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A B S T R A C T   

The Moderate Resolution Imaging Spectroradiometer (MODIS) long-term leaf area index (LAI) products have 
significantly contributed to global energy fluxes, climate change, and biogeochemistry research. However, the 
maximum fraction of photosynthetically active radiation absorbed by vegetation (Max-FPAR) compositing 
strategy of the Collection 6 (C6) products dictates that the main or backup algorithm is always triggered by 
observations of different quality, which indirectly causes the observed instability in the LAI time-series. Based on 
MODIS daily LAI retrievals, this study develops a prior knowledge time-series compositing algorithm (PKA) using 
a linear kernel driven (LKD) model. Our results show that the newly proposed PKA can significantly improve the 
LAI composites compared to the Max-FPAR strategy using ground-based observations for validation. We found 
that the PKA performs better than Max-FPAR in various aspects (different sites, seasons, and retrieval index (RI) 
ranges), with R2 increasing from 0.69 to 0.76 and root means square error (RMSE) decreasing from 1.01 to 0.84 
compared to GBOV ground truth. The same improvement was shown for the ground truth LAIs measured at the 
Honghe and Hailun sites in northeastern China, with R2 increasing from 0.23 to 0.41 and RMSE decreasing from 
1.27 to 1.25. In addition, three newly proposed temporal uncertainty metrics (time-series stability, TSS and time- 
series anomaly, TSA and reconstruction error metric, RE (the proximity to the main RT-based retrievals)) were 
applied to compare the stability of LAI time-series before and after PKA implementation. We found that the time 
series stability of PKA LAI was improved, the time series anomalies were reduced, and the retrieval rates of the 
main algorithm were also greatly enhanced compared to Max-FPAR LAI. A case intercomparison for Max-FPAR- 
MODIS, Max-FPAR-VIIRS (Visible Infrared Imager Radiometer Suite), and PKA-MODIS LAIs in the Amazon Forest 
region showed that the PKA is also effective in improving the LAI retrieval over large regions with few qualified 
observations due to poor atmospheric conditions (RE decreased from 2.37/2.35 (Max-FPAR-MODIS/Max-FPAR- 
VIIRS) to 2.25 (PKA-MODIS) and RI increased from 61.94%/59.62% to 66.88%). The same improvement was 
seen in the BELMANIP 2.1 sites for almost all biomes except deciduous broadleaf forest, where the RE decreased 
from 1.85/2.13 to 1.15 overall. We note that the PKA has the potential to be easily implemented in the oper-
ational algorithms of subsequent MODIS and MODIS-like LAI Collections.   

1. Introduction 

The importance of terrestrial vegetation is widely recognized in 
various fields such as land-atmosphere interactions, biosphere, regula-
tion of global carbon, water cycles, and energy cycles (Chen et al., 2022; 
Sellers et al., 1997). As an essential climate variable identified by the 
Global Climate Observing System (GCOS), leaf area index (LAI) is 

generally defined as half of the total green leaf area per unit of hori-
zontal ground area, which is a fundamental parameter affecting the 
processes of radiation absorption, plant water balance, precipitation 
interception, and photosynthetic activity (Chen and Black, 1992; Fang 
et al., 2019a; Knyazikhin et al., 1998). Satellite remote sensing-derived 
global LAI products with decades-long series play an essential role in 
studies on the land surface carbon cycle, and global climate change, 
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among others (Asaadi et al., 2018; GCOS, 2011; Hill et al., 2006; 
Knyazikhin et al., 1998; Lafont et al., 2012; Sellers et al., 1997; Zhu 
et al., 2013). Therefore, the production of highly accurate long-term LAI 
datasets is essential for their appropriate use in land surface models and 
various user communities (Chen et al., 2022; Bi et al., 2015; Yin et al., 
2017; Zhu et al., 2016). 

The past few decades have witnessed an explosive growth in the 
number of satellites, resulting in >20 global-extent low or medium 
resolution long-term LAI datasets (e.g., Advanced Very High-Resolution 
Radiometer (AVHRR), Global Inventory Modeling and Mapping Studies 
(GIMMS), Moderate Resolution Imaging Spectroradiometer (MODIS), 
and Visible Infrared Imager Radiometer Suite (VIIRS)). The radiative 
transfer-based (RT-based) LAI products derived from surface reflectance 
have entered a new era since MODIS became operational in 2000 
(Knyazikhin, 1999; Myneni and Park, 2015; Yan et al., 2016a). MODIS 
LAI products are commonly used as input and reference for the gener-
ation and intercomparison of other products (Baret et al., 2013; Park 
et al., 2017; Xiao et al., 2013; Yan et al., 2018; Yan et al., 2021c). Long- 
term MODIS LAI datasets have been widely applied to monitor the 
seasonal and interannual variability of temperate deciduous forests 
(Tang et al., 2013), investigate spatial trends in terminal drought 
(Chakroun et al., 2014; Dhorde and Patel, 2016; Mariano et al., 2018), 
and supporting various studies of global climate, biogeochemistry, and 
energy flux dynamics (Chen et al., 2022; Chen et al., 2019; Knyazikhin, 
1999; Myneni and Park, 2015; Yan et al., 2016a; Zhang et al., 2017; Zhu 
et al., 2016). This product has contributed to several landmark studies, 
such as the “Greening Earth” phenomenon, possible reasons for large- 
scale vegetation dynamics, and the relationship between vegetation 
dynamics and global climate change or human activities (Chen et al., 
2019; Chen and Dirmeyer, 2016; Mao et al., 2013; Zhang et al., 2017; 
Zhu et al., 2016). 

However, as one of the most widely used LAI products, MODIS LAI 
still does not meet the uncertainty requirements proposed by GCOS 
(Fang et al., 2019a; Fang et al., 2019b). Furthermore, the relatively poor 
temporal continuity has been reported as one of the weaknesses of the 
MODIS LAI product, which limits its application for vegetation dynamic 
studies, especially in the tropics (Fang et al., 2012; Camacho et al., 
2013). Previous studies have evaluated the uncertainty of MODIS LAI 
products through theoretical derivation (Fang et al., 2019a; Fang et al., 
2013; Fang et al., 2012; Knyazikhin, 1999; Myneni et al., 2002; Park 
et al., 2017), intercomparison with other LAI products (Serbin et al., 
2013; Yan et al., 2018; Yan et al., 2016a), and ground-based validation 
(Fang et al., 2012; Fuster et al., 2020; Liu et al., 2018; Weiss et al., 2014; 
Yan et al., 2016b). These studies indicated that the MODIS LAI uncer-
tainty has two sources, i.e., the uncertainty in the inputs (land cover map 
and surface reflectance) and the uncertainty in the retrieval algorithm. 
Previous improvements to the MODIS LAI product have included two 
main aspects: 1) improvements to the forward RT models such as the 
stochastic radiative transfer (SRT) model coupled with more heteroge-
neity factors/hotspot effect (Li et al., 2020; Yan et al., 2021b); 2) revi-
sion to the retrieval algorithm such as the consideration of the 
proportion of water in the pixels (Xu et al., 2020). However, these im-
provements were focused on daily retrievals with good observations, 
which can do very little to reduce errors due to input uncertainties. 

