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Improving the Quality of MODIS LAI Products by
Exploiting Spatiotemporal Correlation Information
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Janne Heiskanen, Yuri Knyazikhin , and Ranga B. Myneni

Abstract— The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) leaf area index (LAI) product is critical for global
terrestrial carbon monitoring and ecosystem modeling. However,
MODIS LAI is calculated on a pixel-by-pixel and day-by-day
basis without using spatial or temporal correlation information,
which leads to its high sensitivity of LAI to uncertainties in
observed reflectance, resulting in an increased noise level in
time series. While exploiting prior knowledge is a common
practice to fill gaps in observations, little research has been
conducted on reducing noisy fluctuations and improving the
overall quality of the MODIS LAI product. To address this issue,
we proposed a spatiotemporal information composition algo-
rithm (STICA), which directly introduces prior spatiotemporal
correlation and multiple quality assessment (MQA) information
into the existing MODIS LAI product. STICA reduces the noise
level and improves the quality of the product while maintaining
the original physically based (radiative transfer model, RTM)
LAI production process. In our analysis, the R2 increased from
0.79 to 0.81 and the root-mean-square error (RMSE) decreased
from 0.81 to 0.68 compared to the ground-based LAI reference.
The improvement was more pronounced with the degradation of
the data quality. STICA reduced noisy fluctuations in the LAI
time series to varying degrees among eight biome types. In the
Amazon forest, STICA significantly improved the time-series
stability of LAI. Moreover, STICA can effectively eliminate
abnormal declines in time series and correct for extreme outliers
in LAI. We expect that the MODIS LAI reanalyzed product
generated by this method will better support the application of
high-quality LAI datasets.
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I. INTRODUCTION

LEAF area index (LAI), generally defined as the one-sided
green leaf area per unit ground horizontal surface area

in broadleaf canopies and as the projected needle leaf area
in coniferous canopies [1], is a critical parameter for char-
acterizing vegetation canopy structure and energy absorption
capacity [2], [3]. LAI has been designated as an essential
climate variable by the Global Climate Observing System
(GCOS) due to its critical role as an input for a range of
applications, such as numerical weather prediction, climate
modeling, and forest monitoring [4], [5], [6]. Additionally,
LAI plays a crucial role in regulating global water, carbon,
and energy cycles [7], [8].

Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI is one of the most widely used LAI products thanks to
its clear theoretical basis, relatively high temporal and spatial
resolution, extensive historical time series, and open access
policy [9]. This radiative transfer model (RTM)-based LAI
product represents a milestone in Earth observations [10].
Not only the production of this product does not depend on
other LAI datasets but is often used as a training dataset of
other products [11], [12] and as the reference for product
comparisons [13], [14]. Additionally, it has been widely used
in terrestrial carbon monitoring [8], global ecosystem dynamic
simulation [15], and studies on the relationship between veg-
etation dynamics and human activities [16], [17], [18].

The MODIS algorithm retrieves daily LAIs by ingesting
daily red and near-infrared (NIR) bidirectional reflectance
factors (BRFs) and biome maps [3]. Then, the temporal
compositing approach is used to select the best retrievals and
generate eight-day products from daily retrievals [10], [19].
Inversion values in this period are considered the candidate
retrievals according to the principle that the main algorithm
has the highest priority, whereas backup algorithm retrievals
are selected when there is no main algorithm available [2]. The
optimal LAI retrieval corresponds to the maximum fraction
of photosynthetically active radiation absorbed by vegetation
(FPAR) value within this period [20]. Hence, MODIS LAI
retrievals are calculated independently for each pixel and on a
daily basis, without considering spatial or temporal correlation
information. Differences in the observation conditions of two
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adjacent periods can cause substantial uncertainty in the LAI
time series, which can inaccurately depict the actual growth
trajectory of vegetation and limit its applications in forest
simulations, crop-growth monitoring, and yield estimation
research [21], [22]. Therefore, it is important to obtain a high-
quality LAI time series.

There have been many studies aiming at reducing high-
frequency noises and improving the temporal consistency of
LAI, which can mainly be divided into reflectance-based and
LAI-based approaches. The Global Land Surface Satellite
(GLASS) LAI reprocessed MODIS reflectance data through
filtering and interpolation algorithms to obtain smooth and
continuous surface reflectance values. A generalized regression
neural network was then used to retrieve LAI values from the
reprocessed reflectance data [12]. Moreover, the reflectance
was used as input data to obtain high-quality LAI in data
assimilation methods for studying the carbon cycle charac-
teristics of subtropical forest ecosystems [21], [23]. Indeed,
the smoothness and consistency of an LAI time series can
be improved by filtering the reflectance data and assimilating
multisource data. However, these methods can hinder the
quantification of factors associated with vegetation dynamics,
bidirectional effects, and observation uncertainties, as well
as lose the sun-sensor geometry information, challenging to
employ physically based inversion algorithms. Another alter-
native is to improve the smoothness and consistency of LAI
curves by adding prior knowledge (e.g., biome classification
or spatial and temporal correlation information) into the LAI
datasets. These methods can be divided into three categories
depending on the information used.

1) Spatially Based Method: This is the most traditional and
fundamental approach of the three kinds of methods,
which uses the spatial measurements adjacent to the
target point to predict values at any location. This
approach assumes that surrounding data at spatial scales
share the same geometric structure or statistics [24]. The
typical representative is spatial interpolation, which can
be applied using cubic splines [25], bilinear interpola-
tion [26], inverse distance weight interpolation [27], and
Kriging interpolation [28]. In addition, other representa-
tive methods include propagated diffusion methods [29],
exemplar-based methods [30], and variation-based meth-
ods [31]. Most spatial-based methods are easy to imple-
ment and can be applied well to small areas. In addition,
spatial-based methods are only suitable for utilization in
areas with relatively simple distribution characteristics
of biome types and generally have low accuracy in
heterogeneous land cover regions.

