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Abstract
Global greening, characterized by an increase in leaf area index (LAI), implies 
an increase in foliar carbon (C). Whether this increase in foliar C under climate 
change is due to higher photosynthesis or to higher allocation of C to leaves 
remains unknown. Here, we explored the trends in foliar C accumulation and 
allocation during leaf green-up from 2000 to 2017 using satellite-derived LAI and 
solar-induced chlorophyll fluorescence (SIF) across the Northern Hemisphere. 
The accumulation of foliar C accelerated in the early green-up period due to 
both increased photosynthesis and higher foliar C allocation driven by climate 
change. In the late stage of green-up, however, we detected decreasing trends in 
foliar C accumulation and foliar C allocation. Such stage-dependent trends in the 
accumulation and allocation of foliar C are not represented in current terrestrial 
biosphere models. Our results highlight that a better representation of C allocation 
should be incorporated into models.

K E Y W O R D S
allocation ratio, foliar carbon allocation, northern ecosystem, optimal partitioning theory, 
terrestrial biosphere models
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INTRODUCTION

Plant photosynthesis and respiration represent two key 
carbon (C) fluxes exchanged between the atmosphere 
and the biosphere. As atmospheric carbon dioxide (CO2) 
is uptaken into the biosphere through photosynthesis, 
the assimilated C is allocated to different plant organs 
(e.g. leaf, trunk, root) (Brüggemann et al., 2011; Chapin 
et al., 2002; Lambers et al., 1998) for varied functions (e.g. 
photosynthetic C fixation, height growth and water and 
nutrient uptakes; Brüggemann et al.,  2011; Hartmann 
et al., 2020). However, while many studies have investi-
gated the assimilation of C and plant respiration (Bond-
Lamberty et al.,  2018; Janssens et al.,  2001; Keenan 
et al., 2013; Wehr et al., 2016), the research on C allocation 
has received much less attention in the field of ecosystem 
C cycling. Importantly, as plants are often subjected to 
different resource limitations and stress factors and have 
different inherited life-history strategies, the portfolios 
of C investment can change with shifts of dominant fac-
tors of resource limitations or stresses (Chen et al., 2020; 
Iwasa & Roughgarden,  1984; Reich et al.,  2014). For 
example, more C could be allocated to nonphotosyn-
thetic parts such as stems for harvesting light or to roots 
for absorbing belowground resources, depending on the 
main type of resource limitation (Guillemot et al., 2017; 
Litton et al., 2007; Poorter et al., 2012).

The modifications of C allocation with environ-
mental changes are important for both plant autoeco-
logical growth and ecosystem C cycles (Friedlingstein 
et al., 1999; Konôpka et al., 2020; Vicca et al., 2012). Most 
studies on plant C allocation, however, have been con-
ducted at the autoecological level, with few at ecosystem 
or regional scales. Factors of global change, particularly 
the increase in CO2 concentration, extreme droughts and 
increasing nitrogen (N) deposition, may profoundly alter 
stress factors and the broad-scale availability of plant 
resources (Finzi et al.,  2007; Kicklighter et al.,  2019; 
Sardans et al., 2008). Therefore, a better understanding 
of large-scale variations in the strategies of plant C allo-
cation in response to global change is essential for pre-
dicting vegetation dynamics and C cycles.

Recent advances in remote-sensing technology and 
data collection provide a potentially practical approach 
to investigate variations in the allocation of C between 
photosynthetic (leaves) and nonphotosynthetic (e.g. 
roots and stems) organs, both between years and within 
a growing season. In particular, deciduous plants grow 
leaves during the early part of growing season, but 
allocate more C to nonphotosynthetic organs at the 
peak of the season (Chapin,  1991; Pantin et al.,  2012; 
Tilman, 2020). The exact allocation ratio between leaves 
and nonphotosynthetic organs during different stages of 
a growing season is difficult to obtain at broad scales, 
but remote sensing-based changes in the leaf area index 
(LAI) across these stages can be indicative of the amount 
of C allocated to leaves. Global greening identified using 

LAI has been widely observed under anthropogenic 
climate change (Chen et al., 2019; Piao et al., 2020; Zhu 
et al., 2016), but it remains unknown how different stages 
of a growing season contribute to this greening trend 
and how the allocation of C across different stages is reg-
ulated by climate change.