Surface reflectances are affected by clouds, aerosols, and poor sun- 
sensor geometry (Yan et al., 2021a; Weiss et al., 2007), and a tempo-
ral compositing process is always required to smooth the time-series by 
reducing the temporal resolution. The earliest temporal compositing 
methods used in remote sensing include maximum value compositing 
(MVC) (Holben, 1986), constrained maximum and minimum value 
composite (CM-MVC) (Cihlar et al., 1994), best index slope extraction 
from (BISE) (Viovy et al., 1992), mean compositing (MC) (Vancutsem 
et al., 2007), average compositing (AVG) (Ql and Kerr, 1997) and 
normalization of directional effect (Bacour et al., 2006), which focus on 
minimizing artifacts due to cloud or snow contamination, atmospheric 
or directional residual effects. And then, in order to smooth the time 

series of vegetation indices and to provide forecast over a season, some 
statistical methods including logistic curve fitting (Beck et al., 2006), 
asymmetric gaussian function curve fitting (Jönsson and Eklundh, 
2004), savitsky-golay processing (Savitzky and Golay, 1964), and 
Fourier transform (Azzali and Menenti, 1999) have been proposed. For 
LAI products, the Global Land Surface Satellite (GLASS) LAI uses the 
general regression neural network (GRNN) for product generation (Xiao 
et al., 2013), and Verger et al. (2013) proposed a novel climatology 
fitting approach called consistent adjustment of the climatology to 
actual observations (CACAO) to reduce noise and fill gaps in LAI time 
series. 

The MODIS LAI operational algorithm adopts the maximum fraction 
of photosynthetically active radiation absorbed by vegetation (Max- 
FPAR) compositing algorithm (detailed in Section 2.2) based on the 
assumption that poor observation conditions reduce the retrieved FPAR. 
However, the Max-FPAR compositing algorithm suffers from the 
following shortcomings: 1) it selects only one observation within an 8- 
day composite, and wastes the observation information of other days; 
2) it likely selects the observation with the best atmospheric conditions 
but also potentially the poor sun-sensor geometry; 3) the intervals (1–15 
days) between adjacent composites are not uniform, leading to greater 
uncertainty in phenology studies using the MODIS LAI product (Wang 
et al., 2017); 4) the inconsistent observation qualities contribute to the 
different algorithm paths of adjacent composites, which indirectly leads 
to fluctuations in the LAI time-series (Fang et al., 2019a; Fang et al., 
2019b; Pu et al., 2020). These points limit the use of MODIS LAI prod-
ucts in forest ecosystem simulations (Li et al., 2019) and climate change 
models (e.g., North American Carbon Program (NACP)) that require 
high-quality temporal measurements (Huntzinger et al., 2013). 

The current MODIS algorithm coupling the daily retrievals and the 
Max-FPAR compositing strategy that ignores the temporal correlation of 
reflectance, which could be used as prior knowledge to improve the 
smoothness of LAI time series. Recognizing the importance of using 
temporal correlation information, Geiger et al. (2008) improved the 
linear kernel driven (LKD) model by introducing temporal prior 
knowledge to better simulate the bidirectional reflectance factors 
(BRFs). This method has been used for directional effect normalization 
of AVHRR reflectance time series and to produce the Carbon Cycle and 
Change in Land Observational Products from an Ensemble of Satellites 
(CYCLOPES)/GLASS LAI products (Bacour et al., 2006; Baret et al., 
2013; Xiao et al., 2013). A recent study used Geiger's method for cor-
recting the directional effect of BRFs to improve the temporal continuity 
of normalized difference vegetation index (NDVI) (León-Tavares et al., 
2021). Inspired by these studies, we realized the potential of imple-
menting the time-series prior information into the LAI compositing 
process. 

This research aims to develop a prior knowledge time-series 
compositing algorithm (PKA) for MODIS LAI products. The proposed 
PKA is expected to significantly improve the performance compared to 
the use of Max-FPAR and can be easily implemented into the current 
MODIS LAI production process. The structure of this paper is as follows. 
Section 2 describes the framework of the proposed PKA, including the 
data and evaluation indicators we used. Section 3 details the results of 
the comparison between PKA and Max-FPAR LAI compositing at both 
site and regional scales. We discuss the intrinsic causes of the im-
provements and prospects of PKA in Section 4. Finally, Section 5 pro-
vides concluding remarks. 

2. Datasets and methods 

2.1. Datasets and study area 

2.1.1. MODIS daily surface reflectance: MOD09GA 
The precursor to the MODIS LAI product is the MODIS daily surface 

reflectance with sun-sensor geometry and associated quality control 
(QC) flags, MOD09GA (Vermote et al., 2011; Vermote and Vermeulen, 
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1999). The current operational LAI algorithm inputs the BRFs in the red 
(strong vegetation absorption) and near-infrared (NIR) bands (strong 
vegetation scattering) to highlight the greenness/vegetation informa-
tion and to estimate the LAI value. Although MOD09GA is a daily 
product, there may be multiple observations per day due to orbital 
overlaps, scanning bow-tie effects, and sampling strategies. Given that 
the number of samples varies with a MOD09GA product, the MODIS 
reflectance is compressed from two dimensions to one dimension in 
order to store additional observations with smaller storage space. 
Therefore, MOD09GA needs to be decompressed before it can be used to 
correctly correlate reflectance with sun-sensor geometry (Vermote et al., 
2011). Then, we can obtain at least one set of observations per day 
(except for missing data due to instrumentation). 

2.1.2. MODIS land cover map: MCD12Q1 
The biome classification map is an auxiliary dataset for MODIS LAI 

and is used to reduce the uncertainties of the ill-posed retrieval process. 
Thus, an accurate biome classification map is essential to establish the 
correct connection between satellite observations and surface parame-
ters. The MCD12Q1 is generated by classifying spectral-temporal fea-
tures and maps the global biome types at 500-m spatial resolution and 
an annual time step (Sulla-Menashe and Friedl, 2018). In the MODIS LAI 
retrieval algorithm, one of the inputs is the MODIS land cover product 
(MCD12Q1) and different biome types have different configurations and 
preset parameters (Knyazikhin, 1999). The LAI algorithm uses the 8- 
vegetation-biome classification scheme (LC_Type_3) in MCD12Q1, i.e., 
B1: grasses and cereal crops; B2: shrubs; B3: broadleaf crops (BC); B4: 
savannas; B5: evergreen broadleaf forests (EBF); B6: deciduous broad-
leaf forests (DBF); B7: evergreen needleleaf forests (ENF); and B8: de-
ciduous needleleaf forests (DNF) (Sulla-Menashe and Friedl, 2018; Yan 
et al., 2016a). The approximate distribution of global vegetation is 
shown in Fig. 1. 

2.1.3. LAI products: MOD15A2H and VNP15A2H 
The Collection 6 (C6) MODIS LAI/FPAR product (MOD15A2H), 

derived from data acquired by the Terra platform, has a global spatial 
resolution of 500 m and a temporal resolution of 8 days. The projection 
of this product is the sinusoidal grid, and the data are distributed in the 
standard hierarchical data format (HDF). There are six layers (FPAR, 
LAI, FparLai_QC, FparExtra_QC, FparStdDev, and LaiStdDev) included in 
the MODIS LAI/FPAR product. In this study, we used the LAI and 
FparLai_QC layers, which store the LAI retrieval and the algorithm path 
information, respectively (Knyazikhin, 1999; Myneni and Park, 2015; 
Yan et al., 2016a). Additionally, as the successor of the MODIS sensor 
(including the daily retrieval algorithm and the Max-FPAR compositing 
algorithm), the VIIRS was designed to extend this valuable long-term 
data record and the VNP15A2H has the same spatial and temporal res-
olution as the MOD15A2H. In this study, we also used the Collection 1 
VIIRS (VNP15A2H) LAI product to make intercomparisons with MODIS 
Max-FPAR, PKA LAIs in the Amazon Forest region and BELMANIP 2.1 
sites. 

2.1.4. Ground LAI reference 
With the increasing trend of application of earth observation prod-

ucts, the product uncertainty revealed by ground measurements based 
validation is increasing emphasized (Baret et al., 2006; Fang et al., 2012; 
Yang et al., 2006). To evaluate the performance of LAI retrievals using 
the PKA, we used Copernicus ground-based observations for validation 
(GBOV) LAIs, northeastern China crops (NECC) LAIs and DIRECT 2.0 
LAIs as ground references (Brown et al., 2020; Brown et al., 2021; Fang, 
2021). 

