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The bidirectional reflectance distribution function (BRDF) of the land surface contains information 
relating to its physical structure and composition. Accurate BRDF modeling for heterogeneous pixels is 
important for global ecosystem monitoring and radiation balance studies. However, the original kernel-
driven models, which many operational BRDF/Albedo algorithms have adopted, do not explicitly consider 
the heterogeneity within heterogeneous pixels, which may result in large fitting residuals. In this paper, we 
attempted to improve the fitting ability of the kernel-driven models over heterogeneous pixels by changing 
the inversion approach and proposed a dynamic weighted least squares (DWLS) inversion approach. The 
performance of DWLS and the traditional ordinary least squares (OLS) inversion approach were compared 
using simulated data. We also evaluated its ability to reconstruct multiangle satellite observations and 
provide accurate BRDF using unmanned aerial vehicle observations. The results show that the developed 
DWLS approach improves the accuracy of modeled BRDF of heterogeneous pixels. The DWLS approach 
applied to satellite observations shows better performance than the OLS method in study regions and 
exhibits smaller mean fitting residuals both in the red and near-infrared bands. The DWLS approach also 
shows higher BRDF modeling accuracy than the OLS approach with unmanned aerial vehicle observations. 
These results indicate that the DWLS inversion approach can be a better choice when kernel-driven models 
are used for heterogeneous pixels.

Introduction

The key to interpreting land surface characteristics by optical 
remote sensing is calculating the surface bidirectional reflec-
tance distribution function (BRDF), which is usually used to 
quantify surface reflectance anisotropy in remote sensing [1,2]. 
Accurate BRDF modeling of the land surface can be used to 
correct the bidirectional effects in reflectance and to estimate 
land surface physical, biological, and vegetation structural 
parameters, such as albedo and leaf area index [3–6]. However, 
the accuracy of BRDF modeling is affected by spatial hetero-
geneity within the pixel [7–10]. Spatial heterogeneity generally 
originates from complex terrain and the mixture of different 
land cover types. The pixels with these heterogeneous factors 
are usually deemed heterogeneous pixels, which are common 
in moderate- and low-resolution satellite images [11,12]. 

Therefore, accurate BRDF modeling for heterogeneous pixels 
is important for global ecosystem monitoring and radiation 
balance studies.

Scholars have developed several empirical, semiempirical, 
and physical methods for BRDF modeling [13–17]. Among 
them, the semiempirical linear kernel-driven models originally 
proposed by Roujean et al. [18] have been widely used due to 
their simple forms and strong fitting ability. These kernel-driven 
models can use multiangle reflectance data to estimate the sur-
face BRDF by a semiempirical linear fitting. Wanner et al. [19] 
and Lucht et al. [20] subsequently made them easier to under-
stand and apply as the Algorithm for Model Bidirectional 
Reflectance Anisotropies of the Land Surface (AMBRALS) [21]. 
Many satellite sensors have used the kernel-driven models to 
generate land surface BRDF/Albedo products, including the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
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and Polarization and Directionality of the Earth's Reflectances 
(POLDER) [20,22–27]. The kernels are critical to the physical 
constraints of the kernel-driven models, which can provide 
possible BRDF shapes in unobserved regions of the viewing 
and illumination hemisphere. Many kernels have been devel-
oped to describe the radiative transfer or geometric-optical 
processes for different scenes, such as the well-known Roujean, 
RossThin, RossThick, LiSparse, and LiDense kernels [18–20,28]. 
The LiTransit kernel was also developed to better describe the 
geometric-optical relationships of discrete canopies under large 
zenith angles [28,29]. Meanwhile, the original kernel-driven 
models underestimate the hotspot effect. To address this prob-
lem, Maignan et al. [30] and Jiao et al. [31–33] further modified 
it by introducing the hotspot factors. After more than 20 years 
of development, kernel-driven models are used in many fields 
[34,35]. The reliability of these models was validated using multi-
angle observations and field measurements [36–38]. However, 
the original kernel-driven models do not explicitly consider 
the effect of subpixel heterogeneity and may lead to large fitting 
residuals in BRDF modeling [39,40].

Several methods based on kernel-driven models have been 
developed to improve the fitting ability for complex terrain or 
mixed land covers. Wu et al. [41] developed a new kernel-driven 
model for slope terrain based on the framework of the RossThick-
LiSparseReciprocal (RTLSR) model. The new model has been 
shown to simulate the bidirectional reflectance factor (BRF) of 
the single slope more accurately. However, there are generally 
more complex composite slopes in the pixels of many moderate- 
and low- resolution sensors, such as MODIS (500 m × 500 m) 
and POLDER (6 km × 7 km). For this issue, Hao et al. [42] 
further developed an improved topography-coupled kernel-driven 
model, which can consider the effects of terrain and diffuse 
skylight using a digital elevation model (DEM) and sun-sensor 
geometry information. Then, an adaptive terrain algorithm that 
combines 2 kernel-driven models, called the topographic 
kernel-driven (Topo-KD), was developed by Yan et al. [40]. It 
can further consider multiple scattering effects caused by adja-
cent terrain. Kizel and Vidro [43] proposed a preliminary BRDF 
inversion approach based on the kernel-driven models to correct 
the undesired effects of mixed land cover pixels. These models 
all consider more explicitly the heterogeneity within the pixel 
by improving kernels of the kernel-driven model based on 
physical methods. Therefore, they all need to introduce addi-
tional auxiliary data or parameters, such as a DEM [40–42], and 
land cover maps [43], etc. These methods based on the physical 
theory improve the modeling accuracy of the kernel-driven 
model for heterogeneous pixels but also inevitably introduce 
additional input uncertainties that limit their large-scale appli-
cations. Currently, there is no method to improve the performance 
of the kernel-driven models on heterogeneous pixels by chang-
ing the inversion approach.

The objective of this paper is to improve the fitting ability 
of the kernel-driven model over heterogeneous pixels by using 
a new inversion approach. The dynamic weighted least squares 
(DWLS) inversion approach was proposed in this study, which 
is more suitable for heterogeneous pixels than the traditional 
ordinary least squares (OLS) inversion approach. This paper 
provides a comprehensive evaluation and analysis of the DWLS 
approach and is organized as follows. Materials describes the 
simulated, satellite, and unmanned aerial vehicle (UAV) data. 
Methods describes the details of the DWLS and OLS inversion 
approaches of the kernel-driven models. In Results, we compared 

the performance of DWLS and OLS inversion approaches for 
satellite observation reconstruction and BRDF construction 
using UAV observations. The uncertainty of the DWLS approach 
was also analyzed in this section. The discussion and conclu-
sions are presented in Discussion and Conclusion, respectively.