Here, we used the increases in LAI (ΔLAI) as a proxy 
for the allocation of C to leaves and explored the inter-
annual trends in ΔLAI in each month during the entire 
leaf green-up period in the Northern Hemisphere for 
2000–2017 and further investigated how the trends were 
directly and indirectly regulated by environmental fac-
tors (e.g. temperature, soil-moisture content [SM] and 
solar radiation). Finally, we tested whether terrestrial 
biosphere models (TBMs) could identify the strategy 
used by plants to adapt to climate change by adjusting 
C allocation at different stages of leaf green-up period. 
Our work found that the accumulation of foliar C accel-
erated in the early green-up period and decreased in the 
late stage, but the TBMs did not capture the decreased 
trend due to an inaccurate representation of the C allo-
cation strategy.

M ATERI A LS A N D M ETHODS

Phenological metrics

We defined the leaf green-up period as the time between 
the start of the growing season (SOS) and the peak of the 
growing season (POS). SOS, defined as the date when the 
2-band Enhanced Vegetation Index (EVI2) value first ex-
ceeded 15% (Gray et al., 2019), which is the phenologi-
cal product of MCD12Q2 V6, calculated using data from 
the Moderate-resolution Imaging Spectroradiometer 
(MODIS) (downloaded from https://lpdaac.usgs.gov/
produ​cts/mcd12​q2v00​6/), available at 500-m spatial 
resolutions for 2001–2018. POS was defined as the date 
when annual LAI derived from the MOD15A2H v006 
product was highest (details about the product are de-
scribed below). The multiyear average dates of these two 
phenological metrics were converted from day of year 
into month of year, and then, the duration of the eco-
system green-up period was calculated as the difference 
between POS and SOS.

Satellite-observed LAI

We used the LAI product of MOD15A2H v006 (https://
lpdaac.usgs.gov/produ​cts/mod15​a2hv0​06/) (Myneni 
et al., 2015). This product is available at 500-m spatial 
and 8-days temporal resolutions for 2000–2017 (Yan 
et al., 2016). Monthly LAI was used to perform further 
analysis. We first assigned each 8-days LAI data set 
to the month with the longest temporal overlap to ob-
tain an accurate monthly LAI. For example, the LAI 
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data set for 2 February was assigned to January due to 
only two out of 8 days in February. We then extracted 
the monthly maximum as the proxy of monthly LAI, 
a method that is commonly known as maximal value 
composite (MVC) and has been broadly used in as-
sessing satellite-derived vegetation growth due to its 
ability to reduce contaminations by clouds or aerosols 
(Verger et al., 2011). Meanwhile, for robustness evalu-
ation, we also used monthly mean values. Focusing on 
the monthly scale also allows us to compare satellite-
derived results with the modelled ones that are usually 
at the monthly temporal resolution (http://dgvm.ceh.
ac.uk/index.html). Some types of vegetation lacking 
strong seasonal dynamics (e.g. evergreen forests and 
barren soils) were excluded based on the land-cover 
classification of MCD12C1 v006 (https://lpdaac.usgs.
gov/produ​cts/mcd12​c1v00​6/) (Friedl et al.,  2010). We 
also excluded regions where the annual maximum 
LAI occurred outside the March to October win-
dow. Another LAI product, CGLS (or the European 
Geoland2 Version 2 [GEOV2]); data input source: 
SPOT/VGT & PROBA-V (https://land.coper​nicus.eu/
globa​l/produ​cts/lai), was used to further verify the 
robustness of the results based on MODIS LAI. The 
spatial and temporal resolutions of the LAI product 
of CGLS (or GEOV2) were 1-km and 10-days, respec-
tively, available from 1999 to the present. We rescaled 
the two LAI products to a resolution of 0.5° to match 
the meteorological data sets.

Model-simulated LAI

The project ‘Trends and drivers of the regional scale 
sources and sinks of carbon dioxide’ (TRENDY) V7 is a 
dynamic global vegetation model project that simulates 
a factorial set of the Dynamic Global Vegetation Model 
(DGVM) simulations (http://dgvm.ceh.ac.uk/index.
html), which was used to test how well state-of-the-art 
TBMs could reproduce satellite-observed changes in 
monthly foliar C accumulation and corresponding dom-
inant drivers. We chose monthly composites of LAI of 
the third simulation (S3), including CO2, climate and 
land use from 2000 to 2017. We used five models with 
a spatial resolution of 0.5° (the same as that of the ob-
served meteorological data sets and resampled LAI 
data): the Dynamic Land Ecosystem Model (DLEM), 
Lund-Postam-Jena General Ecosystem Simulator (LPJ-
GUESS), Land surface Processes and eXchanges (LPX), 
Vegetation Integrative SImulator for Trace gases (VISIT) 
and the Vegetation Integrative Simulator for Trace gases 
(ISAM). The corresponding driving factors of these 
models are climatic forcing (the Climatic Research Unit 
[CRU] and the CRU Japanese 55-year Reanalysis [CRU-
JRA55]), rising levels of atmospheric CO2 from both ice 
core and atmospheric observations, and land-use change 
(LUH2 data sets).