2) Temporally Based Method: This is the most common
technique and is directly connected with dynamic growth
changes of vegetation, replacing low-quality data with
simple means of averaged contemporaneous values or
from adjacent times [32], [33] and substituting local gaps
caused by clouds or atmospheric aerosols with multiple
consecutive adjacent values [34]. Methods also include
the maximum values composite (MVC) [35], the best
index slope extraction (BISE) using a sliding window
to remove outliers [36], and the iterative interpolation

method [37]. In addition, temporal filtering methods
are also widely used in LAI time-series smoothing,
including the Savitzky–Golay (SG) filter [38], the mov-
ing average (MA) filter [39], the asymmetric Gaus-
sian (AG) function fitting [40], double logistic (DL)
function fitting [41], and harmonic analysis of time
series (HANTS) [42]. Curve fitting can capture vege-
tation dynamics well, but is also susceptible to local
fluctuations and data noise [43]. Furthermore, many
current LAI time-series production methods are based on
temporal deep learning models such as neural networks,
random forests, and decision trees [44], [45], [46].

3) Hybrid Method: Each of the above two approaches has
advantages and weaknesses, which rely on only one
correlation. As a result, they are outstanding in some
cases but powerless in others. Accordingly, combining
their respective strengths can avoid most of the weak-
nesses. The hybrid method comprehensively considers
the correlation in the spatial and temporal domains
and makes up for the lack of single information to
achieve more robust results [47], [48]. In recent years,
a growing body of research has confirmed that com-
bining multiple information has enormous advantages
over using a single feature [49], [50], [51], [52]. Borak
and Jasinski [53] evaluated several temporal and spatial
interpolation methods using MODIS LAI time series,
and the results indicate that the underlying land cover
can affect the accuracy of individual interpolation meth-
ods. However, a combination of spatial and temporal
methods provides superior interpolative capabilities to
any single approach. Similarly, a study comparing var-
ious interpolation methods found that combining space
and time was less affected by environmental factors such
as terrain and climate [54].

Spaceborne remote sensors have the capability to rapidly
supply large-area observations, which provide the only way to
monitor and observe phenology over large scales and at regular
intervals [55]. With the growing number of Earth observation
satellites, more LAI products are developed. Smoothing of
LAI time series is often used to fill gaps in observations
caused by cloud cover or sensor failures. However, there
is little research on how to reduce noisy fluctuations in a
time series and improve the overall quality of MODIS LAI
product. Additionally, some methods suffer from high compu-
tational costs and difficulties in operational implementation,
challenging their application to regional or global scales.
Data reanalysis is widely used in meteorology, but there are
few reports on remote sensing reanalysis products. MODIS
LAI has a clear theoretical basis and offers a long time
series (2000 to present). Therefore, it is an optimal choice
to reanalysis based on the principles of high computational
efficiency, easy adaptation to process changes, and reasonable
accuracy to improve their overall quality. In this way, data
consistency can be ensured without changing the advantages
of the existing products (the physics-based LAI generation
process).

This study proposes a spatiotemporal information com-
position algorithm (STICA) to directly introduce prior
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TABLE I
SITE INFORMATION FOR GBOV. LAND COVER DATA FROM THE MCD12Q1 IN 2018

spatiotemporal correlation information and multiple quality
assessment (MQA) information into the existing MODIS LAI
product. The primary objective of this study is to propose the
STICA and evaluate its performance through direct validation
with ground reference and evaluation based on simulated time
series, performance in different biome types, and specific
regional scales. We hope to apply STICA to derive a MODIS
LAI reanalyzed product in the next step.

The structure of this article is organized as follows.
Section II provides a framework for the proposed STICA
and describes the datasets and evaluation metrics used in this
study. Section III details the evaluation of the performance of
the tile scale obtained by STICA. We discuss the parameter
sensitivity, key points of improvement, advantages of multiple
information, and prospects of STICA in Section IV. Conclud-
ing remarks are provided in Section V.
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Fig. 1. Geographical distribution of the selected GBOV sites and the specific study area. The background color indicates the biome types from
the 2018 MCD12Q1 classification scheme. The blue dots represent the GBOV sites, and the red boxes show the tiles selected for analysis in this study:
T0 = h11v04, T1 = h23v04, T2 = h29v11, T3 = h25v06, T4 = h12v03, T5 = h11v09, T6 = h12v04, T7 = h20v02, and T8 = h23v03.

II. MATERIALS AND METHODOLOGY

A. Datasets

1) MODIS Land Cover Map: The biome classification map
is an auxiliary dataset of MODIS LAI and is used to reduce
the uncertainty of the retrieval algorithm. An accurate biome
classification map is essential for linking satellite observations
with surface parameters. We used the biome classification
map to identify the same type of pixels and include them
in the algorithm calculation. The MODIS land cover product
(MCD12Q1) supplies global maps at 500-m spatial resolution
and annual time steps. The product was created using a
supervised classification of spectral–temporal features [56]
and contains 13 science datasets. The MCD12Q1 used the
LAI legacy classification scheme, i.e., B1: grasses and cereal
crops; B2: shrubs; B3: broadleaf crops; B4: savannas; B5:
evergreen broadleaf forests (EBF); B6: deciduous broadleaf
forests (DBF); B7: evergreen needleleaf forests (ENF); and
B8: deciduous needleleaf forests (DNF) [19], [56]. Fig. 1
displays the approximate global biome-type distribution based
on the 2018 land cover.

2) MODIS LAI Product: The MODIS LAI algorithm
retrieves LAI using a lookup table (LUT) inversion strategy
based on the theory of 3-D radiative transfer and stochastic
radiative transfer theory [2], [3]. The operational algorithms
include the main algorithm and the backup algorithm, which
are based on the radiative transfer equation and the empirical
relationship between canopy LAI and normalized vegetation

index (NDVI), respectively [10], [57], [58]. The mean values
of LAI, FPAR, and their dispersions, standard deviation of
LAI (STD LAI) and STD FPAR, are reported as retrievals and
their uncertainties [2], [3]. Corresponding quality information
is also stored in the layer [20]. Users should consult the quality
flags when using these products [19].

