g,
GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI. The periods are 1984–2015 (p1), 1984–2000 (p2), and 2001–2015 (p3). The consisten-
cies were evaluated at the biome level using R2 (a), RMSE (b), MAE (c), and MAPE (d) calculated based on Landsat LAI samples. GLO
represents the global vegetation biome.

Figure 11. Annual anomalies and trends of GIMMS LAI4g before consolidation (1982–2015), GIMMS LAI4g after consolidation (1982–
2020), reprocessed MODIS LAI (2004–2020), and PKU GIMMS NDVI (1982–2015). Note that the regression equations within the square
brackets were calculated from different periods depending on the products.

different vegetation biomes of the four LAI products. For the
whole period domain (1982–2015), the GIMMS LAI4g and
GIMMS LAI3g products presented a similar greening trend
for the global vegetation biome, with a slope value of 1.77×
10−3 m2 m−2 yr−1 and 2.06× 10−3 m2 m−2 yr−1, respec-
tively. The greening trend was much higher in the GLASS
LAI product (3.81× 10−3 m2 m−2 yr−1) and much lower
in the GLOBMAP LAI product (0.05× 10−3 m2 m−2 yr−1).
GIMMS LAI4g had the maximum global LAI trend in for-

est type of DNF; and its trends in other biomes were be-
tween the maximum and minimum trends of GIMMS LAI3g,
GLASS LAI, and GLOBMAP LAI. Before 2000, the four
LAI products generally demonstrated greening trends ex-
cept for EBF in GIMMS LAI4g (−0.02×10−3 m2 m−2 yr−1)
and GLOBMAP LAI (−0.51×10−3 m2 m−2 yr−1). The LAI
products showed few agreements in vegetation trends after
2000. GIMMS LAI4g and GLOBMAP LAI exhibited con-
tinuous greening in all biomes, GIMMS LAI3g exhibited
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Figure 12. Global maps of LAI trends and their differences between the global LAI products during 1982–2015. The LAI products include
GIMMS LAI4g after consolidation (a), GIMMS LAI3g (b), GLASS LAI (c), and GLOBMAP LAI (d). The trend was calculated as the slope
of a linearly fitted LAI time series; (e)–(g) show the slope differences between the GIMMS LAI4g and the other three LAI products.

browning in SHR and EBF, and GLASS LAI was dominated
by a browning trend in GRA, SAV, EBF, DBF, and ENF. We
also focused on the vegetation trends in the EBF of the Ama-
zon and Congo (Fig. S16). Large inconsistencies were found
between the LAI products. Almost all the LAI products pre-
sented a greening trend except the GIMMS LAI3g in the
Congo forests (−4.7×10−3 m2 m−2 yr−1) and the GLOMAP
LAI in the Amazon forests (−1.8× 10−3 m2 m−2 yr−1). The
GIMMS LAI4g had moderate greening trends compared to
other products.

Figure 13b shows the annual LAI variations of the
four LAI products for different vegetation biomes. The

GIMMS LAI4g demonstrated continuous global greening
trends across 1982–2015, while the GLOBMAP suffered
from a noticeable decrease in trend around the year 2000.
The GIMMS LAI3g and GLASS LAI showed remarkable
trend differences before and after the year 2000. Their LAI
values significantly increased before 2000 but remained con-
stant after 2000. As both GIMMS LAI3g and GIMMS LAI4g
were based on AVHRR after the year 2000, we attributed
their opposite trends to the effect of AVHRR sensor degrada-
tion presented in GIMMS LAI3g (Wang et al., 2022) because
MODIS LAI also showed a greening trend during this period
(Wang et al., 2022; Jiang et al., 2017).
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Figure 13. Variations of annual LAI anomaly of different vegetation biomes in the global LAI products during 1982–2015. The LAI
products include GIMMS LAI4g, GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI. (a) The trends of the annual LAI during 1982–2015
(p1), 1982–2000 (p2), and 2001–2015 (p3). On the x axis, 4g, 3g, GLA, and GLO stand for GIMMS LAI4g, GIMMS LAI3g, GLASS LAI,
and GLOBMAP LAI, respectively. (b) Annual LAI time series.