The GBOV service aims to develop and distribute robust in situ 
datasets from a selection of monitoring sites for systematic and quanti-
tative validation of global land products (Bai et al., 2019; Brown et al., 
2020). The GBOV reference database was created following quality 
control of existing in situ measurements. It includes top of canopy 
reflectance, surface albedo, LAI, FPAR, fraction of covered ground, soil 

Fig. 1. Distribution of the selected GBOV/NECC/BELMANIP 2.1/DIRECT 2.0 sites and the specific study area in the Amazon Forests. The background colour in-
dicates the biome types from the MCD12Q1 classification schemes of the year 2017. The blue/red/dark purple/bright purple dots represent the GBOV/NECC/ 
BELMANIP 2.1/DIRECT 2.0 sites, and the red box is the selected tile h11v09. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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moisture at 5 cm depth, and land surface temperature. The GBOV data 
can be accessed in the open GBOV portal (https://gbov.acri.fr). In this 
study, we selected the GBOV LAI maps from 2014 to 2018 as references 
and selected twenty 3 km × 3 km squares centered on the location of the 
sites as our study areas (Fig. 1). Thus, each site contains 36 MODIS LAI 
pixels. In addition, to improve the credibility of the ground truth LAI, we 
filtered the ground LAI reference in these 20 sites using the criterion of 
“clear pixel” >95%. The number of available validation data was 869, 
leaving 14 sites with sufficient data to compare the stability of the time 
series. 

NECC LAIs measured by LAI-2200 and DHP in Honghe (2012, 2013, 
and 2019) and Hailun (2016) in the Heilongjiang Province (northeastern 
China) were used in this study (Fig. 1). The first site (47◦39′N, 133◦31′E) 
is located in Honghe paddy rice farm (Fang et al., 2014), and the second 
site (47◦24′–47◦26′N, 126◦47′–126◦51′E) is located in the Hailun city, 
which planted with maize, soybean, and sorghum (Fang et al., 2018). 
Among them, the Honghe site and the Hailun site each selected five plots 
for field measurements (https://doi.org/10.1594/PANGAEA.939444). 
Continuous field measurements were made throughout the whole 
growing season, ranging from day of year (DOY) of 160 to 280. High- 
resolution LAI reference maps of these sites were also produced from 
cloud-free HJ-1 (30 m), Landsat 7 ETM+ (30 m), and Sentinel-2A MSI 
(20 m) imagery. And the reference LAI mean and standard deviation 
values within a 3 km * 3 km extent in each site were extracted and 
provided in this dataset. Thus, based on the 500-m spatial resolution of 
MODIS LAI, we selected 6*6 up-scaled pixels centered on these plots for 
the study. And, similar to GBOV, we filtered the ground LAI reference in 
these plots using the criterion of “the standard deviation value should 
not be greater than 50% of the LAI mean value”. 

In this study, we also selected the DIRECT 2.0 ground measurements 
as truth (Fig. 1), which includes 140 sites and 242 samples from 2000 to 
2017 (Garrigues et al., 2008; Camacho et al., 2013). According to the 
CEOS-LPV guidelines, these sites are available and have been processed. 
Additionally, the DIRECT 2.0 filters forest sites with no understory and 
expands the time series to 2017 (https://calvalportal.ceos.org/web/oli 
ve/site-description). Same as GBOV and NECC sites, each site contains 
36 MODIS LAI pixels, and we also filtered the ground LAI reference in 
these plots using the same criterion as NECC. However, due to the fact 
that the DIRECT 2.0 sites do not have continuity in observations, we do 
not use these data directly as validation, but a certain reference in the 
process of sensitivity analysis of some parameters. 

2.1.5. Amazon forest region 
Tropical forests play a critical role in the global carbon cycle. 

Changes in Amazon Forests' carbon stocks are an important source of 
anthropogenic greenhouse gas emissions. Understanding the long-term 
response of Amazon Forest to land use and climate is critical for 
balancing the global carbon budget and improving climate projections. 
The scientific community has struggled to analyze the available satellite 
data in the presence of significant cloud cover and high aerosol con-
centrations (Bullock et al., 2020; Hilker et al., 2015; Qin et al., 2021; 
Rappaport et al., 2018; Rodig et al., 2019). Optical sensors can obtain 
fewer high-quality observations over the Amazon Forest than in other 
regions, which poses a huge problem for LAI retrieval in this region. 
Therefore, the Amazon Forest region is the best study area to compare 
the performance of two LAI compositing methods (including two 
different MODIS composited LAIs and VIIRS LAI). In this study, we 
selected tile h11v09 from 2016 to 2020, centered on the Amazon Forests 
region, as a study area, which extends from 71◦ W to 60◦ W and from 10◦

S to 0◦ S (Fig. 1). In addition, we studied in the h11v09 tile with the 
pixels that did not change in the land cover from 2016 to 2020. 

2.1.6. BELMANIP 2.1 sites 
We compared the MODIS PKA LAI, MODIS Max-FPAR LAI, and VIIRS 

Max-FPAR LAI over 445 Benchmark Land Multisite Analysis and Inter-
comparison of Products (BELMANIP) version 2.1 sites for the year 2021 

(Baret et al., 2006). The BELMANIP 2.1 sites, located in relatively ho-
mogeneous and flat areas, are designed to represent the global vari-
ability of land biome types based on the GLC2000 land cover map 
(Bartholome and Belward, 2005). By using the BELMANIP 2.1 sites, we 
can not only reduce the computational volume globally but also reduces 
the additional uncertainty caused by geometric registration bias and 
land cover misclassification. In this study, we selected the 6 × 6 pixels 
areas centered on the site locations as our study area for each site (see 
Fig. 1). The number of available pixels for each biome type ranged from 
83 (B8, deciduous needleleaf forests) to 4368 (B1, grasses and cereal 
crops) pixels. 

2.2. MODIS LAI/FPAR operational retrieval algorithm 

The current daily MODIS LAI/FPAR algorithm calculates the re-
lationships between LAI/FPAR and BRF by forward simulations of 
radiative transfer models (RTM) and uses these relationships to calculate 
the LAI that best matches the input BRFs. The algorithm derives LAI 
using red and NIR bands (band 1 and band 2), their uncertainties, sun- 
sensor geometry (SZA: solar zenith angle, SAA: solar azimuth angle, 
VZA: view zenith angle, VAA: view azimuth angle), and a biome map as 
inputs. To reduce the complexity of retrieval, the retrieval algorithm 
assumes that the soil reflectance, leaf single scattering albedo, and leaf 
inclination angle distribution are known and provides separate settings 
for eight biome types in their corresponding look-up tables (LUT). Note 
that different biome types use different RT models in the current version 
of the algorithm. Herbaceous biomes are modeled using 1D RT due to 
their good continuity and consideration of the computational efficiency. 
Savannas are modeled by a stationary Poisson germ-grain stochastic 
process (SRT model) (Huang et al., 2008; Yan et al., 2021b; Yang et al., 
2017). Forest biomes are based on a 3D RTM (3D structures are repre-
sented by columns uniformly (deterministically) spaced columns on the 
ground). For these RTMs, the MODIS retrieval algorithm first separates 
the wavelength-independent vegetation structure parameters from the 
spectral parameters using the “spectral invariance theory”, and only 
intermediate variables are stored in the LUT instead of multi-band 
reflectance, greatly reducing the content of the LUT. Secondly, the al-
gorithm reads the LUT file and generates the BRF and FPAR as a function 
of the parameters including LAI, single scattering albedo (SSA), canopy 
absorbance, canopy transmittance, soil reflectance, sun-sensor geome-
try, and reflectance wavelength. Among these, the FPAR describes the 
canopy absorption between 400 nm and 700 nm. The algorithm then 
traverses different LAIs using the above parameters and the RTMs, and 
the corresponding BRFs and FPARs can be calculated. Again, the given 
atmospheric corrected BRFs (MOD09GA) are compared with the 
modeled BRFs, and the LAI/FPAR are considered as a set of candidate 
values if the uncertainty complies with the requirements (red: <5% and 
NIR: <20%). Finally, all the LAI/FPARs are selected and weighted to 
obtain the mean values and standard deviation as the retrieved LAI/ 
FPAR and their corresponding uncertainties (Knyazikhin, 1999; Knya-
zikhin et al., 1998), respectively. 