Materials

Simulated data
Obtaining ideal multiangle measurements over heterogeneous 
pixels is challenging. Computer simulation models provide a 
practical and feasible alternative to evaluate the DWLS approach. 
In this study, we employed the LargE-Scale remote sensing data 
and image Simulation framework (LESS) to assemble a refer-
ence dataset composed of simulated anisotropic reflectance 
data over heterogeneous pixels. LESS is a newly proposed ray-
tracing-based 3-dimensional (3-D) radiative transfer model 
that can accurately and efficiently simulate multispectral and 
multiangle images and radiation properties of complex realistic 
landscapes [44,45]. The accuracy of the LESS model has been 
validated in comparison with other models (e.g., FLIGHT [46] 
and RAYTYAN [47]) over several different homogeneous and 
heterogeneous canopies from the Radiation transfer Model 
Intercomparison experiment, and also validated with published 
field measurement datasets [48,49]. The comparison results 
show that the LESS model has good simulation accuracy and 
can be used for approach validation [45]. The inputs for the 
LESS model include scene size, 3-D structure, component spectrum 
(e.g., leaf reflectance), sun-sensor geometry, and illumination 
parameters (e.g., skylight proportion) of the scene. The LESS 
model can simulate the radiative transfer process (absorption, 
reflection, and transmission) of incident light in a scene based 
on the ray-tracing strategy and output the corresponding sim-
ulated variables (such as BRF, albedo, and so on) [50]. Further 
detailed information on the LESS model can be found on the 
website (http://lessrt.org/).

Spatial heterogeneity generally originates from complex 
terrain and the mixture of different land cover types. We used 
the LESS model to evaluate the performance of the DWLS 
approach over rugged (complex terrain) and mixed (mixture 
of different land cover types) scenes, respectively. We selected 
the DEM of a 5.4-km × 5.4-km mountainous area (29.5°N, 
98.1°E) as the terrain for the simulated pixels. The topographical 
conditions of the area are shown in Fig. 1. The area was divided 
into 25 pixels and used to simulate multiangle reflectance data. 
We also designed 4 mixed pixels and 1 control pixel to evaluate 
the DWLS approach (Fig. 2). The 4 mixed pixels can be seen 
as a mixture of 2 land cover types, forest and barren land. 
Instead, the trees are randomly distributed in the whole control 
pixel and can be seen as a forest pixel. The critical parameters 
of this simulation experiment are shown in Table 1. Soil was 
treated as a Lambertian in all simulation experiments.

MODIS data
In this paper, MODIS data were used to compare the perform-
ance of OLS and DWLS approaches in the reconstruction of 
missing satellite observations. The MODIS Collection 6 Terra/
Aqua Surface Reflectance Daily L2G Global 500-m product 
provides daily surface BRF data at a gridded 500-m spatial res-
olution and for 7 spectral bands [51]. In this study, the red and 
near-infrared (NIR) bands (cantered at 648 and 858 nm, respec-
tively) were used. By considering the 1-km data state quality 
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assurance and the 500-m quality control, we extracted the grid-
ded 500-m multiangle observations for 16 d and synthesized a 
multiangle observation dataset from the MOD09GA and 
MYD09GA reflectance products. The reflectance characteristics 
were assumed to be stable during the period. Table 2 lists the 

thresholds used to control the quality of this dataset. Two regions 
were selected as the validation area to test the ability of the 
DWLS approach in reconstructing the observations: (a) a 
40-km × 40-km region (80 × 80 pixels) located in Africa 
(22°0′56″ to 22°24′29″E, 14°16′37″ to 14°37′13″S); (b) a 

Fig. 1. Topographic conditions of the rugged area for simulation. (A) Elevation of the mountainous region. (B and C) Slope and aspect distribution, respectively. The pixel with 
the red line was used to compare the BRDF shapes inverted by the OLS and DWLS approaches in Fig. 7. The DEM is from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer global DEM version 2 (https://lpdaac.usgs.gov/).

Fig. 2. The scenes of a control pixel (A) and 4 mixed pixels (B to E) for evaluation of the DWLS approach.
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50-km × 50-km region (100 × 100 pixels) located in North 
America (101°19′56″ to 100°24′30″W, 30°5′18″ to 30°30′18″N). 
The multiangle MODIS observations for 16 consecutive days of 
the 2 regions were used for approaches comparison (from July 
9 to 24, 2019, for the first region, and from July 1 to 16, 2020, for 
the second region). The Landsat RGB (bands 4, 3, and 2) 
composite image (downloaded from https://glovis.usgs.gov/), 
terrain, and the number of available MODIS observations of 
the 2 regions are shown in Fig. 3.

Multiangle UAV measurements
Using UAVs to acquire pixel BRDF needs many multiangle 
observations, which requires long periods of good and stable 

atmospheric conditions. The kernel-driven model can model 
pixel BRDF using a small number of multiangle observations. 
In this paper, 3 UAV measurement datasets acquired over pixels 
of row crops (maize, sunflower, and wheat) were used to vali-
date the ability of the DWLS approach in the BRDF construc-
tion. These UAV datasets, which were acquired from crops in 
the reproductive stage, have been previously used to evaluate 
the impact of reproductive organs on crop BRDF [52]. The 3 
crop fields were located in Avignon, France (43.9°N, 4.9°E). A 
hexacopter UAV designed by Atechsys (http://atechsys.fr/) car-
rying the AIRPHEN multispectral camera (https://www.hiphen- 
plant.com/our-solutions/airphen/) was used for data acquisi-
tion. The camera had 6 spectral bands (450, 530, 570, 675, 730, and 
850 nm). In this study, only the red (675 nm) and NIR (850 nm) 
bands were used. The UAV sampled 5 view zenith angles (VZAs) 
(0°, 15°, 30°, 45°, and 60°) for as many view azimuth angles 
(VAAs) as possible by flying along with 5 concentric circles. 
Meanwhile, encrypted observations were made in the hotspot 
direction during the measurement. In the original experi-
ment, the UAV flew 3 times during the day, corresponding 
approximately to 30°, 45°, and 60° solar zenith angles (SZAs) 
over each pixel. The datasets with 30° SZA were used for the 
validation of DWLS. During the UAV flights, the sky was clear 
without clouds. There was a light wind during maize and sun-
flower acquisitions, while in the case of wheat, the wind was 
stronger, with however no severe degradation of the sampling 
scheme. The 3 datasets contain 200 (wheat), 102 (maize), and 
280 (sunflower) available observations, respectively, which is 
enough for the validation of DWLS. More detailed information 
on these datasets can be found in [52].

Due to the difficulty of acquiring multiangle reflectance data 
using the UAV, the selected pixels are small and the corre-
sponding terrains are flat. However, for small-scale pixels, the 
heterogeneity of pixels can be caused by the heterogeneous 
reflectance properties of the vegetation structure, especially 
for sunflowers. The mutual shielding of different parts of veg-
etation can also influence the BRDF of pixels. This also meets 
the validation needs of the DWLS approach. The aerial photos 
of these 3 pixels are given in Fig. 4.