5 Discussion

5.1 Improvements over other long-term global LAI
products

The remote sensing data source and LAI reference data are
critical inputs for the accurate derivation of long-term and
large-scale LAI products. The first improvement in this study
was the use of a more reliable remote sensing product, i.e.,
the PKU GIMMS NDVI product. For some global LAI prod-
ucts (e.g., GLASS LAI and GLOBMAP LAI), remote sens-
ing surface reflectance was used directly as the data source
(Ma and Liang, 2022; Kang et al., 2021; Xiao et al., 2016),
but for some others (e.g., GIMMS LAI3g) it was argued that
NDVI could be more robust against the terrain, atmospheric
conditions, and BRDF effects (Zhu et al., 2013; Pinzon and
Tucker, 2014; Zeng et al., 2022). More importantly, the PKU

GIMMS NDVI product essentially addressed the issue re-
lated to the NOAA satellite orbital drift and AVHRR sen-
sor degradation (Li et al., 2023a), which had widely existed
in current long-term global LAI products (Zhu et al., 2013)
(Fig. 8) since the AHVRR data were the only data source
before the late 1990s that provided spatiotemporal observa-
tions over the globe. Our GIMMS LAI4g was thereby also
free from this issue (Fig. 8). The second improvement in our
LAI product was the use of massive and high-quality Land-
sat LAI samples. In current long-term global LAI products
(e.g., GLASS LAI, GLOBMAP LAI, and GIMMS LAI3g),
the LAI reference data were either ground measurements
that were spatially and temporally insufficient or LAI values
derived from advanced sensors unavailable before the year
2000 (Zhu et al., 2013; Chen et al., 2019a). In the LAI model
generalization, uncertainties could be hard to determine over
locations and dates when the LAI reference data were basi-
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cally absent. The Landsat LAI samples used in this study had
a large number (3.6 million), a long time series (1984–2015),
and global coverage (Fig. 2). These two improvements in this
study guaranteed that our GIMMS LAI4g product is more
spatiotemporally consistent, as demonstrated in our results
(Sect. 4.3 and 4.4).

Besides, incorporating other explanatory variables, includ-
ing spatial, temporal, and satellite-based information, further
improved the robustness of LAI models. Specifically, the role
of spatial information (longitude and latitude) and tempo-
ral information (month) has been underscored in explaining
global LAI variations (Fig. 3 and Table 1). In this study, indi-
vidual BPNN models were developed for vegetation biomes.
We chose not to include the vegetation biome type as an ex-
planatory variable (GIMMS LAI3g did) because the values
of the vegetation biome type are deterministic rather than
continuous (like month). The deterministic NOAA satellite
number was used as an explanatory variable so that the tem-
poral consistency of the BPNN models can be ensured.

Compared to its predecessor (GIMMS LAI3g; 1982–
2016) which relied on AVHRR data only, our GIMMS LAI4g
(1982–2020) provides up-to-date LAI data by consolidat-
ing with the reprocessed MODIS LAI product. This exten-
sion of temporal coverage could help interpret recent global
vegetation dynamics. Two other LAI products, namely, the
GLASS LAI (1982–2018) and GLOBMAP LAI (1982–
2020), also incorporated MODIS data (reflectance). How-
ever, they did not explicitly calibrate systematic deviations
between AVHRR and MODIS data (Liu et al., 2012; Xiao et
al., 2014). Our study employed a pixel-wise fusion method to
match the GIMMS LAI4g with the MODIS LAI product. The
results showed an excellent consistency between the GIMMS
LAI4g (after consolidation) and MODIS LAI.