In the case of highly dense canopies, the reflectance is saturated and 
insensitive to changes in canopy properties. In the retrieval process, the 
range of the corresponding LAI/FPAR increases within the uncertainty 
range. It is shown that the standard deviation of the LAI/FPAR is 
extremely large, and the uncertainty in the saturation condition is 
artificially reduced. Therefore, LAI/FPAR values retrieved under satu-
rated conditions are less reliable than those generated by unsaturated 
BRFs. When the main algorithm fails to localize a solution, the BRF is far 
from retrieval space (e.g., caused by snow cover) or the SZA/VZA is too 
large (winter of high latitude), the backup algorithm is used to retrieve 
values through an empirical relationship between NDVI and LAI/FPAR 
(Myneni et al., 2002; Yan et al., 2018). Such algorithm paths are flagged 
in the quality assessment (QA) layer (Knyazikhin, 1999), which consists 
of the main algorithm without saturation (QA = 0), the main algorithm 
with saturation (QA = 1), the backup algorithm due to sun–sensor 
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geometry (QA = 3), and the backup algorithm due to other reasons (QA 
= 4) (Yan et al., 2016a). 

The daily retrieved LAI is very sensitive to the uncertainties in the 
daily inputs (caused by clouds, aerosols, and poor sun-sensor geometry) 
and is stored as an intermediate product that is not available to the 
public. To smooth the LAI time series, a temporal compositing process is 
applied by reducing the temporal resolution to 8-days. The MODIS 
compositing strategy can be divided into three components: 1) Select the 
best daily observation. The algorithm selects one best observation each 
day using an observation scoring procedure; 2) Main algorithm re-
trievals are preferred. If the main algorithm retrieval exists in the 
compositing period, all the main algorithm retrievals are selected as 
candidates; if there is no main algorithm retrieval exists, all the backup 
algorithm retrievals are selected as candidates; 3) Apply the Max-FPAR 
principle. Pick the date with the largest FPAR retrieval among all can-
didates in the compositing period, and the LAI value of that date is 
considered the optimal retrieval of this compositing period. The Max- 
FPAR compositing strategy is based on the fact that poor observation 
conditions reduce the retrieved FPAR (Holben, 1986). 

2.3. The proposed LAI temporal compositing algorithm 

Based on this semi-empirical BRDF model (RossThick-LiSparse-R 
BRDF model), León-Tavares et al. (2021) introduced an adaptive data 
accumulation window to reduce the NDVI time-series noise, and Rou-
jean et al. (2018) performed a correction to surface directional effects 
that globally mapped surface albedo and normalized reflectance at 300 
m. In addition, Chen et al. (2017) used a unique spatiotemporal imagery 
processing technique (i.e., the use of time series to improve accuracy and 
stability of the surface BRF) in the MODIS Multi-Angle Implementation 

of Atmospheric Correction (MAIAC) operational algorithm to improve 
the LAI retrieval accuracy, which indirectly highlights the value of using 
time series prior information in retrieval algorithms. We performed the 
BRDF correction of MODIS time-series reflectance to improve the LAI 
compositing using a similar method. 

Inspired by these studies, a general prior knowledge time-series 
compositing algorithm was developed to improve the MODIS LAI 
retrieval accuracy and time series stability. This newly proposed algo-
rithm combines the MODIS operational LAI algorithm and the bidirec-
tional reflectance distribution function (BRDF) adjustment for the 
temporal compositing process, which is coupled with time series prior 
information. It mainly includes three parts: 1) performed screening of 
BRFs based on the official scoring program selected the high-quality 
BRFs; 2) temporal/angular weighting and BRDF adjustment; 3) 
retrieval/compositing algorithm. Notley, the PKA is not a simple fusion 
of the BRDF adjustment model with the MODIS LAI/FPAR retrieval al-
gorithm. A detailed description of the processing stages is given in Fig. 2 
and the following subsections. 

2.3.1. Framework of the refined MODIS operational LAI algorithm 
Considering the lack use of qualified observations in the current time 

window and temporal prior information, the PKA would fully utilize all 
qualified observations and time-series prior information based on 
angular/temporal weighting and BRDF adjustment (Fig. 2). And the 
steps are generally as follows. 

In step 1, the PKA would first obtain the ‘band data quality’, ‘perform 
atmospheric correction or not’, ‘cloud state’, ‘cloud shadow’, and 
‘aerosol quantity’ (representing the surface reflectance data quality) 
from the ‘QC_500m’ and ‘state_1km’ layers of MOD09GA. The data 
quality was then scored using the MODIS operational observation 

Fig. 2. Framework of the MODIS LAI retrieval based on the proposed PKA strategy.  
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scoring procedure (Table S1). All observations with a score >12 (N 
BRFs) in the time window (8 days) are selected, which means that all 
BRF pairs are corrected from the atmosphere and not flagged as cloud or 
cloud shadow. In contrast to the Max-FPAR algorithm,which selects the 
best observations each day, the PKA can take all high-quality observa-
tions as input, thus avoiding the waste of qualified observations. 

Next in step 2, the time difference (Δt) between the current time 
window and the date of the prior information determines whether the 
prior information is plausible. Given the unreliability of the prior in-
formation in the case of large gaps, we set a threshold of 16 days for Δt. 
Then, it should then be noted that only one or two valid observations 
(least squares principle) are not required for the solution of the BRDF 
adjustment model (detailed in section 2.3.2). Therefore, the N and the Δt 
are used to determine whether to perform BRDF adjustment since that 
the retrieval confidence increases with the increased number of avail-
able BRFs and the proximity of prior information. The specific situation 
is as follows: 1) If N ≥3, the BRDF adjustment is performed and the 
observation with the smallest SZA and VZA is selected as the specific 
angle to generate BRFs; 2) If N = 1 or 2, output the N clear BRFs (score 
≥12); 3) If N = 0 and Δt ≤16 days, take the BRDF inversion without 
BRDF adjustment, where the SZA is 0 and VZA = 0; 4) If N = 0 and Δt >
16 days, the algorithm would use the all observations (including scores 
<12) in the current time window for output BRFs. 

Finally in step 3, the algorithm would perform the LAI/FPAR 
retrieval and compositing process. In the case of N ≥3, if the retrieval 
algorithm path for BRDF-adjusted BRFs is main, output the retrieval 
LAI_B/FPAR_B directly; but if the algorithm path is backup, first record 
the current LAI_B/FPAR_B and input N clear BRFs to the retrieval al-
gorithm. In this case, if there is more than one main algorithm-based 
retrieval, it will be composited by the Max-FPAR principle, but if all 
retrieval algorithms are all backup, LAI_B/FPAR_B will be used as output 
LAI/FPAR. 

In summary, without changing the daily retrieval, when the number 
of qualified observations is sufficient, the PKA can use all the qualified 
observations, remove the directional effect of the observations, and 
provide time prior knowledge for the following retrievals; when there 
are fewer qualified observations, the PKA can make use of all available 
valid information and the time prior knowledge to perform the retrieval 
better. As shown in Fig. 2, the input and core retrieval algorithm of PKA 
is same as the original retrieval algorithm, which means that the PKA 
would easily replace the Max-FPAR based algorithm. 

2.3.2. BRDF adjustment using time-series prior information 
The magnitude of surface reflectance obtained for the same land 

surface is affected by the sun-sensor geometry and wavelength. The 
BRDF can be quantified by the inversion of an LKD model with three free 
parameters, which allows considering the reflectance anisotropy (Rou-
jean, 2000; Roujean, 2018; Roujean et al., 1992; Wanner et al., 1995). 