Methods

Kernel-driven model and current inversion approach
The kernel-driven models provide a synthetic interpretation of 
the complex scattering mechanisms of land surfaces via the 
linear combination of the isotropic-scattering, volume-scattering, 
and geometric-optical kernels. The initial equation of the 
kernel-driven model is given by Roujean et al. [18] as:

where r(ϑ, θ, ξ, λ) is the reflectance in the waveband λ, which is 
a function of the SZA ϑ, VZA θ, and relative azimuth angle ξ. 
fiso(λ), fvol(λ), and fgeo(λ) are the weight components of the iso-
tropic-scattering kernel Kiso(ϑ, θ, ξ) (considered as 1), vol-
ume-scattering kernel Kvol(ϑ, θ, ξ), and geometric-optical kernel 
Kgeo(ϑ, θ, ξ).

Given m reflectance observations R(m×1), the 3-parameter 
linear kernel-driven models expressed in Eq. 1 can be written 
in the following matrix form:

(1)
r(�, �, �, �)= fiso(�)Kiso(�, �, �)

+ fvol(�)Kvol(�, �, �)+ fgeo(�)Kgeo(�, �, �)

Table 1. Critical parameters of the simulation experiment.

Parameters
Experiment  

settings

Solar Zenith angle 0°/15°/30°/45°/60°

Azimuth angle 150°/180°/210°

Sensor Zenith angle 0°:5°:60° a

Azimuth angle 0°:30°:330°

Component spectra Leaf Reflectance: 0.0546 
(red) / 0.4957 (NIR) b

Transmittance: 
0.0149 (red) / 
0.4409 (NIR)

Soil Reflectance: 0.1270 
(red) / 0.1590 (NIR)

Transmittance: 0 
(red) / 0 (NIR)

aa:b:c indicate that the range of value is a to c with an increment of b 
(e.g., 0°:5°:15° means that the values are 0°, 5°, 10°, and 15°).

bRed and NIR represent the parameters in the red and NIR bands.

Table 2. Quality screening for the MOD/MYD09GA dataset.

1-km QA Cloud Clear

Cloud shadow No

Land water Land

Aerosol Not high

Cirrus None or small

Internal cloud No

Adjacent cloud No

Snow or Ice No

500-m QC Band quality Highest quality

QA, quality assurance; QC, quality control.
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where R(m×1) is the known observation vector with m different 
sun-sensor geometries. K(m×3) and F(3×1) are the kernel matrix 
calculated using the known reflectances and the kernel coeffi-
cients vector to be derived. The cost function of the inverse 
problem can be written as the following matrix:

where Σ(m×m) is the covariance matrix of measurement errors, 
and Σ−1

(m×m) is the inverse matrix of Σ. Σ−1
(m×m) can be replaced 

with a weight matrix W(m×m), which contains the weight of each 
observation:

The kernel coefficients vector can be calculated as:

where KT
(3×m) is the transpose of the kernel matrix. When 

W(m×m) is set as a unit matrix E(m×m), the coefficient matrix F(3×1) 
and the reflectance to be predicted r(n×1) can be calculated as:

where n is the number of reflectances to be predicted and k(n×3) 
is the kernel matrix of these reflectances, which can be calcu-
lated with their sun-sensor geometries. This approach is the OLS 
inversion approach commonly used for kernel-driven models 
currently.

Theoretical basis of the new-proposed  
DWLS approach
Equation 7 implies that all the observations are assigned the 
same weight to estimate the kernel coefficients, which kernel- 
driven models use to calculate the unknown reflectances in 
other directions. This means that all the known observations 
play the same role in predicting the reflectance in different 
directions when using the OLS approach. This may be accept-
able for flat and homogeneous pixels. However, for rugged pix-
els, the upward, downward radiation and vegetation growth can 
be affected by topography [53,54]. On the other hand, each 
pixel can contain more than 1 component, especially for low- 
spatial-resolution pixels. Therefore, due to terrain and the 
mutual shielding of the component, it is difficult to observe the 
same objects from different directions in heterogeneous pixels 

(2)R(m×1) = K(m×3)F(3×1)

(3)
(

R(m×1) −K(m×3)F(3×1)

)T
�

−1
(m×m)

(

R(m×1) −K(m×3)F(3×1)

)

(4)
(
R(m×1) −K(m×3)F(3×1)

)T
W(m×m)

(
R(m×1) − K(m×3)F(3×1)

)

(5)
F(3×1) =

(
KT

(3×m)W(m×m)K(m×3)

)−1(
KT

(3×m)W(m×m)R(m×1)

)

(6)
F(3×1) =

(
KT

(3×m)E(m×m)K(m×3)

)−1(
KT

(3×m)E(m×m)R(m×1)

)

(7)

r(n×1) =k(n×3)F(3×1) =k(n×3)

(

K
T
(3×m)E(m×m)K(m×3)

)−1

(

K
T
(3×m)E(m×m)R(m×1)

)

Fig. 3. The surface conditions and the number of available reflectance data for the study areas. (A-1) and (B-1) are the Landsat RGB images of the 2 regions; (A-2) and (B-2) 
are the terrain of the 2 regions; and (A-3) and (B-3) are the number of available observations from MODIS of the 2 regions.
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(Fig. 5). We are more likely to observe the mostly same objects 
in the adjacent directions. In other words, the correlation 
between the reflectance in 2 directions decreases as the phase 
angle between the 2 directions increases.

As mentioned above, the role that the known observation 
in direction Ωi(θi, φi) can play in predicting the reflectance 
in direction Ωj(θj, φj) should be related to the included angle 
of the 2 directions, which can be expressed with the phase 
angle ζij:

where θi and φi are the VZA and VAA of the i ‐ th known reflec-
tance in direction Ωi(θi, φi), and θj and φj are the VZA and VAA 
of the j ‐ th reflectance to be predicted in direction Ωj(θj, φj), 
respectively. The direction that is adjacent to the direction to 
be predicted should have a larger weight, so an inverse angle 
distance weighting method can be used. The weight of the 
observation in direction Ωi(θi, φi) for the inversion of reflec-
tance in direction Ωj(θj, φj) can be expressed as:

However, the sun position has a significant effect on the pixel 
BRDF, and the above method is only applicable to the case 
where the sun positions are similar. Therefore, a correction 
term ςij can be added to the weighting function, which can be 
expressed as:

where ϑi and ϕi are the SZA and solar azimuth angle (SAA) of 
the i ‐ th known reflectance in direction Ωi(ϑi, ϕi, θi, φi), and ϑj 
and ϕj are the SZA and SAA of the j ‐ th reflectance to be pre-
dicted in direction Ωj(ϑj, ϕj, θj, φj). Finally, the weighting func-
tion can be written as:

In this way, when the difference in the sun direction of known 
and unknown reflectances is large, the effect of observation 
direction differences on the weights of the known reflectances 
becomes smaller. This means that the DWLS approach degen-
erates toward OLS when the sun direction differs significantly. 
Then, the weight matrix for the reflectance to be predicted can 
be expressed as:

(8)� ij= arccos

(

cos�icos�j+ sin�isin�jcos

(

�i−�j

))

(9)wij =
1

� ij

(10)� ij= arccos

(

cos�icos�j+ sin�isin�jcos

(

�i−�j

))

(11)wij =
1

� ij + � ij

Fig. 4. (A to C) Aerial photographs of the UAV data pixels where orange rectangles mark the areas where the data was acquired.