Meteorological data sets

The mean 2-m surface temperatures were acquired from 
CRU.TS4.04 at a spatial resolution of 0.5° and a monthly 
temporal resolution, which were interpolated from 
ground meteorological stations (https://cruda​ta.uea.
ac.uk/cru/data/hrg/cru_ts_4.04/cruts.20041​51855.
v4.04/) (Harris et al.,  2020). Data of vapour pressure 
deficit (VPD) were also downloaded from CRU (Harris 
et al.,  2020), which has the same spatial and temporal 
resolution as CRU temperature data. Soil-moisture (SM) 
at a depth of 2–5 cm was acquired from the C3S data-
set provided by European Centre for Medium-Range 
Weather Forecasts (ECMWF) v201812.0.0 at a spatial 
resolution of 0.25° and a monthly temporal resolution 
(https://cds.clima​te.coper​nicus.eu/cdsap​p#!/datas​et/
satel​lite-soil-moist​ure?tab=overview). Data for solar ra-
diation were acquired from CRU-JRA v2.0, which is a 
combination of CRU and a Japanese reanalysed data set 
(JRA) (https://catal​ogue.ceda.ac.uk/uuid/7f785​c0e80​
aa4df​2b39d​068ce​7351bbb), at a spatial resolution of 0.5° 
and 6-hourly temporal resolution (Harris et al.,  2014; 
Kobayashi et al., 2015). The SM data set was resampled 
to a spatial resolution of 0.5°.

Photosynthesis indicators

We used the synchronously simulated gross primary pro-
ductivity (GPP) dataset from the five models described 
above to represent the photosynthetic activity. Solar-
induced chlorophyll fluorescence (SIF), a probe of pho-
tosynthesis (Baker,  2008), was used as a proxy for GPP 
in the satellite-observed data analysis due to the lack of 
long-term observational GPP data at large scale. The data 
of the contiguous SIF (CSIF) dataset were trained by a 
neural networks method using SIF from Orbiting Carbon 
Observatory-2 (OCO-2) and MCD43C1 v6 reflectance as 
input variables (Zhang et al., 2018), which has a 4-days tem-
poral and 0.05° spatial resolutions, available from 2000 to 
2020 (https://doi.org/10.17605/​OSF.IO/8XQY6). Therefore, 
it makes up for the coarse spatiotemporal resolution 
and high uncertainty in the current SIF data set (Zhang 
et al., 2018).

Data analysis

We used the increase in LAI (ΔLAI) in each month and 
throughout the green-up period to indicate the net allo-
cation of C to leaves (hereafter leaf C), which is the 
difference between gross leaf C allocation and leaf res-
piration. ΔLAI during green-up period was defined as 
annual maximum LAI minus LAI in the month before 
SOS, and monthly ΔLAI was calculated as (Figure S1):

(1)ΔLAI = LAIt − LAIt−1
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Because foliar growth is irreversible during the 
green-up period (Pantin et al., 2012), ΔLAI should always 
be positive during this period. We thus discarded pixels 
with ΔLAIs <0 (0.07%–2.4%, Figure S2) from analysis.

Linear regression was used to identify the interan-
nual trends in ΔLAI throughout the entire study period 
(Figure S1, Equation 2):

where time is the number of years from 2000 to 2017 for 
pixel i, ai is the temporal trend in ΔLAI for pixel i, bi is 
the intercept for pixel i. For pixels with positive trends 
in green-up period ΔLAI, we further defined the month 
contributing the most to the increase in ΔLAI (the month 
with the largest positive trends in monthly ΔLAI) during 
the green-up period as the dominant month (TDM). The 
time between SOS and TDM is shown in Figure 1g. We 
further examined the temporal autocorrelation of ΔLAI 
and found that there was no evident temporal autocorrela-
tion of ΔLAI across different months (Figure S3).