When performing inversions, these three parameters are assumed not to 
change over a period. The initial equation of the RossThick-LiSparse-R 
BRDF model is as follows: 

ρ(θs, θv,φr) = fisokiso + fvolkvol(θs, θv,φr)+ fgeokgeo(θs, θv,φr) =
∑

i=iso,vol,geo
fiki

(1)  

where, θs is the SZA, θv is the VZA, φr is the sun-sensor relative azimuth 
angle (RAA), ρ(θs,θv,φr) is the directional reflectance, kiso is the isotropic 
scattering kernel and usually set to 1, kvol is the volume scattering kernel, 
kgeo is the geometric optical kernel; fiso, fvol and fgeo represent the weights 
of isotropic scattering, volume scattering, and geometric optical scat-
tering kernels, respectively. 

Given a set of n (n ≥ 3) observed surface reflectances under different 
sun-sensor geometries, this model can be inverted to get the BRDF. The 
above solution can be performed by finding the wavelength-dependent 
kernel weights (fiso, fvol, and fgeo). In addition, the reflectance of an 
arbitrary sun-sensor geometry can be estimated by the RossThick- 
LiSparse-R BRDF model used to describe the anisotropy of the surface 
reflectance. Eq. (1) is an equation system that can be rewritten as 
follows: 

Р = KF (2)  

where, K = [kji] is an (n × 3) matrix containing isotropic scattering, 
volume scattering, and geometric optical scattering kernels for the 
ensemble of n observations, F is a (3 × 1) vector [fiso, fvol, fgeo], Р = [ρj] is 
an (n × 1) vector of the observed reflectance (j = 1,…,n) within a 
synthetic time window. BRDF inversion is well known as an ill-posed 
problem, where qualified observations may not exist over a period due 
to atmospheric conditions such as clouds and aerosols, or there are too 
many measurements which would introduce more uncertainties 
(Hagolle et al., 2005; Quaife and Lewis, 2010; Wang et al., 2007). 
However, the surface characteristics do not change in a brief period, 
which means that the BRDF model coefficients F also changes relatively 
little in a short period. Thus, Geiger et al. (2008) proposed a method that 
uses the prior information from previous BRDF inversion and ensures a 
smooth evolution of the F obtained from the previous inversion. 

The BRDF adjust method first weight the P and K (the weight method 
is shown in Eq. (3)) within the time window. 

w = 0.5(c1 + c2ρ)
(

1
cos(1.058θs) + cos(1.058θv)

)]
− 1 (3)  

where w has smaller weight values at larger SZA and VZA (Fig. 3a), 
which is shown in Eq. (3). The coefficients c1 and c2 in Eq. (3) are 
wavelength-dependent and are taken from Geiger et al. (2008), which 
are discussed in the section 4.2 (the algorithm need low c1 and high c2). 

The 1.058 means that cos(90◦
)

cos(85◦
)
, and the 85

◦

is the threshold for SZA and 

Fig. 3. Effectively angular weight (a) and temporal weight (b) functions in the recursive composition scheme.  
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VZA for the forward RTMs (Knyazikhin, 1999). Thus, the eq. (2) can be 
written as following eq. (4): 

Рw = KwF (4) 

This method then introduces temporal dimensional information by 
quantifying the correlation of the uncertainty of the prior information, 
which is shown in Eq. (5). 
(

KwT Kw +C− 1
prior

)
F = KwT Pw +C− 1

priorFprior (5)  

where Fprior is a vector containing the values of F found in the previous 
BRDF inversion, Cprior (Eq. (6)) is a diagonal matrix, which contains the 
uncertainties of the prior information: 

Cprior = Cprev(1 + Δ)
(Δt)/Δt (6)  

(1 + Δ)
(− Δ)/8

= 0.5 (7)  

where Δ is the characteristic time scale, which means the full width at 
half mean of the weighing function (prior information until 16 days that 
weight <0.05, Fig. 3b). 

From the above Eqs. (5)–(7), we can solve to obtain F (Eq. (8)) and C 
(Eq. (9)). In our proposed PKA, if N = 0 and Δt>16, the Cprior and Fprior is 
unavailable, and if the N = 0 and Δt≤16, the C and F means the Cprior and 
Fprior, respectively. 

F = C
(

KwT Pw +C− 1
priorFprior

)
(8)  

C =
(

KwT Kw + C− 1
prior

)− 1
(9)  

2.4. Metrics for evaluating the PKA strategy 

In this paper, we quantify the fluctuation of a time-series using two 
recently proposed time-series metrics (Zou et al., 2022; Weiss et al., 
2007) and one reconstruction error (RE) metric (Zhou et al., 2015; Zhou 
et al., 2016). These three metrics both indicate the temporal quality 
uncertainties of a dataset. Time-series stability (TSS) is defined as the 
distance from the value at the target moment t0 to the linear interpo-
lation line, which can be calculated from the data of the previous and the 
next time-series of the target moment date (Eq. (10)).  

Fig. 4. (a) The scatter plot of the comparison between Max-FPAR LAI / PKA LAI and GBOV LAI measurements. (b) The R2 and RMSE between Max-FPAR/PKA LAI 
and GBOV LAI in different RI ranges. (c) The R2 and RMSE between Max-FPAR/PKA LAI and GBOV LAI measurement for different seasons. 
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These two adjacent time-series data X(t1) and X(t− 1) were obtained 
at the moment t− 1 (the previous data) and t1 (the latter data), respec-
tively. In this paper, we obtain the cumulative TSS, which means the 
higher TSS with the longer time-series theoretically. Therefore, the 
comparisons of TSS in this study are based on the same length of time- 
series. 

We also used the standardized anomaly (SA) to quantify the anomaly 
of LAI time-series to better compare the fluctuation of different variables 
(Yan et al., 2018). SA was calculated as: 

SA(i) =
T(i) − mean(prior (i) )

Std(prior (i) )
(11)  

where T and i are the variable time-series for one year and the time 
(DOY: 1:8:361), respectively. We first obtained the main RT-based LAI 
according to MOD15A2H and performed missing value filling to obtain 
prior LAI time-series for 20 years (2001− 2020) *46 periods. Then, we 
used T(i) to indicate the Max-FPAR LAI and PKA LAI, the prior (i) means 
the prior LAI time-series (20*1) at different i. Finally, we used Eq. (11) to 
obtain SA(i). In this paper, we used the number of ∣SA∣ >1 to indicate the 
time-series anomaly. The time-series anomaly (TSA) is defined as the 
number of pixels greater than a threshold value: 

TSA = sum(|SA| ≥ 1 ) (12) 

By comparing the retrieval time series with the reference series, the 
RE of each method can be quantified. As proposed by Zhou et al. (2015), 
the RE can be defined as the difference between the reference series and 
the retrieval series. In our study, we use the RE as one metric to quantify 
the closeness of the retrieval series and prior RT-based main retrieval 
series (Eq. (13)). 

RE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(retrieval(i) − prior(i) )2

N
2

√

(13) 

In addition, we used the RI (Eq. (14)), the percentage of pixels for 
which the RT-based main algorithm produces a retrieval (Xu et al., 2018; 
Yan et al., 2018; Yan et al., 2016b; Yan et al., 2021a), as one indicator of 
LAI retrieval uncertainty. The relative difference (RD, Eq. (15)) and 
absolute difference (AD, Eq. (16)) were also utilized to quantify the 
differences between retrieval and reference LAI. 