Fig. 5. Differences in the observed objects in different directions due to terrain and objects’ mutual shielding. Orange and blue areas represent 2 different directions. (A) Terrain 
shielding in a rugged pixel. (B) Component shielding in a mixed pixel.
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Substituting Eq. 12 into Eq. 5, we obtain the kernel coeffi-
cient matrix for the j ‐ th reflectance to be predicted:

The full coefficient matrix can be expressed as:

Then, we can calculate the reflectance matrix:

where k(n×3) is the kernel matrix of the reflectances to be pre-
dicted. The values on the main diagonal of the matrix r(n×n) are 
the reflectances that need to be predicted. These mean that a 
set of kernel coefficients is generated by the DWLS approach 
for each predicted direction. The contribution of the input 
reflectances to the predicted direction is reevaluated in each 
calculation of the kernel coefficients.

As shown in Fig. 6, the DWLS approach differs from OLS in 
that it calculates the weights of the known reflectances based on 
geometric information of the unknown and known reflectances.

Approach analysis and assessment
Comparison between the OLS and DWLS approaches
The kernel-driven models can reconstruct the pixel BRDF with 
multiangle observations using the OLS or DWLS approach. 
Among the various kernel-driven models, the RTLSR model is 
widely used due to its good fitting ability, consisting of the 
RossThick volume-scattering kernel and the LiSparseReciprocal 
geometric-optical kernel [19]. It has been adopted in an opera-
tional algorithm for the MODIS BRDF/Albedo product [22,23]. 
In this study, the RTLSR model will be used to compare the OLS 
and DWLS inversion approaches. We used simulated data to eval-
uate the DWLS approach and tested its performance in MODIS 
observation reconstruction and UAV BRDF construction.

For the RTLSR model, which is a 3-parameter kernel-driven 
model, both the inversion approaches theoretically require at 
least 3 known reflectances and their sun-sensor geometries as 
input data to predict the reflectances in other directions. 
However, additional well-distributed observations are needed 
to ensure inversion accuracy in practical application. For sim-
ulated and UAV-measured reflectances, we used 12 uniformly 
distributed reflectances as input data to predict other reflec-
tances and compared the performance of the OLS and DWLS 
approaches. Because of the fewer available observations, for the 
satellite data, 8 uniformly distributed reflectances from all avail-
able Terra and Aqua MODIS observations were selected for the 

inversion. We also used observations from Terra MODIS to 
predict those from Aqua MODIS and compared the fitting 
ability of the 2 approaches. The root mean square error (RMSE), 
coefficient of multiple determination (R2), and optimization rate 
(OR) were used to compare the OLS and DWLS approaches 
quantitatively. They can be calculated by the following equations:

where xi is the simulated or observed reflectance, yi is the pre-
dicted reflectance by the OLS or DWLS approach, and n is the 
number of reflectances to be predicted. RMSEOLS and RMSEDWLS 
are the RMSE of the OLS and DWLS approaches, respectively. 
When OR > 0, it means that the DWLS approach exhibits 
higher accuracy than OLS. The input reflectances are not 
involved in the calculation of these evaluation indicators, and 
the input data are the same for both approaches.

Performance analysis of the DWLS approach
Measured reflectances may be affected by instrument noise, 
aerosols, data preprocessing, and other factors, and these uncer-
tainties are inevitable. The DWLS approach assigns different 

(12)

Wj = diag
�
w1j,w2j, ⋯ ,wij, ⋯ wmj

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1j 0 ⋯ 0 ⋯ 0

0 w2j ⋯ 0 ⋯ 0

⋮ ⋮ ⋱ 0 ⋯ 0

0 0 0 wij ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ 0

0 0 0 0 0 wmj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)
Fj(3×1) =

(
KT

(3×m)Wj(m×m)K(m×3)

)−1(
KT

(3×m)Wj(m×m)R(m×1)

)

(14)f(3×n) =
[
F1 F2 ⋯ Fj ⋯ Fn

]

(15)r(n×n) = k(n×3)f(3×n) = k(n×3)
[
F1 F2 ⋯ Fj ⋯ Fn

]
(3×n)

(16)

RMSE=

���� 1

n−1

n�
i=1

�
yi−xi

�2

R2=

�∑n
i=1

�
yi−y

��
xi−x

��2
∑n

i=1

�
yi−y

�2
×
�
xi−x

�2

OR=
RMSEOLS−RMSEDWLS

RMSEOLS
×100%

Fig. 6. Comparison of the inversion process of the OLS and DWLS approaches. Wj 
is the weight matrix for j - th reflectance to be predicted. E is the unit matrix. IADW, 
inverse angle distance weighting method.

D
ow

nloaded from
 https://spj.science.org at C

hina U
niversity of G

eoscience, B
eijing C

am
pus on A

pril 21, 2023

https://doi.org/10.34133/remotesensing.0038


Li et al. 2023 | https://doi.org/10.34133/remotesensing.0038 8

weights to known observations in the inversion process, which 
may introduce more uncertainty than the OLS approach. 
Therefore, it is necessary to perform an uncertainty analysis for 
DWLS to understand this approach better. In this paper, we 
analyzed the influence of observation uncertainty and angle 
sampling distribution on the inversion accuracy of the DWLS 
approach. For this reason, 2 experiments were designed based 
on the simulated data:

Experiment I: Effect of observation uncertainty. We assume 
that the observation uncertainty e follows the normal distribu-
tion N(0, σ2), which can be expressed as:

where σ is the standard deviation (SD) that represents the fluc-
tuation of the observation uncertainties. The measured reflec-
tance Rm should follow the normal distribution N(μ, σ2)

where μ is the mean reflectance that presents the true value 
simulated in this experiment Rs. In addition, σ can be set to 
p · Rs, where p is a scaling factor satisfying p = 0 % , 2 % , …, 
50% in this experiment. Thus, we obtain:

Then, for different p, we generated 10,000 simulated reflec-
tances Rm satisfying Eq. 19 as input data for the OLS and 
DWLS approaches to calculate the RMSE. Meanwhile, we per-
formed the same operation for all sampled directions and cal-
culated the mean RMSE and its SD, which can represent the 
mean fitting residuals and fluctuation range of the 2 approaches, 
respectively. The results of this experiment are shown in 
Uncertainty and sensitivity analysis.