The standard collection 6 MODIS LAI/FPAR product suite
(MOD15A2H) is provided at a 500-m spatial resolution and
eight-day temporal resolution [59], covering the period from
2002 to the present and having global coverage. In general,
46 composites are produced per year, but composites may
be lost due to the influence of the sensor or other factors.
This product is projected on a sinusoidal grid and distributed
as standard hierarchical data format (HDF) files. Each file
contains six scientific layers: 1) FPAR; 2) LAI; 3) Fpar-
Lai_QC; 4) FparExtra_QC; 5) FparStdDev; and 6) LaiStdDev.
We used the LAI, LaiStdDev, and FparLai_QC layers, which
store the LAI retrieval, the retrieval uncertainty, and the quality
control information, respectively [2], [19], [60]. The year
2018 over selected tiles was used in this study.

3) Ground LAI Reference: There is an increasing emphasis
on quantifying product accuracy based on in situ reference
measurements with the growing availability of Earth obser-
vation products [61], [62]. We evaluated the performance of
STICA LAI against the Copernicus Ground-Based Observa-
tions for Validation (GBOV) LAI, as the GBOV database is
regularly updated with consistent products and has enough
data for evaluation within a year. The GBOV service is part
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TABLE II
PERCENTAGE OF BIOME TYPE IN THE SIMULATED LAI

of the Copernicus Global Land Service (CGLS) and aims
to develop and distribute robust in situ datasets from this
selection of ground-based monitoring sites for quantitative and
systematic validation of land products [61]. A GBOV reference
measurement database has been created by quality control and
reprocessing raw measurements from existing in situ sites.
The established database contains top of canopy reflectance,
surface albedo, LAI, FPAR, the fraction of covered ground,
soil moisture at 5 cm depth, and land surface temperature.
These data are freely available to the community via the
GBOV portal (https://gbov.acri.fr).

We selected the GBOV LAI measurements of 2018 as a
reference, with a total of 24 sites (Table I and Fig. 1). A square
area of 3 × 3 km centered on the site location was selected as
the study area, and the MODIS LAI product corresponding to
the site was 6 × 6 pixels. Only valid pixels were calculated
in the 3 × 3 km area to improve the credibility of the
ground LAI. The criteria for valid pixels are that effective
pixels used in aggregation value are greater than 80% and
the input and output of the land product value of the data
aggregation process are within the range. After filtering, there
were 21 available sites (307 measurements) to be used for
validation [61], [62], among which JORN, MOAB, and Central
Plains Experimental Range (CPER) sites were not used for
verification because there was no available data after filtering.

4) Simulated LAI Time Series: Uncertainty analysis for val-
idating remote sensing products based on ground measurement
data is a direct detection method with pixels as the basic unit,
which can directly verify the quality of remote sensing prod-
ucts. However, this verification method is limited by spatial
scale and resources. Using simulated data allows us to explore
the behavior of the algorithm by stripping away sources of
uncertainty and adding arbitrary uncertainty to evaluate its
advantages and limitations. In this study, we generated a
reference dataset region to better understand the performance
of STICA. We add random uncertainties to the simulated
data to compare the improvement effect of STICA under
different uncertainty ranges. The simulated LAI time series
were generated based on an area (tile: h11v04, size: 500 ×

500 pixels) of raw MODIS LAI covering six biome types
(Table II). The approach is described in detail in the following.

a) Standard LAI time series: We first averaged the main
algorithm retrievals of 46 composites to obtain the annual
mean curves of 2018 for different biome types. These curves

TABLE III
RELATIVE UNCERTAINTY CORRESPONDING TO THE MQA

AND QUALITY CLASSIFICATION

were accompanied by jitter caused by sensor failures or
observation conditions. The SG filter approach fits a curve
with a local polynomial function, which can capture rapid and
subtle changes in the time series [32]. Hence, we applied the
SG filter to correct the annual mean curves to obtain smooth
annual curves for different biome types. We refer to these
smooth annual curves as ancillary LAI.

Based on auxiliary LAI, the standard LAI time-series gen-
eration steps are as follows. First, we replaced the backup
algorithm retrievals with the auxiliary LAI of the same biome
type and kept the main algorithm retrievals constant. Second,
we applied the SG filter to smooth each pixel. Finally, the
smooth LAI curve represented the simulated standard LAI
time series for one year.

b) Simulated uncertainty-added (SUA) LAI time series:
To obtain the SUA LAI time series, random uncertainty was
added to each pixel of the standard LAI time series, with a
normal distribution. The range of uncertainty varied between
plus and minus 40%. We divided the relative uncertainties into
four categories to obtain a quality classification of the SUA
LAI time series, as shown in Table III.

Finally, a total of four simulated datasets were generated
as follows: 1) standard LAI time series; 2) land cover map;
3) SUA LAI time series; and 4) MQA. In this study, the land
cover was introduced to distinguish the biome types of pixels
and control the pixels involved in the calculation; MQA is
an index that assigns various weights to pixels by employing
spatiotemporal correlation information; SUA LAI time series
were the input data in STICA; and standard LAI time series
were used to evaluate the quality improvement effect.

B. Proposed STICA

The workflow of STICA (Fig. 2) includes four main steps.
The details are described in Sections II-B1–II-B4.

1) Step 1: MQA: Although STICA is related to LAI infor-
mation at neighbor periods/locations, this information carries
varying levels of uncertainty. Our algorithm comprehensively
determined this uncertainty using multiple indicators, called
MQA [Fig. 3(d)]. Among them, the algorithm path (AP)
[Fig. 3(a)] is an essential quality indicator, and many research
analyses demonstrate that the main algorithm provides the
highest quality and precision retrievals [19], [63]. The esti-
mated retrieval uncertainty, STD LAI [Fig. 3(b)], is only
generated when the main algorithm is used [2], [3], [60]. Time-
series stability [TSS, Fig. 3(c)] represents the fluctuation of a
time series, with high values implying more jitter [64]. The
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Fig. 2. Workflow of the proposed STICA.

equation and details of the TSS are provided in the Appendix.
The AP and STD LAI are archived in the quality assurance
(QA) layers associated with the MODIS product. To calibrate
the proportion of the main algorithm and backup algorithm,
we selected eight GBOV sites (Bartlett Experimental Forest
(BART), Harvard Forest (HARV), Smithsonian Conservation
Biology Institute (SCBI), Talladega National Forest (TALL),
KONA, ONAQ, SRER, and WOOD) with uniform vegetation
types and evaluated the performance using root-mean-square
error (RMSE) as the evaluation index (Table IV). The weight
ratio of the backup and the main algorithm was set as 4:6.
We then mapped STD LAI and relative TSS (RE-TSS) to the
main algorithm retrievals according to the principle that the
smaller the value, the greater the weight is. The equation of

data mapping of STD LAI and RE-TSS is as follows:

y = ymax +
ymin − ymax

xmax − xmin
× (x − xmin) (1)

where ymax and ymin are the maximum and minimum values of
the mapping target interval with 0.5 and 0, respectively. xmax
and xmin are the maximum and minimum values of data (STD
LAI or RE-TSS), respectively. x is the data value (STD LAI
or RE-TSS), and y is the mapping result. Finally, the MQA
was obtained by integrating the AP, STD LAI, and RE-TSS.