RI =
N.of pixels retrieved by the main algorithm

N.of main algorithm + N.of backup algorithm
(14)  

RD = (Retrieval − Truth)/Truth (15)  

AD = ∣Retrieval − Truth∣ (16)  

3. Results 

3.1. Validation using ground LAI measurements 

Fig. 4 illustrates the results verified by ground-based measurements, 
where the PKA performed relatively better versus the MODIS Max-FPAR 
LAI. From Max-FPAR to PKA LAI, the R2 increased from 0.69 to 0.76, the 
RMSE decreased from 1.01 to 0.84, and the RRMSE decreased from 
49.17% to 43.33% (Fig. 4a), which can be attributed to the fact that the 
number of PKA LAI retrievals with bias exceeding 30% is less than Max- 
FPAR. Remarkably, the significant underestimation that was originally 
seen in the Max-FPAR LAI (circled in Fig. 4a-1) was removed in the PKA 
case (Fig. 4a-2), which also can explain why the bias increase from 0.08 
to 0.19. However, the significant overestimation of the LAI retrievals in 
the winter season (red scatter dots with bias >30%) does not disappear 

Fig. 5. The approximate range of AD of the LAI of five biome types for 14 GBOV sites. The white and blue backgrounds correspond to the Max-FPAR and PKA, 
respectively. The five biome types are forest, crops, savannas, crops & savannas, and forest & savannas. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

TSS(t0) =
|(X(t1) − X(t− 1) ) × t0 − (t1 − t− 1) × X(t) − (X(t1) − X(t− 1) ) × t− 1 + (t1 − t− 1) × X(t− 1) |

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(X(t1) − X(t− 1) )
2
+ (t1 − t− 1)

2
√ (10)   
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after PKA implementation (discussed in section 4). For both Max-FPAR 
and PKA, the R2 were lower in winter than the other three seasons, 
opposite for RMSE (Fig. 4c). Thus, the retrieval accuracy also showed a 
clear seasonality (high accuracy in summer and low in winter) for both 
Max-FPAR and PKA LAI. We also noticed a significant improvement of 
the PKA in the different RI ranges, where the R2 increased by about 
0.02–0.21 and the RMSE are decreased by about 0.02–0.30 (Fig. 4b). 
This indicated that the PKA had a clear improvement on LAI retrievals 
using the backup algorithm. Similar conclusions can be drawn from the 

comparisons of different seasons (Fig. 4c), i.e., the R2 was higher and the 
RMSE was lower for PKA except winter. 

Additionally, for the 14 sites that still had sufficient validation data 
still existed after filtering, Fig. 5 shows that both the mean value and 
standard deviation of the AD of LAI showed a decreasing trend. For all 
selected GBOV sites, 13 of the 14 sites (except site HARV) showed a 
decreasing trend in the mean value of AD of LAI, while all sites showed a 
decreasing trend in the standard deviation of AD of LAI, demonstrating 
the improvement of PKA over Max-FPAR. For different biome types, 

Fig. 6. LAI time-series comparison at five GBOV sites over the period from 2014 to 2018; the five sites represent different biome types. The Max-FPAR LAI derived 
from the MODIS C6 product and the newly proposed PKA LAI are shown as blue and purple lines, respectively. The pink dots are the GBOV ground-based LAI. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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savannas (GUAN site) showed a significant improvement; crops did not 
show a large trend decrease in the mean value of AD of LAI due to small 
LAI values, but the distribution of AD of LAI was more consistent; all 
other biome types indicated a slight decrease in the mean value and 
standard deviation of the AD of LAI. 

3.2. Time-series comparison at site scale 

The main purpose of this study was to improve the temporal stability 
of the retrieved LAI. We checked the degree of LAI temporal stability 
from both methods using two metrics (TSS and TSA) for the 14 GBOV 
sites (where TSS is the mean value of cumulative TSS of 36 pixels at each 
site over 5 years, and TSA is the sum of the number of pixels with 
abnormal SA for 36 pixels over 5 years) that provide a sufficient number 
of ground measurements (Fig. 6, Fig. S1, Fig. S2). The results showed 
that the PKA LAI had fewer fluctuations (did not follow the expected 
seasonal behavior, e.g., fluctuations of large magnitude in the time se-
ries) than Max-FPAR LAI (Fig. 6, Fig. S1, Fig. S2). In addition, un-
derestimations of both Max-FPAR and PKA LAIs were clearly present in 
the winter seasons (Fig. 6a, e). 

As shown in Fig. 7a, the TSS of the LAI retrieved by the PKA was 
lower than that of Max-FPAR. The TSS showed a decreasing trend at 13 
out of the 14 sites (except at site 2), while the mean value of the TSS of 
14 sites decreased from 53.32 for Max-FPAR to 27.69 for PKA. This 
phenomenon indicated that the PKA substantially improved the stability 
of the time series compared to the currently used MODIS Max-FPAR LAI. 
The same situation was observed for TSA (Fig. 7b), where 11 sites pre-
sented a higher TSA for Max-FPAR than for the PKA (except for sites 2, 5, 
and 9). Overall, the PKA reduced the frequency of time-series anomalies. 

Based on the ground observations of NECC LAIs provided by Fang 
et al. (2021), we also performed the associated time-series stability 
analysis using TSS and TSA (where, the TSS is the mean value of the 180 
pixels for each of the 5 plots (6*6 pixels) combined for each year, while 
the TSA is the sum value of 180 pixels). The Fig. S3 and Table 2 indicated 
that the PKA LAI is more stable in the time-series than the Max-FPAR, 

Fig. 7. Comparison of TSS (a) and TSA (b) for 14 GBOV sites between MODIS Max-FPAR LAI (blue) and PKA LAI (purple) from 2014 to 2018. The 14 sites are BART, 
BLAN, CPER, GUAN, HARV, JERC, JORN, MOAB, ONAQ, ORNL, SCBI, STEI, STER, and TALL. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 1 
The coefficients c1 and c2 in Eq. (3).   

c1 c2 

Red 0.001 0.07 
NIR 0.005 0.02  

Table 2 
Comparison of TSS, and TSA for Max-FPAR LAI, and PKA LAI for NECC sites 
(2012, 2013, and 2019 for Honghe and 2016 for Hailun).  

Site Honghe- 
2012 

Honghe- 
2013 

Hailun- 
2016 

Honghe- 
2019 

Overall 

TSS Max- 
FPAR 

6.30 6.60 6.62 8.82 7.08 

PKA 4.06 7.11 4.78 5.60 5.39 
TSA Max- 

FPAR 
1135 768 1135 1413 1113 

PKA 888 678 727 1590 971  
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the TSS (except 2013 of Honghe) and the TSA (except 2019 of Honghe) 
all show the decreasing trend for four years. Combining four years' re-
trievals, from Max-FPAR to PKA, the TSS decreases from 7.08 to 5.39 
and the TSA decreases from 1113 to 971 overall. In addition, the more 
significant phenomena include the fact that the PKA is closer to the 
ground reference LAIs than Max-FPAR in the early vegetation growth 
season (small DOY), which is mainly due to that PKA can eliminate the 
directional effect with sufficient observations. Whereas in the late 
vegetation growth season (large DOY), the SZA is large due to the higher 
latitude, leading to systematic overestimation for both PKA and Max- 
FPAR. Overall, compared to the ground truth LAI, the R2 increased 
from 0.23 (Max-FPAR) to 0.41 (PKA) and the RMSE decreased from 1.27 
to 1.25 (Fig. S4). Significantly, the underestimation of Max-FPAR was 

disappeared after the PKA implementation, PKA is closer to ground 
reference LAI than Max-FPAR. 

3.3. Intercomparison over the Amazon Forest 

Fig. 8 shows that the PKA-MODIS improved the performance more 
significantly than Max-FPAR-MODIS and Max-FPAR-VIIRS LAIs, while 
the Max-FPAR-MODIS and Max-FPAR-VIIRS LAIs are closer. Statically, 
the main biome type of the studied tile was EBF, the multi-year value of 
RE decreased from 2.40/2.37 (Max-FPAR-MODIS/Max-FPAR-VIIRS) to 
2.27 (PKA-MODIS) and the proportion of the PKA using the main al-
gorithm increased, and the RI increased from 61.99%/59.35% to 
66.60%. When averaged over all biome types, the RE and RI all showed 

Fig. 8. The spatial distribution of RE (a), and RI (b) in the tile h11v09 (Amazon Forest region) from 2016 to 2020. The 3 panels are Max-FPAR-MODIS LAI, Max- 
FPAR-VIIRS LAI, and PKA-MODIS LAI, respectively. 