Experiment II: Effect of angle sampling distribution. Undoubt-
edly, more widely distributed angle samples are beneficial to 
BRDF inversion [55]. However, for satellite data, the directions 
of available observations may be limited due to orbiting config-
uration and the data quality. Therefore, the fitting abilities of the 
OLS and DWLS approaches were explored with limited angle 
sampling. We designed 4 angle sampling methods (Fig. 7). 
Method I is an approximation of the full Terra and Aqua MODIS 
sampling capabilities for a site [55], and the others were used to 

simulate the absence of observations in some angles. The geom-
etries of the simulated data shown in Fig. 7 are used as inputs to 
predict reflectances in other directions. Then, the inversion accu-
racies of the OLS and DWLS approaches using these 4 angle 
sampling methods were compared. The results are discussed in 
Influence of the angle sampling distribution.

Results

Evaluation based on simulated data
A comparison of the inverted BRDF shapes using the OLS and 
DWLS approaches is given in Fig. 8. Due to the inherent sym-
metry of the kernels of the RTLSR model, the BRDF shapes 
inverted by the OLS approach are strictly symmetric about the 
solar principal plane (Fig. 8A-2 and B-2). However, the shapes 
of the simulated BRDF do not exhibit this characteristic due 
to topographic effects. Especially in the NIR band, there is a 
big difference between the simulated and OLS inverted BRDF 
shapes. In contrast, the DWLS approach reconstructs the BRDF 
of this pixel more accurately in both the red and NIR bands. 
As shown in Fig. 8A-4 and B-4, BRFs inverted by DWLS are 
closer to the simulated BRFs compared to those inverted by 
OLS. The RMSE of OLS are 0.0029 and 0.0154 in the red and 
NIR bands, whereas those of the DWLS approach are 0.0020 
and 0.0100. In contrast, the DWLS approach shows a larger R2 
than OLS. The R2 of the OLS approach are 0.9174 and 0.7636, 
but those of DWLS can reach 0.9604 and 0.9028 in the 2 bands. 
Comparing the R2, we can find that both the OLS and DWLS 
approaches have better performance in the red band than in 
the NIR band. This is because the soil is treated as Lambertian 
in the simulation, and the heterogeneity caused by the rugged 
terrain is mainly expressed by the reflection contribution of 
the vegetation, which is larger in the NIR band. These results 
show that the DWLS approach can better overcome interfer-
ences caused by complex terrain.

Figure 9 compared the inversion accuracy of the OLS and 
DWLS approaches over all rugged pixels at different SZAs. For 
the red band, the DWLS approach shows a relatively narrower 
RMSE distribution at all SZAs, whereas a larger and more dis-
persed RMSE was noted in the OLS approach. The maximum 
RMSE of the DWLS approach are 0.0053, 0.0051, 0.0029, 
0.0051, and 0.0057 when SZA = 0°, 15°, 30°, 45°, and 60°, 
respectively, whereas the maximum RMSE of the OLS approach 
are 0.0063, 0.0063, 0.0044, 0.0064, and 0.0106. Similar results 

(17)e ∼ N
(
0,�2

)

(18)Rm ∼ N
(
�,�2

)

(19)Rm ∼ N
(
Rs,

(
p ⋅Rs

)2)
, p = 0% , 2% , … , 50%

Fig. 7. (A to D) Four different angle sampling methods used for analyzing the effect of observation distribution on inversion accuracy. The blue and black dots represent the 
directions that were adopted as input data for the RTLSR model and were used to simulate the observation directions of Terra and Aqua MODIS, respectively. The red dots 
show the simulated solar position for Terra (SAA = 150°) and Aqua (SAA = 210°), respectively. Concentric rings denote 10° increments of VZA. Radial lines represent 30° 
increments of VAA.
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are also shown in the NIR band. For the NIR band, the maxi-
mum RMSE of the DWLS is 0.0297 when SZA = 60°, whereas 
that of the OLS approach is 0.0380. These mean that the DWLS 
approach shows better performance at all SZAs in the 2 bands. 
Comparing the mean OR in the 2 bands, we can find that OR 
exhibits a positive correlation with SZA. Meanwhile, the RMSE 
of the 2 approaches show a trend of decreasing and then 
increasing. This is due to the combined effect of the decrease 
in reflectance values and the poor fitting ability of the RTLSR 
model at large SZA [56]. In summary, the DWLS approach 
achieves higher inversion accuracy over these rugged pixels.

The inversion results of the DWLS and OLS approaches at 
SZA = 30° over the mixed and control pixels in the red band 
are compared in Fig. 10. The results for the NIR band are given 
in Fig. S1. For the control pixel (Pixel A), its simulated BRDF 
shape is typical and regular. In Fig. 10A-3 and A-4, both BRDF 
shapes inverted by the OLS and DWLS approaches are similar 
to the simulated BRDF shape. The R2 between BRFs inverted 
by the 2 approaches and simulated BRFs are 0.9102 and 0.9230, 
respectively, which means that OLS and DWLS both perform 
well on this homogeneous pixel. However, the BRDF shapes of 
the mixed pixels (Pixels B to E) are more complex. Especially 
for Pixels B and C, due to the symmetry of the kernels, the OLS 
approach cannot restore their BRDF shapes accurately. This 
suggests that the fitting ability of the RTLSR model is affected 
by the clumping and occlusion of objects within the pixels. The 
DWLS approach performs better in Pixels B to E, where it accu-
rately captures their BRDF characteristics. The R2 of the OLS 
approach are 0.4535, 0.4762, 0.8868, and 0.4476 in Pixels B to 

Fig. 8. Comparison of the inverted BRDF shapes in a single pixel (marked in Fig. 1) between the OLS and DWLS approaches in the red (A) and NIR (B) bands using simulated 
datasets. (A-1) and (B-1) are the simulated BRDF shapes, (A-2) and (B-2) are the BRDF shapes inverted by the OLS approach, and (A-3) and (B-3) are the BRDF shapes inverted 
by the DWLS approach. The color bars represent BRF values. (A-4) and (B-4) compare the inversion accuracy of the OLS and DWLS approaches. The black lines in (A-2) and 
(B-2) mark the solar principal plane.