Both climate and photosynthetic C assimilation rate 
(GPP) could affect variations in ΔLAI. Here, we per-
formed two sets of partial correlation analyses to de-
termine each grid's dominant factor responsible for 
satellite-observed temporal variations in ΔLAI for each 
month during the leaf green-up period. In the first set, 
only climate factors, that is temperature, SM and solar 
radiation, were included as independent variables. Note 

that the lagged effects of the climate factors were also 
considered by means of the preseason period. The pre-
season, defined as the period which most strongly affects 
phenological events (Menzel et al., 2006), was determined 
as the period preceding an event that exhibited the larg-
est absolute value of partial correlation coefficient be-
tween ΔLAI and a climate factor, after controlling for 
the other climatic factors.

In the second set of partial correlation analyses, we 
included both photosynthetic rate (using SIF as a proxy 
for observational data and GPP for modelled data) and 
climate factors. Furthermore, to examine the impact of 
atmospheric drought on ΔLAI, we also conducted an ad-
ditional partial correlation analysis between ΔLAI and 
atmospheric VPD while controlling for other climate 
variables and SIF.

RESU LTS

Changes in leaf C accumulation during the 
green-up period

The green-up period ΔLAI (annual maximum LAI 
minus LAI in the month before the start of the grow-
ing season [SOS]) showed positive trends in most areas 
(71% of pixels) from 2000 to 2017 (Figure 1a). Monthly 
ΔLAI (LAI in the current month minus LAI in the 
previous month), which is indicative of the intermonth 

(2)(ΔLAI)i = ai
∗(Time) + bi

F I G U R E  1   Trends in ΔLAI throughout leaf green-up period (GUP) and for each month of the GUP for 2000–2017. (a) Trends in ΔLAI 
throughout GUP (ΔLAI is defined as the difference between the annual maximum LAI and LAI in the month before the start of the growing 
season). They are parameters of a1 in Equation 2, same as subplots of (b–d). Trends in ΔLAI for (b) April (monthly ΔLAI is defined as the 
difference between LAI in the focused month and LAI in the preceding month), (c) May, (d) June and (e) July. Panels (a–e) share the same colour 
bar shown below (e). The black dots in (a–e) indicate significant trends at p < 0.05. The histograms in (a–e) are frequency distributions of the 
trend in ΔLAI, the sequences of four bars represent the percentages of pixels with nonsignificantly negative trends, significantly negative trends 
nonsignificantly positive trends and significantly positive trends, respectively. (f) The dominant month (TDM) contributing the most to the 
positive ΔLAI trend in a. (g) Durations between SOS and TDM (DSOS-TDM). Only pixels with positive trends in (a) are shown in (f) and (g). The 
pie charts in (f) and (g) indicate the proportions of each group.
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rate of foliar C accumulation, however, had divergent 
trends across different months (Figure  1b–e). For ex-
ample, the trends in ΔLAI in Europe were widely posi-
tive in April (Figure 1b) but negative in May (Figure 1c). 
ΔLAI had widespread uptrends in North America in 
May (Figure 1c) and June (Figure 1d), but widespread 
uptrends in Siberia only in June (Figure 1d). This spa-
tiotemporal heterogeneity of ΔLAI trends is associ-
ated with vegetation phenology: earlier phenology 
coincided with the earlier occurrence of positive ΔLAI 
trends, and vice versa. Indeed, if we defined the month 
contributing the most to the uptrend in ΔLAI in green-
up period as the dominant month (TDM) (Figure 1f), 
the duration from SOS to TDM was no more than 
1 month in most areas (Figure 1g). Surprisingly, 78% of 
all pixels in July showed negative trends in ΔLAI dur-
ing 2000–2017 (Figure 1e), despite the widespread in-
crease in July LAI over the same period (Figure S4d).

We also tested the robustness of the above re-
sults obtained with the Moderate-resolution Imaging 
Spectroradiometer (MODIS) LAI product (MOD15A2H 
v006) using monthly mean (instead of maximal) value 
as a proxy of monthly LAI (Figure S5), as well as using 
the Copernicus Global Land Service (CGLS) LAI prod-
uct (data input source: the ‘Satellite Pour l'Observa-
tion de la Terre’ (SPOT) VEGETATION [SPOT/VGT] 
& the Project for On-Board Autonomy–Vegetation 
[PROBA-V]). The results consistently indicated that 
foliar C accumulation generally had positive trends in 
the early stage of green-up but negative trends in the late 
stages (Figure S6).