Fig. 9. Probability distribution of RE (a) and RI (b) in tile h11v09 from 2016 to 2020.  
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the same trend; the multi-year value of the RE decreased from 2.37/2.35 
to 2.25 (Fig. 8a) and the RI increased from 61.94%/59.62% to 66.88% 
(Fig. 8b). This is also consistent with the trend illustrated in Fig. 9, where 
the distributions of RE shift to the left from Max-FPAR-MODIS/Max- 
FPAR-VIIRS to PKA-MODIS LAI, while the distribution of RI shows a 
significant shift to the right. 

3.4. Interomparison over the BELMANIP 2.1 sites 

To further evaluate the performance of PKA in different biome types, 
scatter plots of RE extracted from the Max-FPAR-MODIS, Max-FPAR- 
VIIRS, and PKA-MODIS over BELMANIP2.1 sites during the year 2021 
were shown in Fig. 10. This figure showed that the colour of PKA-MODIS 
tended to be blue (small RE) for most sites compared to the other two 

Fig. 10. The scatter plot of RE over BELMANIP 2.1 sites during 2021 for Max-FPAR-MODIS (a), Max-FPAR-VIIRS (b), and PKA-MODIS LAI (c).  
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Max-FPAR retrievals, the RE of Max-FPAR-MODIS (1.85) and Max- 
FPAR-VIIRS (2.13) were all higher than PKA-MODIS (1.15). This point 
was consistent with the frequency illustrated in Fig. 11(b), where the 
distributions of RE turn to the left side from Max-FPAR-MODIS/Max- 
FPAR-VIIRS to PKA-MODIS LAI. From Fig. 11(a), the PKA shows the 
significant improvement for all biome types except B6. Specially, the 
PKA's RE of the non-forest biomes (B1-B4) were all much smaller than 
the Max-FPAR series, and the PKA's RE of needleaf forest biomes (B7-B8) 
also shows a slight decreasing trend. However, the comparison of 
broadleaf forest biomes is antagonistic, the RE of B5 (EBF) showed the 
significant decreasing trend after PKA's implementation but this trend 
was disappeared for the RE of B6 (DBF). Further results of the Fig. 12 
show that the RE increases as the proportion of unqualified observations 
in the composite increases throughout all year. Conversely, the RE de-
creases when the proportion of qualified observations in the composite 
greater than or equal to 3 (take BRDF adjustment) increases over the 
whole year. This point not only proves the importance of qualified 

observations, but also the significance of introducing the prior infor-
mation when qualified observations are not available indirectly. 

4. Discussion 

Our current results show that the PKA improves the performance for 
almost all biomes (Fig. 5, Fig. 6, and Fig. 11), especially for savannas and 
EBF, which can be attributed to the importance of time-series prior in-
formation. For those biomes that do not show significant seasonality at 
low latitudes, the PKA can make use of temporal prior information 
instead of the poor observations due to the cloud/aerosol to improve 
retrieval performance (section 3.1 and section 3.4). However, the PKA 
cannot overcome the uncertainty of LAI retrievals due to long-term snow 
cover, cloud cover, and large SZA/VZA, which may explain why the 
improvements of other biomes are not as significant as those of tropical 
biomes and the underestimation of both PKA and Mar-FPAR in winter. 
From the perspective of the ill-posed retrieval, the newly proposed PKA 

Fig. 11. Comparison of RE over BELMANIP 2.1 sites between MODIS-PKA, MODIS-Max-FPAR, and VIIRS-Max-FPAR LAIs for the year 2021. Panel (a) means that the 
comparison for different biome types and the panel (b) means the probability distribution of RE. 
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still fails to provide an accurate solution when there are insufficient 
observations. In addition, compared to Max-FPAR, the PKA significantly 
reduces the LAI fluctuations (section 3.2), as the proposed compositing 
algorithm can eliminate the directional effect of observations and the 
replacement of poor quality observations with prior information in some 
situations. 

4.1. Underlying causes of PKA's improvements 

MODIS Max-FPAR LAI has discontinuities in time scales, as the same 
pixel can have a large retrieval difference in neighboring composites, 
due to the daily retrieval process and the Max-FPAR compositing prin-
ciple. During the daily retrieval process, the backup algorithm can be 
substituted if the main algorithm fails to find a solution. However, the 
backup algorithm is obtained by adapting the main RT-based algorithm 
and ignoring the sun-sensor geometry, resulting in a higher theoretical 
uncertainty than the main algorithm (Knyazikhin, 1999; Myneni and 
Park, 2015; Yan et al., 2016a). The backup algorithm is always triggered 
by two conditions: 1) poor sun-sensor geometries (i.e., large SZA or 
VZA); and 2) observed BRFs that are far from the retrieval space of the 
main algorithm (Fig. 13) due to poor observational conditions (e.g., 
clouds and aerosols). The effect of poor observational conditions on 
retrieval uncertainty is evident in Fig. 14, where LAI retrievals with 
higher scores (score ≥ 12) filtered by an observational condition scoring 
procedure have a higher probability of the main algorithm (higher RI, 
Fig. 14b) and less uncertainty (lower RD of LAI, Fig. 14a) in the retrieval 
process. For the above reasons, the uncertainties of the main and backup 
algorithms in the actual retrieval differ significantly. In addition, the 
Max-FPAR compositing algorithm selects the representative results 
based on the priority of the main algorithm and the Max-FPAR principle 
after the daily retrievals are completed. This can lead to several possible 
phenomena: 1) for adjacent composites, one group of observations are 
all poor and the algorithm paths are all backup, while the other group 
has high-quality observations and triggers the main algorithm, leading 
to large retrieval uncertainties at adjacent composites; 2) the Max-FPAR 
algorithm searches for one retrieval result within 8 days independently 
for adjacent composites, then there is a variable time difference (1 day or 
15 days); 3) the Max-FPAR algorithm tends to consider atmospheric 
effects rather than sun-sensor geometry. For instance, if there are two 
daily retrievals with very close FPARs (the first group has a slightly 
higher FPAR but poor sun-sensor geometry, while the second group is 

the opposite), the Max-FPAR algorithm would select the first group, but 
the second retrieval is the most suitable retrieval for compositing. 4) the 
Max-FPAR algorithm would not take full advantage of the other suitable 
retrieval results. In summary, all these factors contribute to the uncer-
tainty and instability of the LAI time series. 

The PKA proposed in this study is improved in response to these 
problems. Firstly, the scoring procedure filters the observation condi-
tions and observations with poor conditions are not included in the 
retrieval process unless the prior information is not available, which 
reduces the input uncertainty. Secondly, the weight of large SZA/VZA 
observations can also be reduced (Eq. (7)) due to high uncertainty. 
Thirdly, when the Max-FPAR principle uses the backup algorithm due to 
the lack of qualified observations in the time window, the weight of the 
prior knowledge will increase and then generate a set of observations 
with higher confidence for retrieval. The PKA moves from the pattern of 
initially using low quality observations and backup algorithms to the 
state where the prior knowledge and main algorithm are used for 
retrieval. Finally, when enough high-quality observations are available 
within this window, the BRDF adjustment model is used to make full use 
of the information from all qualifying observations, correct for BRDF 
directional effects, and upgrade the time prior information. All these 
points support that the PKA improves the retrieval accuracy and indi-
rectly enhances the time-series stability. 

4.2. Limitation and future prospects 

In this study, the PKA is coupled with the MODIS operational LAI 
retrieval process and the BRDF-adjusted model, where some co-
efficients, steps, and limitations had to be clarified here. 