5.2 Potential applications of the GIMMS LAI4g product

With an explicit physical meaning, LAI was proposed to
be more accurate in characterizing vegetation dynamics
than spectral indices such as NDVI and EVI (Zhang et al.,
2004; Verger et al., 2016). Our results demonstrated that the
GIMMS LAI4g product could be more spatiotemporally con-
sistent and reliable than other long-term global LAI products.
One important role of the GIMMS LAI4g is to mitigate the
disagreements between current global LAI products and to
gain robust knowledge about long-term vegetation changes.
For the past 40 years, the long-term analysis based on the
global LAI products has shown an overall greening trend in
most vegetated areas. However, significant variations existed
between different LAI products at the regional scale (Wang
et al., 2022; Jiang et al., 2017). In the EBF of Africa, for in-
stance, the GIMMS LAI3g exhibited a decreasing trend from
the year 2000 while the MODIS LAI exhibited an increasing
trend (Wang et al., 2022). The GIMMS LAI4g provides an
opportunity to better understand the spatial pattern of vegeta-

tion greening (or browning) and its drivers (Zhu et al., 2016;
Piao et al., 2015; Chen et al., 2019a).

LAI is also a popular proxy for many important ecosystem
attributes and functions, such as carbon stock and sink (Chen
et al., 2019b), nutrition cycle (Pierce et al., 1994), and evap-
otranspiration (Wang et al., 2014). It serves as a fundamental
parameter in many ecosystem models (Boussetta et al., 2013,
2015; Chen et al., 2015), earth system models (Mahowald et
al., 2016), and climate models (Boussetta et al., 2013, 2015).
The GIMMS LAI4g is expected to benefit the development
of these models and provide a powerful data basis for a more
accurate and reliable land surface characterization.

5.3 Uncertainty sources of GIMMS LAI4g product

The PKU GIMMS NDVI product and the Landsat LAI sam-
ples comprised this study’s primary sources of uncertainty.
Despite the efforts by Zha et al. (2023), the number of Land-
sat LAI samples was small in certain regions, e.g., the north-
ern high latitudes and tropical areas. This was attributed to
the low solar altitude angle, polar night phenomenon, and cli-
mate conditions such as frequent clouds, snow, and rains at
the time of Landsat observation. Also, the Landsat LAI sam-
ples were absent before 1984 and scarce in 1984 (Sect. 4.1),
which would produce larger uncertainties for the GIMMS
LAI4g product during the NOAA-7 period (July 1981 to
February 1985). The PKU GIMMS NDVI product suffers
from the same issues as it was also derived from Landsat
samples (Li et al., 2023a). Although both Li et al. (2023a)
and the current study have used MODIS data as compensa-
tion, the relative lack of Landsat samples in certain regions
and time may still lower the robustness of models in the gen-
eration of GIMMS LAI4g. The use of PKU GIMMS NDVI
could also result in the saturation effect in GIMMS LAI4g as
NDVI data tend to saturate at high values (Fig. 5). This study
established biome-specific models that incorporated multi-
ple explanatory variables besides PKU GIMMS NDVI to ac-
count for the LAI variations in space, time, biome, and satel-
lite. This effort could help alleviate the saturation effect al-
though the effect still exists.

In addition, this study used a static global land cover map
determined by the most frequent biome type within each grid
between 2001 and 2019. This strategy could bring potential
uncertainties yet represents a balance between the sample
size and sample quality for GIMMS LAI4g generation and
validation. When applying GIMMS LAI4g for vegetation
trend analysis, a careful consideration of land cover change
is suggested. Other sources of uncertainty could be from the
BPNN model structure in which more explanatory variables
such as temperature and precipitation could be incorporated,
and the reprocessed MODIS LAI product. It should be noted,
however, that these uncertainties also existed in other LAI
products and this study has tried its best to mitigate their in-
fluence on the GIMMS LAI4g.
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6 Data availability