2) Step 2: Employing Spatial Correlation Information:
Inverse distance weighted (IDW) is a commonly used interpo-
lation method in spatial analysis, assuming each location has a
local effect. IDW assigns considerable weight to nearby points
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TABLE IV
RMSE CORRESPONDING TO THE VALUE OF THE WEIGHT ASSIGNMENT OF THE BACKUP ALGORITHM

Fig. 3. Spatial distribution of different indicators in tile h12v04-2018265:
(a) AP; (b) STD LAI; (c) RE-TSS (formula in the Appendix); and (d) MQA
map after the synthesis of multiple indicators.

and reduces it as the distance increases. In our algorithm,
we weighted the average of all the eligible pixels within
a certain spatial range of the target pixel, with eligibility
determined by the same land cover type. A neighboring pixel
with a higher MQA value contributed more to the target pixel.
The spatial LAI is calculated as

S_LAI(x,y) =

∑n
i=1 Raw_LAIi × Di × MQAi∑n

i=1 Di × MQAi
(2)

where n is the number of pixels of the same land cover
in the window around the target pixel. Spatial LAI remains
unchanged when there is no same land cover type in the
window. Di represents the inverse of the spatial Euclidean
distance (between candidate and target pixel), defined as

Di = ED−α
i (3)

EDi =

√
(x − xi )

2
+ (y − yi )

2 (4)

where α is a positive power exponent that controls the decay
rate of a candidate pixel weight, and the weight of distant
candidate pixels decreases rapidly with the increase of α. It is
necessary to evaluate the optimal power exponent α and the
window size, which ensures the overall utility. We randomly
selected an area (200 × 200 pixels) in the simulated LAI time
series and obtained RMSE by varying parameters to investigate
the two parameters.

3) Step 3: Employing Temporal Correlation Information:
Simple exponential smoothing (SES) is frequently used as an
exponential MA model in the time-series domain due to its
simplicity, computational efficiency, adaptability to processing
changes, and reasonable accuracy [65], [66]. It is an intuitive
prediction method with unequal weights for time series [67],
giving the heaviest weight to recent observations and a smaller
weight to those to a distant time. While traditional SES
uses only the predecessors of the target timestamp as input,
we referenced the approach of Yi et al. [68] and incorporated
both predecessors and successors of the target timestamp.

Similar to spatial LAI, we weighted the average of all the
eligible pixels of the target pixel within a certain temporal
period. More weight was given to pixels that are temporally
closest to the target pixel and have higher MQA values. The
temporal LAI can be expressed as

T _LAI(x,y) =

∑m
j=1 Raw_LAI j × E j × MQA j∑m

j=1 E j × MQA j
(5)

where m represents the length of the time series participating
in calculating target pixels. E j is defined as follows:

E j = β × (1 − β) j−1 (6)

where j is the time interval between a candidate pixel and
a target pixel, and β denotes the rate at which the weight
changes over time. The smaller β represents the slighter
decrease of weight over the time interval. Similarly, we used
the same simulated LAI time series to determine the two
parameters of the length of the time series m and smoothing
parameter β.

4) Step 4: Multiple Information Compositing: STICA inte-
grated spatial and temporal LAI as well as raw MODIS LAI.
Different weights were assigned to the LAI of the three kinds
of information to obtain the final LAI (STICA LAI)

STICALAI(x,y)

=
S_LAI(x,y)×W 1+T_LAI(x,y)×W 2+Raw_LAI(x,y)×W 3

W 1 + W 2 + W 3
(7)

where W 1, W 2, and W 3 represent the weights of spatial,
temporal, and raw LAI, respectively, which can be expressed
as follows:

Wk =
1

relative TSSk(x, y)
, k = (1, 2, 3) (8)

where relative TSSk(x, y) represents the fluctuation of the
time series at pixel (x, y). TSS is used to quantify the LAI
stability of three types of information. High values imply a
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poor TSS of data; conversely, low values indicate a stable
time-series performance of data [64]. The STICA LAI was
only obtained from the average of spatial LAI and temporal
LAI when the target was the starting or ending time, as TSS
required at least one data period before and after the target
pixel.

The final output LAI layers included the raw MODIS LAI,
the spatial LAI, the temporal LAI, and the STICA LAI. The
output quality layers contained the raw QA layers, the MQA
layers, and the absolute difference (AD) of LAI between
STICA LAI and the raw MODIS LAI.

C. Study Area

In the algorithm evaluation with ground LAI reference,
we selected 21 sites (Fig. 1 and Table I), which covered a
variety of biome types: forests (including EBF, ENF, DBF,
and broadleaf needleleaf forests), crops (including grasslands,
shrublands, and broadleaf croplands), and savannas. In addi-
tion, we selected eight tiles (2400 × 2400 pixels per tile)
dominated by a single biome as representatives of different
biome types: h23v04 (coverage of B1: 84.27%), h29v11 (B2:
97.63%), h25v06 (B3: 33.00%), h12v03 (B4: 76.39%), h11v09
(B5: 94.01%), h12v04 (B6: 33.84%), h20v02 (B7: 31.09%),
and h23v03 (B8: 12.95%) to observe the annual LAI curve
fluctuations over different biomes types and evaluate the
performance of the algorithm under a specific biome type.
Fig. 1 shows the geographic locations and coverage of eight
tiles with the highest percentage of distinct biomes globally;
we only analyzed pixels corresponding to those biome types.