Firstly, the coefficients in Table 1 were originally based on the 
SEVIRI sensor. We designed a series of single factor experiments aimed 
to explore the relationship between the retrieval uncertainty and the 
model parameters (i.e., coefficients c1 and c2 for the red and NIR bands, 
Eq. (3)). If we change one of the four parameters, the other three co-
efficients are fixed (Table 1) in the sensitivity experiments (Fig. S5). The 
R2 would decrease with the increase of c1 for the red band (when the c1 
red is 0.001, the R2 is highest). As for c2 red, the R2 increases with the 
increase of c2 red, and when the c2 red ≥0.07, the R2 no longer changes 
significantly with the increase of c2 red. For the NIR band, the retrieval 
accuracy also does not vary with c1 and c2. In summary, we believe that 
the current parameter configuration is sufficient to accommodate the 
MODIS sensor. 

Secondly, the observation with the smallest SZA and VZA is selected 
as the specific angle to generate BRF when making the BRDF adjustment. 
Similar to the coefficients c1 and c2, we designed the sensitivity exper-
iments for VZA. As shown in Fig. S6, F in Eq. (2) as well as SZA are fixed, 
and K has changed accordingly when VZA and RAA are changed. The 
BRFs under different sun-sensor geometries are obtained and imported 
into the retrieval algorithm to obtain the LAI retrievals with uncertainty. 
Compared with the retrievals when the VZA is 0, we found that the 
larger the VZA, the greater the uncertainty. This is in agreement with the 
study of Pu et al., (2020). 

Thirdly, the use of the 16-day prior knowledge window and the 8-day 
current window is suitable for production. Considering that the use of 
adaptive windows (e.g., number of observations greater than or equal to 
3) might be suitable for retrieval, it seems that the adaptive windows 
might be a better choice. However, if we choose the adaptive windows 
that may allow high-frequency retrievals (perhaps daily) in some areas 
with qualified observations but very low retrieval frequency (perhaps 
monthly or longer) in some areas with long-term cloud/snow cover. The 
purpose of setting an inherent historical information window for 16d 
and an observational window for 8d is that we want the PKA to improve 
the retrieval accuracy without changing the input data and the core 
retrieval algorithm, and to allow the PKA to replace the current 
compositing algorithm in the future. In addition, from the product 
manufacturing perspective, using future data will introduce additional 

Fig. 12. RE as a function of the proportion of composites where the number of 
qualified observations (score ≥12) meets special requirements (number ≥3 or 
number = 0) for all composites for the year 2021 for PKA-MODIS LAI. 
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data and uncertainty. Thus, the combination of the 16-day prior 
knowledge window and the 8-day current window would allow PKA to 
improve product performance based on the original algorithm if certain 
conditions are met (the prior knowledge available or sufficient quali-
fying observations). 

Fourthly, the uncertainty of BRDF-adjusted model needs to be dis-
cussed here. The LKD model is more applicable and has been adopted by 
many sensors due to its semi-empirical and convenient fitting properties 
(Schaaf et al., 2002). However, the BRDF-adjusted model also suffers 
from some shortcomings: 1) underestimation in the hotspot region, 
leading to high overall uncertainty at high latitudes (Li et al., 2022; Jiao 
et al., 2016). 2) semi-empirical properties will make the theoretical 
uncertainty of PKA higher than the original algorithm. Therefore, it is 
necessary to analyze the uncertainty that would result from the intro-
duction of the BRDF-adjusted model before the compositing algorithm 
can be applied to large-scale applications in the future. 

Fifthly, the RE-based results (Fig. 11 and Fig. 12) show that recon-
struction errors are unavoidable for both Max-FAPR and PKA, which is 

attributed to the difference in retrieval accuracy between main (low RE) 
and backup (high RE) algorithms. In the process of reconstructing the 
LAI reference, only the retrievals of the main algorithm are used, while 
the original retrievals using the backup algorithm are replaced by the 
composites of the same dates in other years, whereas the Max-FPAR and 
PKA inevitably use the backup algorithm. This implied that the uncer-
tainty of the LAI products based on the Max-FPAR and PKA methods 
would be potentially greater than the non-interpolated algorithm when 
the retrieval ratio of the main algorithm was low. However, the ground- 
based validations showed that the uncertainties of both Max-FPAR and 
PKA met the requirements of GCOS. The lower RE (RE ~ 0.4) of PKA 
compared to Max-FPAR (RE > 1) suggests that PKA uses a higher pro-
portion of the main algorithm, resulting in a lower uncertainty. This also 
provides a clear direction for future algorithm improvement, i.e., to 
reduce the proportion of the backup algorithm and increase the pro-
portion of the main algorithm as much as possible. 

Finally, this work presented a preliminary validation of the new 
proposed algorithm. The PKA was only evaluated and validated at 

Fig. 13. Distribution of LAI values and associated algorithm paths derived from the main RT-based/backup empirical relationship-based algorithm in the red-NIR 
retrieval space. The SZA, VZA, and RAA are 30◦, 0◦, and 90◦, respectively. Panels (a)-(h) are for eight biome types. The QA represents different algorithm paths (main 
algorithm without saturation (QA = 0), the main algorithm with saturation (QA = 1), the backup algorithm due to sun sensor geometry (QA = 3), and the backup 
algorithm due to other reasons (QA = 4)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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GBOV/NECC sites, selected forest-dominated region, and BELMANIP 2.1 
sites for the year 2021. In the future, a more comprehensive evaluation 
and validation analysis of the PKA is needed (e.g., at the global scale and 
long-term period). In addition, this study focused only on LAI, and future 
studies could also be conducted on FPAR. In particular, it is worth 
investigating whether the Max-FPAR and PKA lead to an overestimation 
of FPAR. As this algorithm has the potential to be an operational algo-
rithm, its efficiency compared to the previous Max-FPAR strategy should 
be investigated as a next step. 

5. Conclusions 

The MODIS LAI products employ different retrieval algorithms (al-
gorithm path) depending on the quality of the observations, which is one 
of the main reasons for long-term instability of the LAI time series. The 
previous temporal compositing method based on the Max-FPAR prin-
ciple was designed to reduce the variations in daily LAI retrievals. 
However, the Max-FPAR principle cannot take full advantage of all 
observations and the inconsistency of observation quality in adjacent 
composites could lead to deficiencies in retrieval accuracy and temporal 
continuity. Using a linear kernel-driven BRDF model, we proposed a 
prior knowledge time-series compositing algorithm (PKA) without 
changing the original daily retrieval algorithm. We validated and eval-
uated the PKA LAI at site and regional scales, respectively. Our results 
confirmed that the PKA provides significant improvements over the 
Max-FPAR strategy. The R2 was improved from 0.69/0.23 (GBOV/NECC 
sites) to 0.76/0.41 and the RMSE were reduced from 1.01/1.27 to 0.84/ 
1.25 in a site-scale comparison. In addition, most of the 16 sites studied 
(14 GBOV sites, Honghe site, and Hailun site) showed better time-series 
smoothness (indicated by three proposed temporal uncertainty metrics, 
TSS: time series stability, TSA: time series anomalies, and RE: 

reconstruction error metric that means the proximity to the main algo-
rithm) for the new compositing strategy. The improvement also 
occurred in the Amazon Forest region and the BELMANIP 2.1 sites, 
which can be attributed to the fact that the PKA performed closer to the 
main RT-based retrievals compared to Max-FPAR. In conclusion, the 
newly proposed PKA can improve the LAI retrieval accuracy and its 
temporal stability, which gives it the potential to be selected as the 
official composting algorithm of the next MODIS or MODIS-like LAI 
Collections. This temporal compositing approach, incorporating time- 
series information from the BRDF perspective, also provides a new 
way to produce the time-series of other earth observation parameters. 
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