The spatiotemporally consistent global dataset of
the GIMMS leaf area index (GIMMS LAI4g)
generated in this study is openly available at
https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023).
It covers the whole global vegetation area at a half-month
temporal resolution and 1/12◦ spatial resolution from 1982
to 2020. It is available in Geographic Lat/Lon projection and
TIFF format. In the same repository, we have also provided
the version of GIMMS LAI4g that is solely based on
AVHRR data, which means that its generation was free from
the consolidation with reprocessed MODISL LAI and it used
the version of PKU GIMMS NDVI before consolidation
with MODIS NDVI. Before applying the GIMMS LAI4g
product, we highly recommend users read the Readme file
in the repository and properly handle the fill value and the
quality control flag in the dataset.

7 Conclusions

This study developed a new generation of the GIMMS LAI
product (GIMMS LAI4g, 1982–2020) based on back propa-
gation neural network (BPNN) models and a pixel-wise con-
solidation method. The GIMMS LAI4g was featured by the
use of the PKU GIMMS NDVI product and the massive high-
quality Landsat LAI samples. The recently published PKU
GIMMS NDVI efficiently removed the effects of NOAA or-
bital drift and AVHRR sensor degradation, which has been
a critical issue in existing LAI products. The high-quality
global Landsat LAI samples, with a total number of 3.6 mil-
lion and temporal coverage of 1984–2015, facilitated the cre-
ation of spatiotemporally consistent BPNN models. The spa-
tiotemporally consistent GIMMS LAI4g product covers a
time span from 1982 to 2020, with a spatial resolution of
1/12◦ and a temporal resolution of half-month. It can poten-
tially provide strong data support for long-term vegetation
monitoring and model development with high accuracy and
reliability, as shown below:

Evaluated by the Landsat LAI samples, the GIMMS
LAI4g product (R2

= 0.96, RMSE = 0.32 m2 m−2, MAE
= 0.16 m2 m−2, MAPE = 13.6%) was overall more ac-
curate than the mainstream global LAI products, includ-
ing the GIMMS LAI3g (R2

= 0.92, RMSE = 0.47 m2 m−2,
MAE= 0.26 m2 m−2, MAPE= 22.2%), GLASS LAI (R2

=

0.91, RMSE = 0.50 m2 m−2, MAE = 0.29 m2 m−2, MAPE
= 24.2%), and GLOBMAP LAI (R2

= 0.77, RMSE =
0.84 m2 m−2, MAE = 0.46 m2 m−2, MAPE = 39.1%). Its
accuracy meets the target proposed by the Global Climate
Observation System (GCOS).

Evaluated by field LAI measurements, GIMMS LAI4g
(R2
= 0.70, RMSE = 0.86 m2 m−2, MAE = 0.60 m2 m−2,

MAPE = 32.8%) had comparable accuracies to GIMMS
LAI3g (R2

= 0.72, RMSE = 0.78 m2 m−2, MAE
= 0.56 m2 m−2, MAPE = 30.4%) and GLASS LAI

(R2
= 0.68, RMSE = 0.83 m2 m−2, MAE = 0.60 m2 m−2,

MAPE = 32.8%) and the lowest underestimation among all
global long-term LAI products.

The GIMMS LAI4g outperformed the other LAI products
in most regions of the globe and all vegetation biomes (R2:
0.55 to 0.91; RMSE: 0.08 to 0.73 m2 m−2; MAE: 0.05 to
0.54 m2 m−2; MAPE: 4 % to 21 %).

The GIMMS LAI4g product removed the effects of
NOAA orbital drift and AVHRR sensor degradation, which
can be observed in other LAI products.

The GIMMS LAI4g after consolidation with the repro-
cessed MODIS LAI was more temporally consistent between
the three periods of 1984–2015, 1984–2000, and 2001–2015
than other LAI products. It more reasonably depicted global
vegetation trends (greening or browning) and demonstrated
a continuous global greening trend before and after 2000.
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