The Amazon forest plays a crucial role in the hydrologic
cycle [69], which is critical to balancing the global carbon
budget and improving climate projections [70]. However,
high cloud cover and aerosol concentration affect this region
throughout the year, leading to reduced-quality observation
data for optical sensors and hindering LAI retrievals [71], [72].
Consequently, evaluating the performance of STICA over the
Amazon forest region was crucial. To achieve this, we selected
the h11v09 tile (2400 × 2400 pixels) centered on the Amazon
forest (Fig. 1) in 2018 and compared the TSS and time-series
anomaly (TSA) of STICA with the raw MODIS LAI. Addi-
tionally, we used a local area (500 × 500 pixels) with a
proportion of EBF exceeding 97% in h11v09 to compare
the LAI changes in two adjacent periods and evaluate the
performance of STICA and raw LAI indirectly. To assess their
performance, we set the MODIS LAI value on day of year
(DOY) of 201 in 2018 (D1) as the standard LAI and subtracted
D1 from the raw and STICA LAI values on DOY 209 in 2018
(D2) to obtain the difference of raw LAI and STICA LAI,
which were then compared.

D. Quantitative Evaluation Metrics

Accuracy and uncertainty evaluation indices were used to
evaluate the performance of the algorithm. The first was the
RMSE, defined as

RMSE =

√
1
n

∑n

i=1

(
LAI(x,y) − STICA_LAI(x,y)

)2 (9)

Fig. 4. Bar plot comparing SUA LAI with STICA LAI. From left to right
are spring, summer, autumn, and winter. The solid lines denote the mean
of AD with different seasons. Red, orange, and yellow represent the quality
classification with good (MQA = 8), moderate (4 ≤ MQA ≤ 6), and poor
(MQA = 2), respectively.

where LAI(x,y) represents SUA LAI or raw MODIS LAI.
The recently proposed time-series metrics TSS is defined

as the distance from the value at the target moment to the
linear interpolation line; the linear interpolation line can be
calculated by the data at the former and latter time series of
the target moment date to quantify the fluctuation of a time
series [64]. In this study, we compared the cumulative TSS by
adding up all the TSS within a year.

Another quantitative evaluation metric is the standardized
anomaly (SA), which can quantify the TSA to show the trends
of different variables [58]. It is calculated as follows:

SA(t) =
X(t)−mean_t(X(t))

Std_t(X(t))
(10)

where X and t represent the variable time series for one
year and the time, respectively; mean_t and Std_t indicate the
average and STD metrics calculated from the time dimension,
respectively. TSA is the sum of pixels number greater than
the threshold value per year in the region [64]. We used a
threshold value greater than 1, as follows:

TSA = sum(|SA| ≥ 1). (11)

In this study, density represents the proportion of different
values in the statistics. The density here is related to the
bins setting of the drawing container but does not change
the statistical significance. In addition, the AD of LAI is also
utilized to quantify the differences between STICA and raw
LAI; AD is expressed as

AD(x,y) = |LAI(x,y) − STICA_LAI(x,y)| (12)

where LAI(x,y) represents SUA LAI or raw MODIS LAI.

III. RESULTS

A. Evaluation Based on Simulated Datasets

We compared the mean of AD of the SUA and STICA LAI
in four seasons with different quality classifications (Fig. 4 and
Table V), showing that when the quality classification is poor,
the difference in the mean of AD between SUA and STICA
is more noticeable. This phenomenon is especially prominent
in summer (difference of good: 0.2; moderate: 0.54; and poor:
0.82). The improvement of STICA is more evident with the
decreasing trend in data quality. The mean of AD in summer
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TABLE V
MEAN OF AD OF SUA LAI AND STICA LAI AND THEIR DIFFERENT VALUES WITH DIFFERENT QUALITY CLASSIFICATIONS

Fig. 5. Spatial distributions of RMSE from: (a) SUA and (b) STICA
LAI. The color bars represent the RMSE from small (light) to large (dark).
(c) Comparison of the density distribution of RMSE between SUA (light
green) and STICA (dark green).

and winter is the maximum and minimum, which may result
from the highest and lowest LAI in these two seasons. STICA
(light green solid line) is always below the SUA (dark green
solid line), showing that STICA performs better than SUA
LAI in each season.

We also compared the spatial distribution of RMSE between
SUA [Fig. 5(a)] and STICA [Fig. 5(b)] LAI. The panel
indicates that STICA exhibits a smaller RMSE, and more dark
color pixels are displayed in the spatial distributions of SUA.
The RMSE of STICA is concentrated in smaller numbers
(mean = 0.23) than SUA (mean = 0.44) [Fig. 5(c)]. These
indicate that STICA can improve low-quality retrievals and
reduce uncertainties.

B. Validation Using GBOV LAI Reference

STICA outperforms raw LAI in comparison to ground
observations. From raw [Fig. 6(a)] to STICA [Fig. 6(b)], the
R2 increased from 0.79 to 0.81, the RMSE decreased from
0.81 to 0.68, and a decrease in relative RMSE (RRMSE) is
from 30.07% to 25.51%, resulting in a 16% improvement
in overall accuracy. Furthermore, we observed an increase
in bias from −0.24 to −0.06, which can be attributed to
the overestimation of some raw LAI, an issue that STICA
mitigated. Notably, STICA is remarkably effective at correct-
ing extreme outliers [circled in red in Fig. 6(a)]. In view
of biome types, there was a noticeable improvement for the
pure forests type (red), with RMSE decreasing from 1.06 to
0.62 and R2 increasing from 0.6 to 0.8 [Fig. 6(c)]. Pure crops
(blue) show similar improvements, with a 0.07 decrease in
RMSE and a 0.01 increase in R2. There was only a slight
increase/decrease in RMSE/R2 of the hybrid type. From the
perspective of the quality classification [Fig. 6(d)], STICA
performed better in all quality levels than the raw LAI. When
the quality classification was poor, R2 increased from 0.53 to
0.90 (increasing 70%), and RMSE reduced from 1.43 to 0.60
(decreasing 58%); for medium quality, RMSE decreased by
0.1 and R2 increased by 0.04; and for good quality, R2

and RMSE changed only slightly. Similar conclusions can be
drawn from algorithmic evaluations of simulated LAI time
series (Fig. 4). In general, STICA effectively improved the
quality of LAI by combining prior spatiotemporal correlation
information and MQA information.