Fig. 9. Accuracy comparison of the OLS and DWLS approaches over simulated 
rugged pixels at different SZAs in the red (A) and NIR (B) bands. The boxplots 
show the RMSE distribution for the DWLS and OLS approaches. The lines are the 
mean ORs for different SZAs. The different shades of background color represent 
the different SZAs.
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Fig. 10. Comparison of inversion results of the OLS and DWLS approaches over simulated control and mixed pixels in the red band (SZA = 30°). (A) are the inversion results 
of the control pixels; (B) to (E) are the inversion results of the 4 mixed pixels; (1) 3-D scenes of these pixels. (2) to (4) are BRDF shapes from simulation, OLS, and DWLS, 
respectively; (5) are the comparisons of the inversion accuracy of the OLS and DWLS approaches.
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E, whereas those of the DWLS approach are 0.8658, 0.8847, 
0.9431, and 0.7361, respectively. The RMSEs of the 2 approaches 
over the 4 pixels show similar patterns. The results in the NIR 
band are similar. These results indicate that the DWLS approach 
can better fit the BRDF for these mixed pixels than the OLS 
approach.

Similarly, the performance of the 2 approaches was com-
pared over mixed pixels when the SZA changes. The RMSE 
and R2 of the OLS and DWLS approaches are given in Fig. 11 
for Pixels A to E and SZA = 0° to 60°. Overall, we can see that 
the solid shapes representing the DWLS approach are concen-
trated in the upper left corner of the 2 panels. On the contrary, 
the hollow shapes representing the OLS approach appear more 
often in the lower right corner of the panels, which indicates 
that the DWLS approach showed overall lower RMSE and 
higher R2 compared with the OLS approach. The mean RMSE 
of the OLS and DWLS approaches are 0.0064 and 0.0049 in the 
red band and 0.0175 and 0.0158 in the NIR band, respectively. 
The mean R2 of OLS are 0.5466 and 0.6663 in the red and NIR 
bands, respectively, while the mean R2 of DWLS both reached 
above 0.7 in the 2 bands. Through specific comparison of the 
same scene, we can find that the solid points with the same 
color and shape always appear on the upper left of the hollow 
points. This means that the DWLS approach can invert the 
BRDF more accurately. Similar to Fig. 9, both approaches 
exhibit lower fitting residuals at SZA = 30°. This should also 
be due to the reflectance value and the characteristics of the 
RTLSR model.

Performance in MODIS observation reconstruction
Observation reconstruction for Terra and Aqua MODIS 
observations
Figure 12 compares the observation reconstruction accuracy 
of the OLS and DWLS approaches when Terra and Aqua 
MODIS data are both used in the study areas. In Fig. 12, we 
can find that for both study regions, the RMSE of the DWLS 

approach are smaller in both the red and NIR bands, and the 
ORs of most pixels are positive. For the first study region, 
statistics show that 93.84% of the pixels have a positive OR 
in the red band and 87.05% in the NIR band. The OR reached 
a maximum of 78.74% and 77.14% in the red and NIR bands, 
respectively. Meanwhile, the mean RMSE are 0.0116 and 
0.0076 for the OLS and DWLS approaches in the red band 
and 0.0191 and 0.0139 in the NIR band, respectively. For the 
second study regions, the DWLS approach performs better 
over about 91.16% and 96.20% of pixels in the red and NIR 
bands, respectively. The mean RMSE are 0.0230 and 0.0195 
for the OLS and DWLS approaches in the red band and are 
0.0282 and 0.0204 for the NIR band, respectively. By com-
paring the distribution of OR and RMSE of the 2 approaches, 
we can find that in pixels where DWLS performs poorly, the 
OLS approach also shows large RMSE. This may be due to 
limitations in the distribution or uncertainty of observations. 
In general, the DWLS approach performs better in the area 
with complex surface conditions than the OLS approach.

The scatterplots in Fig. 13 represent the degree of agree-
ment between the reflectances from OLS and DWLS and from 
MODIS observations in the study regions. The fitting lines of 
reflectances inverted by the 2 approaches and MODIS are also 
given in Fig. 13. It is clear that the fitting lines for OLS show 
a stronger deviation from the 1:1 line compared to those of 
DWLS, which implies that the reflectances inverted by the 
DWLS approach have a stronger agreement with MODIS 
observations. For the first study region (Fig. 13A and B), The 
R2 of OLS are 0.7678 and 0.7770 in the red and NIR bands, 
respectively, which are smaller than 0.9160 and 0.8897 of the 
DWLS approach. The RMSE of the 2 approaches show similar 
results. The DWLS approach reduces the RMSE of the OLS 
approach from 0.0102 to 0.0061 in the red band and from 
0.0169 to 0.0118 in the NIR band. Similar results can be found 
in Fig. 13C and D. These results suggest that the reflectances 
from DWLS agree better with the MODIS observations than 
those inverted by OLS.

Fig. 11. Accuracy comparison of the OLS (hollow shapes) and DWLS (solid shapes) approaches over simulated mixed pixels at different SZAs in the red (A) and NIR (B) bands. 
The different shapes of the points represent different mixed pixels (Pixels A to E), and the colors represent different SZAs. The hollow and solid shapes represent the results 
from the OLS and DWLS approaches, respectively.
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Predicting Aqua MODIS observations using Terra  
MODIS observations
The performance of the OLS and DWLS approaches using Terra 
observations to predict Aqua observations is compared in 
Fig. 14. These histograms show the distribution of RMSE and 
R2 of the 2 approaches for all pixels of the 2 study regions. In 
Fig. 14, we can find that the RMSE of DWLS are smaller com-
pared to those of the OLS approach in the red band, and the 
difference is more evident for the NIR band. For the first study 
region, statistics show that the DWLS approach exhibits a 

smaller RMSE in 75.41% of the pixels in the red band and 
79.44% for the NIR band. This indicates that the DWLS approach 
has an advantage over the OLS approach in predicting reflec-
tance in more pixels. Meanwhile, in R2 histograms of the 2 
approaches in red and NIR bands, the values of DWLS are larger 
than those of the OLS approach. The CDF (cumulative distri-
bution function) lines visually compare the statistical patterns 
of the indicators of the 2 approaches: the CDF lines of DWLS 
RMSE reach 1 earlier (when the RMSE are smaller) in both red 
and NIR bands, and the CDF lines of DWLS R2 reach 1 later 

Fig. 12. Comparison of inversion results of the OLS and DWLS approaches using Terra and Aqua MODIS data for 2 study regions in the red and NIR bands. (A) and (B) are the 
results of the first study region in the red and NIR bands, respectively. (C) and (D) are the results of the second study region in the red and NIR bands, respectively. (1) and (2) 
are the RMSE of the OLS and DWLS approaches, respectively. The color bars of (1) and (2) represent the RMSE values from small (blue) to large (red). (3) Distribution of OR. 
The color bars of (3) represent the OR values from negative (blue) to positive (orange).

Fig. 13. Comparison of the reflectances inverted by the OLS and DWLS approaches in the 2 study regions. (A) and (B) show the results for the first study region in the red and 
NIR bands, respectively; (C) and (D) show the results for the second study region in the red and NIR bands, respectively; (1) are reflectance comparisons from OLS and MODIS; 
(2) are reflectance comparisons from DWLS and MODIS. The red lines are the fitting lines. The point density colors range from low (blue) to high (yellow).
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(when the R2 are larger). Similar results can also be found for 
the second study regions. These results suggest that the DWLS 
approach shows higher accuracy in more pixels and stronger 
robustness.