Factors dominating leaf C allocation

We further performed partial correlation analyses be-
tween ΔLAI and climatic factors (temperature, SM and 
radiation) to understand how changes in climatic vari-
ables may contribute to the observed trends in foliar C 
allocation during each month of the green-up period 
(Figure 2a–h). Since the climate of the preceding months 
(preseason) can also influence phenological dates and 
affect the rate of foliar C accumulation, we also included 
potential lagged effects of the climatic variables on ΔLAI 
in additional analyses (Figure S7). The results suggested 
that temperature was the dominant climatic driver for 
ΔLAI in the early green-up stage (Figure 2). For exam-
ple, temperature in regions with the earliest onset of 
spring phenology (such as Europe and central and east-
ern North America, Figure S8) was often the dominant 
climatic factor positively associated with ΔLAI in April, 
the month of spring onset, after controlling for SM and 
solar radiation (Figure 2a; Figure S9a). This dominant 
and positive effect of temperature on ΔLAI extended to 
higher latitudes in May, including Canada and Siberia 
(Figure  2b; Figure  S9b), but was not observed in the 
northernmost regions until June (Figure 2c; Figure S9c). 

SM played a key role in regulating ΔLAI in May for re-
gions with continental climates such as inland Eurasia 
and North America (Figure 2b; Figure S9f), especially 
where the dominant type of vegetation is temperate and 
semi-arid grassland (Figure S10). For these regions, both 
SM and temperature jointly regulated foliar C accumula-
tion in June, but with opposite effects on ΔLAI (Figure 2; 
Figure S9). Across the whole study area, SM positively 
affected ΔLAI in 56% of the pixels (Figure S9g), and tem-
perature was generally negatively correlated with ΔLAI 
(Figure S9c). These contrasting effects of SM and tem-
perature on ΔLAI were even more widespread in July, 
when ΔLAI and SM were positively correlated in 65% 
of the pixels (Figure S9h). ΔLAI and temperature were 
negatively correlated in 66% of the pixels (Figure S9d).

Interestingly, SIF was more strongly correlated with 
ΔLAI than climatic variables in the early green-up stage 
(Figure 2). Temperature had a weakened, but still positive, 
effect on ΔLAI after controlling for SIF (Figures  S11–
S13). In the late stage of the green-up period (May at low 
latitudes and June and July at higher latitudes), the cor-
relation between ΔLAI and SIF was generally weaker and 
even nonsignificant in most areas (Figure 2; Figure S11). 
The correlation between ΔLAI and temperature in this 
late green-up stage did not change when SIF was or was 
not controlled for (Figures S11–S13).

Assessing the performance of TBMs in C 
allocation simulations

The partial correlation analysis between modelled ΔLAI 
and climatic factors (temperature, SM and radiation) with 
a potential lagged effect (Figure S14) indicated that the 
models could generally reproduce the apparent response 
of foliar C accumulation to climate change (Figure 3a–d; 
Figure 3e–l; Figure S15). Nonetheless, the partial corre-
lations between modelled ΔLAI and temperature in the 
late green-up stage were more negative than the satellite-
based results (comparing Figures  S15 and S9), suggest-
ing a potentially overestimated apparent sensitivity of 
ΔLAI to temperature by the models. These models also 
underestimated the apparent influence of SM on foliar 
C accumulation (Figure  S15), especially in temperate 
and semi-arid grasslands, where satellite data indicated 
strong correlations between ΔLAI and SM (Figure S9).

We also assessed whether the models could reproduce 
the climatic regulation of total assimilated C (Ctotal) 
and leaf carbon allocation (Pleaf) by including modelled 
gross primary productivity (GPP) as an independent 
variable in the partial correlation analyses (Figure 3m–t; 
Figure S16). The results suggested that the models gener-
ally replicated the weak effects of solar radiation on Pleaf 
and consequently on foliar C accumulation (Figure S17). 
However, models did not adequately simulate tempera-
ture and SM impacts on foliar C allocation (i.e. Pleaf) 
(Figure 3m–t; Figure S16).
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6  |      LEAF CARBON ALLOCATION UNDER CLIMATE CHANGE

DISCUSSION

Our study provides the first understanding on vegetation 
foliar C accumulation and allocation at large scales. We 
found that foliar C accumulation of the northern ecosys-
tem is increasing during the early stage of green-up but 
decreasing in the late green-up stage over the past 18 years 
(2000–2017). Climate change can affect foliar C accumu-
lation (Cleaf) by impacting on total assimilated C (Ctotal; 
Gampe et al., 2021; Wehr et al., 2016) and/or the propor-
tion of C allocated to leaves (Pleaf; Chen et al., 2020; Iwasa 
& Roughgarden, 1984; Reich et al., 2014) (Figure 4). In 
the early stage, we found that an increase in photosyn-
thesis over the past 18 years was the primary factor con-
tributing to the increase in foliar C accumulation, while 
temperature still contributed to the increase in Cleaf via 
affecting Pleaf even after accounting for its direct impact 
on Ctotal. This preference of plants to allocate more C to 
leaves in the early green-up stage under warming is likely 

because vegetation productivity is more limited by the 
foliar surface than by the access of roots to soil water 
and nutrients (Chapin et al., 2002; Chen et al., 2020).