The difference distribution range of the remaining 21 sites
after data filtering is shown in Fig. 7. The RMSE of STICA
is smaller than that of raw LAI for all GBOV sites, except
for Dead Lake (DELA), Ordway-Swisher Biological Sta-
tion (OSBS), Smithsonian Environmental Research Center
(SERC), Disney Wilderness Preserve (DSNY), and Jones
Ecological Research Center (JERC). The distribution of the
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Fig. 6. Scatterplots comparing: (a) raw LAI and (b) STICA LAI with GBOV LAI reference (21 sites and 307 measurements). Symbol colors correspond
to MQA from 4 (poor) to 10 (good), and the shape of characters represents different biome types. (c) and (d) compare the RMSE and R2 between raw and
STICA LAI within different biome types (F&S: forest and savannas and C&S: crops and savannas) and quality classification (good: MQA ≥ 9; moderate:
7 ≤ MQA < 9; and poor: MQA < 7), respectively. The left and right arrows represent the change of STICA compared to raw LAI (the right means increasing,
and the left means decreasing) in R2, and the top and bottom arrows indicate the change of STICA compared to raw LAI (the bottom means reducing, and
the top means increasing) in RMSE. The length of the arrow corresponds to the shift (the longer the arrow, the more changes are remarkable). The numbers
denote the specific changes in value.

difference for raw is extensive, whereas for STICA, the dif-
ference of STICA LAI is distributed around zero and the most
significant quality improvement is observed at SCBI (RMSE
difference: 0.89), HARV (0.34), TALL (0.30), and UNDE
(0.22). Of these sites, three are pure forests type, and only
the UNDE site is a hybrid biome. Notably, STICA effectively
corrects large abnormal values at the SCBI sites and exhibits
similar improvements at HARV, ORNL, Blandy Experimental
Farm (BLAN), and Guanica Forest (GUAN) sites. While
the distribution range of the difference and RMSE of crops
shows minimal enhancement due to the small LAI values,
STICA performs better for pure biome than hybrid biomes.
To conclude, STICA demonstrates higher accuracy compared
to raw LAI.

C. Performance Over Different Biome Types

The ideal LAI curve increases and decreases monotonically
with the change of seasons. However, the LAI curves jitter
mainly due to poor atmospheric conditions, sensor hardware
issues, or other technical problems [73]. The uncertainty of the
MODIS LAI time series originates from the large differences
in the observed conditions of two adjacent time windows,
resulting in a relatively poor temporal consistency. STICA
reduces noisy fluctuations, and the generated curves agree

more with the expected phenological pattern than raw LAI
(Fig. 8). Among biomes, EBF has the greatest fluctuation,
resulting in the most improvement from STICA. The same
conclusions are also derived from the approximate range of
TSS (Fig. 9). STICA effectively reduces the STD and better
captures the trajectory of LAI.

We used the TSS metric indicating temporal stability to
quantitatively assess the eight biome types (Fig. 9). STICA
showed similar variations with a shorter approximate range
of TSS and a significant reduction in average TSS, demon-
strating the improvement of STICA over raw LAI. Among
all types, EBF and shrublands showed a significant improve-
ment, with the mean of TSS decreasing from 21.08 to
5.37 (decrease of 74.53%) and from 1.55 to 0.37 (76.13%),
respectively. Moreover, the reduction in average TSS from
raw to STICA was more than 50% for all biomes. These
all indicate that STICA can reduce confounding factors and
enhance the temporal stability of LAI among different biome
types.

D. Performance Over the Amazon Forest Region

MODIS acquired few high-quality observation data in the
Amazon forest region due to the perennial influence of large
cloud cover and high-concentration aerosol and saturation of
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Fig. 7. Accuracy comparison of the difference in LAI at 21 GBOV sites. (a) Distribution of LAI differences for sites corresponding to forests, forest and
savannas. (b) corresponds to sites of LAI differences of the biome types crops and crops and savannas. Each site contains a left box (raw) and a right box
(STICA). The numbers at the top indicate the RMSE of the raw and STICA LAI, respectively

Fig. 8. Temporal comparison of annual curve fluctuations between raw MODIS LAI and STICA LAI over eight biome types. The line and shadow represent
the 2018 LAI mean and STD, respectively. Colors correspond to the raw (pink) and STICA (blue) LAI. The eight biome types are grasslands (B1), shrublands
(B2), broadleaf crops (BC and B3), savannas (B4), EBF (B5), DBF (B6), ENF (B7), and DNF (B8).

red–NIR, resulting in poor LAI retrieval accuracy. By com-
paring Fig. 10(a) and (b), it was observed that the spatial

distributions of STICA contained more pixels with small TSS,
which was also evident in the TSA map [Fig. 10(c) and (d)]
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Fig. 9. Comparison of TSS distribution range between raw and STICA LAI over different biome types. Blue and green represent raw and STICA, respectively.
Stars indicate the average of the TSS, and the numbers at the top indicate the average of the TSS of raw (blue) and STICA (green). The red numbers are the
percent reductions in the mean of TSS from raw to STICA.

where more light-colored areas were predominant in the TSA
of STICA. These findings suggest that the overall temporal
stability of the spatial pattern of STICA is superior to that
of raw LAI. From Fig. 10(e) and (f), the statistics reveal that
99.31% of the total number of pixels in STICA had a TSS less
than 10, while the proportion of all pixels with TSA less than
10 improved from 6.34% to 97.57% compared to raw LAI. The
mean of TSS decreased from 20.40 to 5.27, and the average
of TSA dropped from 14.71 to 3.36, indicating that STICA
LAI has a more stable time series with fewer anomalies than
the raw LAI.