Performance in BRDF construction using  
UAV observations
The ability of the DWLS approach in BRDF construction was 
validated by 3 UAV measurement datasets. Table 3 gives the 
inversion results of the OLS and DWLS approaches, and Fig. 15 
shows a comparison of inverted BRDF and their accuracy by 
the 2 approaches over the maize pixel. The results in Table 3 
show that the inversion accuracies of the DWLS approach are 
higher for 3 row crop pixels compared to the OLS approach. In 
both red and NIR bands, the RMSE of DWLS are smaller and 
the R2 are closer to 1. Particularly in the maize pixel, the RMSE 
of the OLS approach are 0.0045 and 0.0219, whereas those of 
DWLS are 0.0025 and 0.0138 in the red and NIR bands, respec-
tively. The R2 of the DWLS approach are both larger than 0.9 
in the 2 bands, whereas those for the OLS approach are 0.5720 
and 0.8035, respectively. For the sunflower pixel, although both 
of the R2 for the 2 approaches are less than 0.9 in the red and 
NIR bands, the DWLS approach performs better. The RMSE 
of the 2 approaches suggest the same results. The OLS and 
DWLS approaches both show good performance in the wheat 
pixels, their R2 both larger than 0.9. This should be due to the 

more homogeneous canopy cover in wheat compared to maize 
and sunflower pixels. We then compared the inverted BRDF 
shapes by the OLS and DWLS approaches in the maize pixel 
with the observed BRDF shape in Fig. 15. It can be found that 
there is a larger difference between the inverted BRDF shape 
by the OLS approach and the observed BRDF shape compared 
to that from the DWLS approach. Figure 15A-3 and B-3 illus-
trates the frequency distribution of the δBRF in the red and 
NIR bands. By comparing the frequency fitting curves of the 
δBRF for the 2 approaches, it can be seen that the δBRF of 
DWLS are more concentrated around 0 compared to those of 
the OLS approach, which means that the BRFs inverted by the 
DWLS approach have smaller deviations. These comparisons 
show that the DWLS approach provides a more accurate con-
struction of BRDF than the OLS approach.

Uncertainty of the DWLS approach
Uncertainty and sensitivity analysis
The results presented in Fig. 16 correspond to Experiment I 
described in Performance analysis of the DWLS approach. We 
used the generated reflectances satisfying Eq. 19 with different 
uncertainties as input data for the RTLSR model to compare the 
sensitivities of the OLS and DWLS approaches to observation 
uncertainty. The mean RMSEs of the 2 approaches are repre-
sented by the colored lines in Fig. 16. It is clear that the mean 
RMSEs of OLS and DWLS increase with increasing observation 

Fig. 14. Histogram of the accuracy of the OLS and DWLS approaches using Terra observations (MOD09GA) to predict Aqua observations (MYD09GA). (A) and (B) are the 
results for the first study region in the red and NIR bands, respectively; (C) and (D) are the results for the second study region in the red and NIR bands, respectively; (1) are 
RMSE histograms; (2) are R2 histograms. The red and black lines are the CDF of the DWLS and OLS approaches, respectively.

Table 3. The results of UAV data validation.

Pixels

Red NIR

RMSE R2 RMSE R2

OLS DWLS OLS DWLS OLS DWLS OLS DWLS

Wheat 0.0073 0.0054 0.9049 0.9475 0.0115 0.0088 0.9454 0.9696

Maize 0.0045 0.0025 0.5720 0.9071 0.0219 0.0138 0.8035 0.9320

Sunflower 0.0049 0.0041 0.7893 0.8173 0.0163 0.0137 0.6165 0.7450
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uncertainty in both bands, and the mean RMSE of the DWLS 
approach increases faster. This can also be seen from their fitting 
lines: the gradients of the OLS fitting line are 0.0063 and 0.0115 
in the red and NIR bands, respectively, whereas those of the 
DWLS fitting lines are 0.0087 and 0.0179. The RMSE SDs of 

the 2 approaches, represented by shaded backgrounds, show 
the fluctuation range of their RMSE, and the DWLS approach 
exhibits a larger SD than OLS. This suggests that the DWLS 
approach is more susceptible to observation uncertainty than 
the OLS approach. Nevertheless, the DWLS approach still 

Fig. 15. Comparison of the inversion results using the UAV measured data over the maize pixel between the OLS and DWLS approaches in the red (A) and NIR (B) bands. (A-1) 
and (B-1) are the measured BRDF shapes. (A-2) and (B-2) are the BRDF shapes inverted by the OLS approaches. (A-3) and (B-3) are the BRDF shapes inverted by the DWLS 
approaches. The color bars represent BRF values. (A-4) and (B-4) are the comparisons of the inversion accuracies of the OLS and DWLS approaches. δBRF represents the 
absolute deviation of BRF. The colored dashed lines are the frequency fitting curves of δBRF.

Fig.  16. Comparison of uncertainty sensitivity between the OLS and DWLS approaches in the red (A) and NIR (B) bands. The colored lines are the mean RMSEs of the 2 
approaches. The black and red dashed lines are the fitting lines of the mean RMSE of OLS and DWLS, respectively. The blue and orange shaded areas indicate the RMSE SDs 
of the OLS and DWLS approaches.
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shows higher inversion accuracy when the observation uncer-
tainty is small.

Influence of the angle sampling distribution
Satellite measurements may be affected by clouds and aerosols, 
resulting in a direction concentration of available reflectances. 
We compared the inversion capability of the OLS and DWLS 
approaches under different angle sampling conditions (Fig. 17). 
These results correspond to Experiment II described in Perform-
ance analysis of the DWLS approach.

For Method I, both the OLS and DWLS approaches show 
small and narrow RMSE distribution. However, for Methods 
II, III, and IV, the RMSEs of both the OLS and DWLS approaches 
are larger and more discrete due to missing observations. These 
results mean that both the OLS and DWLS approaches are 
affected by the observation distribution, and their inversion 
accuracies decrease as the observation distribution is limited. 
By comparing the OR of the 4 sampling methods, we can find 
that OR can reach about 20% in the red and NIR bands for 
Method I with ideal observations. They decrease to less than 
10% as the distribution of the observation becomes more con-
centrated. This indicates that the optimization effect of the 
DWLS approach compared to OLS is also influenced by the 
observation distribution.

Discussion

Characteristics of the DWLS approach
The kernels are key to the physical meaning of the kernel-driven 
models. The approximate physical basis of the kernels substan-
tially constrains the possible BRDF shapes in unobserved 
regions of the viewing and illumination hemisphere. However, 
most kernels are highly hypothetical and more suitable for 
homogeneous pixels, which is a root cause of the challenge of 
original kernel-driven models over heterogeneous pixels [56,57]. 
Therefore, up to now, scholars have been working to improve 
the fitting ability of the kernel-driven model by improving new 
kernels through physical methods [40–43]. However, the inver-
sion approach is also critical for the kernel-driven models, 
because they are a kind of semiempirical model.