In the late stage, the increase in foliar photosyn-
thesis did not necessarily increase the accumulation 
of foliar C. As canopies close in this stage, vegetation 
productivity is more constrained by the availability of 
water and nutrients than by the number of leaves for 
photosynthesis, resulting in more C invested in non-
photosynthetic plant organs for acquiring resources 
(Chapin et al.,  2002; Chen et al.,  2020). A higher 
temperature during this late green-up stage gener-
ally increases plant autotrophic respiration (Chapin 
et al., 2002) more than it increases photosynthesis be-
cause of the rising respirational cost at a temperature 
above the optimal level (Drake et al., 2016). Allocating 
more C to leaves under temperature increases in this 
late green-up stage is therefore not economical (Bloom 
et al., 1985; McCarthy & Enquist, 2007). Warming can 

F I G U R E  2   Factors dominating the ΔLAI trends for each month during leaf green-up period. The dominant factor is defined as the 
variable with the highest partial correlation coefficient after controlling for the other variables. Only climatic variables (soil-moisture content 
[SM], temperature [Tem] and solar radiation [Rad]) are considered in (a–h), and the three climatic variables and solar-induced chlorophyll 
fluorescence (SIF) in the focused month are considered in (i–p). Dominant factors positively correlated with ΔLAI are shown in (a–d) (climate 
only) and (i–h) (climate and SIF), while those negatively correlated with ΔLAI are shown in (e–h) (climate only) and (m–p) (climate and SIF) 
from April to July. Four intervals of |R| in [0 0.43], (0.43 0.50], (0.50 0.62] and (0.62 1] for (a–h) and in [0 0.44], (0.44 0.51], (0.51 0.64] and (0.64 1] 
for (i–p) correspond to p-values in (0.1 1], (0.05 0.1], (0.01 0.05] and [0 0.01], respectively. The preseason length corresponding to the climatic data 
used for analysis is shown in Figure S3.
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also increase atmospheric VPDs and induce water stress 
(Yuan et al., 2019), which can become increasingly im-
portant in limiting vegetation productivity from the 
early to late green-up stages and thus diverting more 
C investment to organs for acquiring and transporting 
water (Guillemot et al.,  2017; Hartmann et al.,  2020). 
This indirect effect of temperature by increasing VPD 

was particularly possible in Europe (Figure S18b) and 
North America (Figure S18d), where the significantly 
negative correlation between ΔLAI and temperature 
was weakened and even disappeared when VPD was 
further controlled for.

Regarding the impacts of SM and solar radiation on 
foliar C accumulation during the green-up period, solar 