We also compared that the difference value (DV) of LAI
between two adjacent periods in the area dominant biome
type is EBF. Theoretically, the LAI of this biome type will
not show a significant short-term decline (within 16 days) in
summer [74]. Fig. 11(b) and (c) shows that STICA eliminated
most abnormally low values, which is more consistent with
the expected phenological pattern. Additionally, the negative
values of DV coincided with lower MQA. A comparison of
the DV percentage [Fig. 11(d)] found that the rate of DV less
than −4 (red) for raw was 7%, whereas that for STICA was
zero; the rate of DV for raw from −4 to −1 is three times
more than that for STICA. Moreover, the DV of STICA (77%
of all pixels) in yellow was far more than that of raw (54%
of all pixels). Overall, these provide sufficient evidence to
denote that STICA can effectively reduce the uncertainty of
LAI retrieval caused by low-quality observations.

IV. DISCUSSION

Applying STICA significantly improved the LAI qual-
ity and reduced the abnormal fluctuations caused by the
low-quality retrievals of the raw MODIS LAI. We performed
some experiments to explore the optimal algorithm parameter

Fig. 10. Spatial distributions of: (a) and (b) TSS and (c) and (d) TSA over
the Amazon forest region (h11v09) within 2018. The left and right panels
are raw and STICA, respectively. The color bars represent the TSS (TSA)
values from small (white) to large (dark green). Comparison of the density
distribution of: (e) TSS and (f) TSA over the Amazon forest region. Light
and dark green represent the raw and STICA, respectively.

configuration. In the algorithm for employing spatial informa-
tion, the power exponent α and the half-width of the search
window can control the influence of surrounding points on
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Fig. 11. Comparison of DV of LAI between two adjacent periods: (a) spatial distribution map of MQA on day of year (DOY) of 209 in 2018. The colors
correspond to MQA from 4 (poor) to 10 (good). The MODIS LAI value on DOY 201 in 2018 (D1) as the standard LAI; subtracting D1 from raw and STICA
LAI values on DOY 209 in 2018 (D2) obtains the DV of: (b) raw and (c) STICA. (d) Proportion of DV of raw and STICA. The top color corresponds to the
DV range, and the percentage indicates the proportion of the current color to all pixels.

the interpolated target point and determine the utilization of
the spatial information, respectively, and further affect the
calculation results. In general, the smaller the half-width of the
search window, the stronger the spatial correlation is, but the
less spatial information is available. The larger the half-width
of the search window, the more the spatial information can be
employed, but the weaker the spatial correlation is. A higher
power exponent results in less influence from distant points.
Therefore, considering the balance between computational
efficiency and accuracy, the optimal size of a half-width of
the search window and a power exponent can be obtained.
Fig. 12 shows the RMSE by varying the power exponent and
the half-width of the search window. When the power exponent
is equal to two, the gray line is essentially below the other
lines. If the power exponent is constant, the RMSE decreases at
first and then increases as the half-width of the search window
increases. Hence, we determined the power exponent of 2 and
the half-width of 4 pixels in our experiments. Similarly, the
smoothing parameter of 0.5 and the half-length of 3 were
used in the algorithm of employing temporal information
(Fig. 13). However, there is only a slight variation in RMSE
with the parameter configurations change. Consequently, it can
be concluded that the proposed algorithm is not sensitive to
parameter selection.

In the algorithm evaluation based on the simulation, only
temporal and spatial information was employed during step 4
(i.e., multiple information compositing). The raw LAI infor-
mation is excluded to avoid errors caused by adding simula-
tion uncertainty to experimental LAI. From the ground-based
validation, the low MQA values coincided with high LAI
values, which can be explained by the relatively low algorithm

accuracy due to signal saturation [14]. Signal saturation is most
likely to occur in summer in the presence of lush vegetation,
and MODIS LAI retrievals under saturated conditions are
overestimated [75]. In both cases, for the simulated-based LAI
or ground-based reference, we found that while the quality
classification was degrading, the improvement of STICA was
more pronounced. STICA can effectively identify and correct
most low-quality retrievals. This is consistent with our original
intention to keep the continuity with the existing MODIS
LAI product. It corresponds well with the raw MODIS LAI
retrievals of good quality and enhances the retrievals with poor
quality. In addition, we note that the STICA performance of
the pure biome is better than that of the hybrid biome, which
may be due to the uncertainty in the ground measurements of
hybrid pixels as well as the inherent drawback of spatial corre-
lation. The algorithm improvement effect is the most obvious
in the pure forest biome. Signal saturation and atmospheric
observation conditions lead to LAI retrievals having great
uncertainty, limiting the applicability of the raw MODIS LAI
for forests with high LAI [75], [76], [77]. However, STICA
can alleviate this issue by using spatiotemporal correlation
and MQA information. In the Amazon forest region, STICA
exhibited greater TSS and effectively reduced anomalies com-
pared with raw LAI. Notably, there was a growth in the spatial
distribution of raw LAI, and the same phenomenon occurred
in the spatial pattern of STICA, which may have been due to
the inherent increase of LAI [74], [78]. Because STICA aims
at reducing anomalies and improving the temporal consistency
of LAI, it should maintain the temporal pattern of the raw LAI.

Introducing prior knowledge about spatiotemporal correla-
tion information can be done in various ways. We compared
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Fig. 12. (a) ¯RM SE was calculated from the average of RMSE in the spatial distribution. (b) Spatial distribution of RMSE by changing the correlation
coefficient (CC, power exponent α) and the half-width of the search window. The power exponent α controls the weight decay rate of the candidate pixels,
and the half-width of the search window is the size of the neighborhood centered on the target pixel. We use power exponent α of 2 as the power exponent
and 4 pixels for half-width in the algorithm.