The inversion process of kernel-driven models is a linear 
weighting of the BRDF decomposition of the pixels into 3 ideal 
situations (isotropic-scattering, volume-scattering, and geometric- 
optical). The kernel coefficients calculated using the known 
multiangle reflectances are the weight values of the 3 scenes. 
The OLS approach assigns the same weight to all known obser-
vations in the BRDF inversion to solve for the kernel coefficients 
of the pixels. This means that the OLS approach decomposes 
the pixel into a fixed weighted combination of 3 ideal radiative 

Fig. 17. Comparison of the inversion accuracies of the OLS and DWLS approaches using different angle sampling methods. (A) and (B) represent the results in the red and NIR 
bands, respectively. The marked numbers above boxes are ORs of different sampling methods calculated by the mean RMSE. The 4 angle sampling methods are given in the 
polar plots on the right panel.
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transfer scenes. This may be acceptable for flat and homogene-
ous pixels but not for heterogeneous pixels; observing the pixel 
from a different perspective may result in a completely different 
scene. Heterogeneity has become a critical factor affecting the 
pixel BRDF. The radiative transfer process within the hetero-
geneous pixels can no longer be accurately described by a fixed 
weighted combination. The DWLS approach dynamically cal-
culates the weights of known observations using their geometry 
information to invert the BRDF of the heterogeneous pixels, 
which makes better use of structure information within the 
pixels carried by the multiangle observations. Therefore, the 
DWLS approach performs better and obtains more accurate 
BRDF inversions over heterogeneous pixels than OLS.

However, uncertainty is inevitable in observations and chal-
lenges the performance of the proposed DWLS approach. We 
found that the DWLS approach is more sensitive to input 
uncertainties than the OLS approach, as verified in Uncertainty 
and sensitivity analysis, which limits the application of the 
DWLS approach. Fortunately, Zeng et al. [58] have already 
proposed a changing-weight iterative BRDF inversion algorithm 
that can adjust the weight of each observation according to its 
noise level and effectively improve the robustness of BRDF 
inversion. This algorithm can be used to remove observations 
with large uncertainties before BRDF inversion using the DWLS 
approach. In Influence of the angle sampling distribution, 
the influence of the available observation distribution on the 
DWLS approach was also explored. It is worth noting that the 
DWLS approach outperforms OLS in all cases. Meanwhile, as 
the distribution of known observations becomes wider, the 
DWLS approach exhibits a higher optimization effect.

In addition, the DWLS approach, similar to the OLS approach, 
can be used in combination with all kernel-driven models. 
Since the introduction of the kernel-driven models, there has 
been considerable effect to improve them and develop many 
new kernels or forms of the kernel-driven models over more 
than 2 decades [56]. Therefore, the performance of the DWLS 
approach in combination with other kernel-driven models is 
also expected.

In summary, the DWLS approach has several characteristics: 
(a) The DWLS approach can take advantage of multiangle 
reflectances for more accurate BRDF modeling without any 
additional input data. (b) This approach is more sensitive to 
large uncertainties in observation than OLS. (c) The observa-
tion distribution affects the optimization effect of DWLS. When 
the observation distribution tends to be concentrated, the accu-
racy of DWLS and OLS approaches tends to be similar. (d) The 
DWLS approach can be used with other kernel-driven models. 
Considering these characteristics, we believe that the DWLS 
approach can be a good choice when the kernel-driven models 
are applied to heterogeneous pixels.

Application of the DWLS approach and future works
The DWLS and OLS approaches, as inversion methods, can be 
combined with the kernel-driven models and used to: (a) invert 
pixel’s BRDF; (b) reconstruct missing satellite observations; (c) 
correct bidirectional effects and calculate nadir BRDF-adjusted 
reflectance (NBAR); and (d) estimate surface albedo, and other 
parameters. In this paper, we compared the ability of OLS and 
DWLS approaches to invert BRDF and reconstruct the missing 
MODIS observations for heterogeneous pixels. The results 
show that the DWLS approach is more advantageous over 
heterogeneous pixels. Compared with the OLS approach and 

other models, it can more accurately invert the BRDF by using 
multiangle observations without additional input data, which 
facilitates the accurate construction of pixel BRDF using UAV 
observations. We made no effort to estimate NBAR and albedo 
in this paper. Theoretically, the DWLS approach should be 
more robust for the NBAR calculation because it is less suscep-
tible to the interference of reflectance with large VZA, which 
is vulnerable to heterogeneity within the heterogeneous pixels. 
However, for albedo estimation, we think that the DWLS 
approach may not exhibit a noticeable optimization effect. This 
is because the reflectance with large VZA contributes less to 
the estimation of albedo and there may be complementarity in 
different orientations.

Therefore, there are still some aspects of our study that need 
to be further explored. Firstly, we focused on the development 
and analysis of the approach and did not quantitatively compare 
the DWLS approach with other BRDF models for heterogene-
ous pixels. The practical application of DWLS for estimating 
NBAR and albedo also needs to be investigated. Secondly, 
although the DWLS approach does not require additional input 
data, it is more sensitive to observation uncertainty than OLS. 
How the influence of observations with large uncertainties on 
the DWLS approach can be reduced needs further exploration. 
Finally, only the RTLSR model is used for the evaluation and 
analysis of the DWLS approach in this paper. The performance 
of DWLS when combined with other kernel-driven models is 
also worth exploring. These issues are also crucial for the wide 
application of the DWLS approach and will be our future work.

Conclusion
In this study, we tried to improve the fitting ability of the ker-
nel-driven models over heterogeneous pixels by changing the 
inversion approach. Then, we proposed the DWLS method to 
address this issue. The simulated, satellite-, and UAV-measured 
multiangle data were used to compare the DWLS approach and 
the traditional OLS approach quantitatively. In the evaluation 
based on the simulated data, the results show that the DWLS 
approach is more suitable for heterogeneous pixels than the 
OLS approach. Meanwhile, the DWLS approach exhibits higher 
accuracy and robustness in MODIS observation reconstruction 
and BRDF construction using UAV observations, even though 
it still shows higher sensitivity to observation uncertainty. In 
summary, the developed DWLS approach based on the kernel- 
driven models can capture BRDF characteristics more accurately 
over heterogeneous pixels. We believe that it can be a better 
choice when the kernel-driven models are applied to satellite 
observation reconstruction or BRDF construction by UAV 
observations. In future studies, the DWLS approach has the 
potential to be extended to estimate land and biophysical 
parameters (e.g., NBAR and leaf area index) over heterogene-
ous landscapes.
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