F I G U R E  3   Trends in modelled ΔLAI and their dominant driving factors for each month during leaf green-up period. Trends in modelled 
ΔLAI in (a) April (monthly ΔLAI is defined as the difference between LAI in a month and that in the preceding month), (b) May, (c) June and 
(d) July for 2000–2007. Panels (a–d) share the same colour bar shown below (d). The black dots in (a–d) indicate significant trends at p < 0.05. 
The histograms in (a–d) are frequency distributions of the trend in ΔLAI. (e–t) Factors dominating the modelled ΔLAI trends for each month 
during leaf green-up period. The dominant factor is defined as the variable with the highest partial correlation coefficient after controlling 
for the other variables. Only climatic variables (soil-moisture content [SM], temperature [Tem] and solar radiation [Rad]) are considered in 
(e–l), and the three climatic variables and gross primary productivity (GPP) for the focused month are considered in (m–t). Dominant factors 
positively correlated with ΔLAI are shown in (e–h) (climate only) and (m–p) (climate and GPP), and dominant factors negatively correlated with 
ΔLAI are shown in (i–l) (climate only) and (q–t) (climate and GPP). Four intervals of |R| in [0 0.43], (0.43 0.50], (0.50 0.62] and (0.62 1] for (a–h) 
and in [0 0.44], (0.44 0.51], (0.51 0.64] and (0.64 1] for (i–p) correspond to p-values in (0.1 1], (0.05 0.1],  (0.01 0.05] and [0 0.01]respectively. The 
preseason length corresponding to the climatic data used for analysis is shown in Figure S9.
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radiation noticeably affected Cleaf in May (Figure  S9) 
by increasing photosynthetic Ctotal (Figures S9, S11). In 
contrast, SM could potentially affect Cleaf by affecting 
both Ctotal and Pleaf (Figures S9, S11), which is worth fur-
ther studies. Increasing the availability of soil water can 
increase Ctotal (Liu et al.,  2020; Reich et al.,  2018), but 
little is known about how variations in SM may also lead 
to trade-offs in C allocation between leaves and other 
organs (Bloom et al., 1985; Tilman, 2020). Several mech-
anisms may have contributed to the observed impact of 
SM on Pleaf (Figure 4). First, high SM can relieve plant 
water stress and reduce the need for C investment for ac-
quiring and transporting water (Guillemot et al.,  2017; 
Litton et al., 2007; Poorter et al., 2012), which can shift 
more C to leaves and hence increase Pleaf. Second, an in-
crease in SM can increase the activities of soil microbes 
and accelerate the mineralization of soil N and phospho-
rus (Finger et al., 2016; Keuper et al., 2012), which can 
also reduce the need of allocating more C to root sys-
tems (Guillemot et al., 2017; Litton et al., 2007; Poorter 
et al., 2012). Meanwhile, increasing N availability could 
stimulate plants to allocate more C to leaves for assimi-
lating more C to maintain the C: N stoichiometric ratio. 
Third, when SM is low, a decrease in Pleaf saves water 
and reduces respiratory C loss (Metcalfe et al.,  2010). 
Fourth, root exudation can also compete with leaves for 
C under drought, because thirsty tree roots exude more 
C (Heinemeyer et al., 2012; Preece et al., 2018).

Correct schemes for C allocation simulations are 
essential for the accurate prediction of vegetation dy-
namics and ecosystem C cycles by process-based TBMs. 
However, TBMs could well capture the early stage of 
foliar C allocation but overestimate it in the late stage 
of green-up. Parallel analysis like observations, the over-
estimation of foliar C allocation during the late stage 
of green-up was caused by the neglect of the SM effect 
on foliar C accumulation. The inadequacy of TBMs in 
capturing apparent sensitivities of foliar C accumulation 
to these climatic variables is likely due to the following 
three reasons.

First, the models overestimated the link between pho-
tosynthesis and C allocation to leaves in the late stage of 
green-up (Figure 3; Figure S16), which may explain why 
the models could not reproduce the widespread down-
ward trends in ΔLAI during July (Figure 3d, 38% pixels 
for the models versus 78% pixels for the satellite-based 
results exhibiting negative trends in ΔLAI, Figure  1e). 
Satellite-based findings indicated that the increase in fo-
liar photosynthesis did not necessarily increase foliar C 
accumulation in the late stage of green-up. Four of the 
five models (all except LPX, Figure S19), however, gener-
ated strong positive correlations between GPP and ΔLAI 
in this stage, which could lead to false-positive feedbacks 
that in turn lead to the overestimation of vegetation pro-
ductivity. Second, three of the models (LPJ-GUESS, LPX 
and VISIT, Figure S20) replicated the negative effect of 

F I G U R E  4   Schematic of the climatic regulation of foliar C accumulation. The allocation of C to leaves (Cleaf) is determined by both 
the total amount of assimilated photosynthetic C (Ctotal) and the proportion of C allocated to leaves (Pleaf), that is Cleaf = Ctotal × Pleaf. (I) The 
accelerating accumulation of foliar C in the early stage of green-up is attributed to increases in photosynthesis and Pleaf. (II) The negative trend 
in the accumulation of foliar C in the late stage is mainly due to a decrease in Pleaf driven by climate but is weakly linked with photosynthesis. 
Potential mechanisms by which climate regulates Pleaf are shown in the ovals, where red arrows indicate positive effects and blue arrows 
indicate negative effects. Models overestimate the link between photosynthesis and the allocation of C to leaves and skew the change in Pleaf 
under climate change, which leads to mismatches between the models and satellite observations for the ΔLAI trend in the late stage of green-up 
period.
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temperature on foliar C accumulation by influencing 
Pleaf in the late stage of green-up but overestimated the 
strength of this negative effect. The other two models ei-
ther produced a positive effect of temperature on Pleaf 
(and consequently on foliar C accumulation) in the late 
stage of green-up or a weak correlation between ΔLAI 
and temperature throughout the green-up period, both 
in contrast to the satellite-derived results. These models 
may have skewed the trade-offs of C allocation between 
organs under changing temperatures. Third, surpris-
ingly, none of the five models reproduced the positive 
effect of SM on Pleaf or ΔLAI (Figure S21), which may 
be another reason for the mismatch between the models 
and satellite observations in the ΔLAI trend in the late 
stage of green-up period. Optimizing the response of C 
allocation in TBMs to different drought stresses would 
likely improve their performance.