Fig. 13. (a) ¯RM SE was calculated from averaging the RMSEs in the spatial distribution. (b) Spatial distribution of RMSE changing the CC (smoothing
parameter β) and the half-length of the time series. The smoothing parameter β determines the weight of the candidate pixel, and the half-length denotes the
busy period in the computation. We used the smoothing parameter of 0.5 and a half-length of 3.

the utilization of different information based on the GBOV
LAI reference (Fig. 14). MQA was used to measure the
quality of LAI retrievals. The effect of introducing quality into
the algorithm [Fig. 14(a)] was significantly better than that
of not considering quality information [Fig. 14(b)]. Assign-
ing different weights according to the MQA can alleviate
the uncertainty caused by low-quality retrievals. In other
words, it is necessary to consider the quality of the retrievals
when using these products. Moreover, using a single feature
[Fig. 14(b-1)], Fig. 14(b-2) is not ideal compared with multiple
information compositing [Fig. 14(b-3)]. Using single spatial
information performed worst, indicating that spatial correlation
cannot be applied alone to spatial improvements on large
scales [79]. However, considering both spatial and temporal
information [Fig. 14(b-3)] can break through the limitation
of a single feature. Several studies support the idea that
integrating multiple information has advantages over using a
single feature [49], [50], [52]. Furthermore, it is important
to note that the use of spatial and temporal information in
the algorithm is completely independent. This means that the
values derived from employing spatial information do not
impact the results of the temporal correlation. When using
both types of information sequentially, the uncertainty of
the initial calculation will directly impact subsequent results,
regardless of which type of information is used first. However,

we mitigate this uncertainty by independently utilizing spatial
and temporal correlation and integrating multiple sources of
information with respective weights, which can effectively
alleviate this uncertainty. Notably, STICA handles outliers [red
circles in Fig. 14(b-3)] better than the simple average. The
proposed STICA has three distinct improvements over the
simple average. First, a new pixel quality classification, MQA,
is obtained by accessing multiple aspects of pixel uncertain-
ties; different weights are assigned to the pixels according to
the MQA. Second, the spatiotemporal information of LAI, the
raw MODIS LAI information, and MQA information are used
simultaneously in our approach. Third, multiple information is
integrated based on the TSS to assign weights.

There are some uncertainties in the classification of the
auxiliary MODIS land cover data [77] that we used in the
algorithm, which could impact the accuracy of our algorithm.
For remote sensing products, an uncertainty analysis must
cover typical land surfaces and involve long time series to
accurately reflect the accuracy and spatiotemporal stability
[80]. From the perspective of minimizing noisy fluctuations
and improving time-series smoothness, the STICA performs
better than the raw MODIS LAI over all eight biome types.
However, STICA’s performance on long time series was not
analyzed. We expect to expand the MODIS LAI reanalyzed
product over a larger area or even globally using this algorithm
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Fig. 14. Scatterplots of GBOV site validation under different information combinations: (a) MQA of each pixel was not considered in the calculation;
(a-1) and (b-1) employed only spatial information; (a-2) and (b-2) employed only temporal information; (a-3) and (b-3) represent the simple average of
temporal and spatial information; and (c) weighted average of multiple information. The color of symbols corresponds to MQA ranging from 4 (poor) to
10 (good), and the shape of the symbols represents different biome types.

due to the operational potential. A more comprehensive eval-
uation and validation analysis of STICA will be planned as
a next step, including the global scale intercomparison with
other LAI products, direct validation with globally covered
site measurements, and indirect verification with temperature,
precipitation, and extreme events.

V. CONCLUSION

MODIS LAI is calculated independently on a pixel and
daily basis without using any spatiotemporal correlation infor-
mation, which causes an increased noise level in this product.
Hence, in some cases, this product does not meet the uncer-
tainty requirements presented by GCOS, limiting its appli-
cations. Here, we proposed STICA that directly introduces
prior spatiotemporal correlation and MQA information into the
existing MODIS LAI product, thus maintaining it consistent
with the original physically based MODIS LAI production.
The algorithm was evaluated and validated with simulated
dataset and ground-based LAI reference. The performance of
our algorithm was tested in different biome types, particularly
in the Amazon forest region, where atmospheric conditions
often introduce artifacts to current LAI products. The results
denote that STICA LAI performs better than the raw MODIS

LAI. The simulated LAI shows that the RMSE of STICA
was in general small, and the mean RMSE of SUA and
STICA were 0.44 and 0.23, respectively. Based on the GBOV
ground-based LAI reference, the R2 increases from 0.79 to
0.81 and the RMSE decreased from 0.81 to 0.68. STICA
performed better in sites with pure vegetation type than
hybrid type. The improvements in LAI retrievals were more
evident as the classification quality degraded. In addition, this
article employed TSS and TSA to quantify the fluctuation
and anomaly of time series, respectively. The STICA method
effectively reduced noisy fluctuations and exhibited smoother
time series among eight biome types, with a reduction of more
than 50% in the average of TSS from raw to STICA. In the
Amazon forest region, the STICA significantly improved the
consistency of LAI time-series data, as evidenced by a drastic
increase in the proportion of pixels with TSS less than
10, from 5.79% to 99.31%, and a notable improvement in
the ratio of pixels with TSA less than 10, from 6.34% to
97.57%. STICA also successfully eliminates abnormal LAI
declines and correcting extreme LAI outliers. By incorporating
spatiotemporal correlation information and MQA information,
STICA surpasses the limitations of relying on a single feature,
resulting in less anomalous LAI and high-quality retrievals.
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Due to the operational potential of this algorithm, a reanalyzed
MODIS LAI product with global coverage generated by our
method can likely provide substantial benefits to applications
that rely on high-quality and stable LAI retrievals.

APPENDIX

A. Site Information for GBOV

See Table I.

B. Definition of TSS

Absolute TSS(t)

=

∣∣∣∣ (X(tn+1) − X(tn−1)) × tn − X(tn) × (tn+1 − tn−1)

−(X(tn+1) − X(tn−1)) × tn−1 + X(tn−1) × (tn+1 − tn−1)

∣∣∣∣√
(X(tn+1) − X(tn−1))

2
+ (tn+1 − tn−1)

2

(13)

Relative TSS(t) =
absolute TSS(t)

LAI(t)
(14)

where X (tn) is the LAI value at target moment t . X (tn+1)

and X (tn−1) are the adjacent time-series data obtained at the
previous moment and the next moment, respectively.

C. Calibration of the Proportions of Main and Backup
Algorithm

See Table IV.

D. Parameters Configuration When Employing Spatial
Information

See Fig. 12.

E. Parameters Configuration When Employing Temporal
Information

See Fig. 13.
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