There are also uncertainties related to our approach 
of using LAI as a proxy of leaf C for temporal variation 
analyses. By definition, leaf biomass is the result of LAI 
divided by specific leaf area (the ratio of fresh leaf area 
to dry leaf biomass). Here, we assume SLA is invariant 
for a given grid over the interannual scale. While this 
assumption is reasonable when a given grid's vegetation 
type does not change from year to year, we are aware 
of potential uncertainties associated with this invariant 
SLA assumption. In particular, SLA may change with 
year-to-year climate variation, light exposure (sunlit vs. 
shaded; Chen et al., 2014) and forest age (Gao et al., 2022). 
Indeed, an experimental study showed a slight change 
in SLA over time due to opposite effects caused by tem-
perature and CO2 (Tjoelker et al., 1999). However, there 
is no long-term and large-scale in situ measured dataset 
of SLA including the broadly used TRY database that 
allows us to explore long-term SLA changes over years. 
Future advances in observing networks of plant traits 
may help better incorporate SLA change in ecosystem 
leaf C allocation research.

In addition, our analyses were conducted at a spatial 
resolution of 0.5° × 0.5°, which is fairly coarse and may 
lead to considerable uncertainties. For example, for a 
mixed pixel especially in ecological transition zones, 
changes in LAI may have also been caused by vegeta-
tion type shift rather than by climate change which is 
the focus of this study. This coarse resolution may also 
mask fine-scale processes and mechanisms (Bradford 
et al., 2017; Levin, 1992) that could have been important 
for understanding ecosystem leaf C allocation responses 
to climate change. Hence, future studies need to test the 
phenomena and possible mechanisms revealed in this 
work at a finer scale.

In summary, we provided the first account of how fo-
liar C accumulation and allocation changed during dif-
ferent stages of the green-up period from 2000 to 2017 
at the landscape level using data sets of satellite-derived 
LAI and SIF. Our results highlight an accelerating accu-
mulation of foliar C during the early stage of green-up 

due to the increases in both total photosynthesis and the 
proportion of photosynthetic C allocated to leaves under 
recent climate change. In contrast, foliar C accumula-
tion during the late green-up stage showed a decreasing 
trend. The divergent trends of foliar C accumulation in 
the early versus late stages of green-up are consistent 
with the optimal partitioning theory, which has been 
verified at the level of individual plants, but never at 
the broader landscape level before. This landscape-level 
optimized C allocation scheme between photosynthetic 
and nonphotosynthetic plant organs in response to cli-
mate changes has important implications for the global 
change modelling community. TBMs are currently inad-
equate for modelling the response of C allocations to cli-
matic variations at different stages of vegetation growth, 
in particular the overestimation of foliar C allocation 
during the late stage of green-up and the neglect of the 
SM effect on foliar C accumulation. This lack of capac-
ity in C allocation simulations may be one of the sources 
for the large uncertainties in modelling C cycle responses 
to climate change.

Reducing model uncertainties requires better param-
eterization and description of the C allocation scheme 
and its dynamics with vegetation seasonal cycles and cli-
mate change. Clearly, integrated studies combining data 
from manipulative field experiments and long-term ob-
servations of plant C allocation are valuable for model 
development and verifications. On the contrary, ecologi-
cal theories of optimal resource acquisition provide crit-
ical guidelines in developing and refining climate change 
adapted allocation schemes used in TBMs, which can 
also be extended to other components (such as roots) 
where empirical experimental and observational data 
are even more difficult to obtain over broader scales. 
Furthermore, while direct evidence from in situ long-
term biomass observations is lacking, our findings will 
inspire new research, especially that using networks of 
coordinated ground monitoring (e.g. the NEON system), 
to further test the hypothesis and improve our under-
standing of carbon allocation under climate change.
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