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Seasonal peak photosynthesis is hindered 
by late canopy development in northern 
ecosystems

Qian Zhao1, Zaichun Zhu    2,3  , Hui Zeng2,3, Ranga B. Myneni4, Yao Zhang    1, 
Josep Peñuelas    5,6 & Shilong Piao    1,7 

The seasonal dynamics of the vegetation canopy strongly regulate the 
surface energy balance and terrestrial carbon fluxes, providing feedbacks to 
climate change. Whether the seasonal timing of maximum canopy structure 
was optimized to achieve a maximum photosynthetic carbon uptake is 
still not clear due to the complex interactions between abiotic and biotic 
factors. We used two solar-induced chlorophyll fluorescence datasets 
as proxies for photosynthesis and the normalized difference vegetation 
index and leaf area index products derived from the moderate resolution 
imaging spectroradiometer as proxies for canopy structure, to characterize 
the connection between their seasonal peak timings from 2000 to 2018. 
We found that the seasonal peak was earlier for photosynthesis than for 
canopy structure in >87.5% of the northern vegetated area, probably leading 
to a suboptimal maximum seasonal photosynthesis. This mismatch in 
peak timing significantly increased during the study period, mainly due 
to the increasing atmospheric CO2, and its spatial variation was mainly 
explained by climatic variables (43.7%) and nutrient limitations (29.6%). 
State-of-the-art ecosystem models overestimated this mismatch in peak 
timing by simulating a delayed seasonal peak of canopy development. 
These results highlight the importance of incorporating the mechanisms of 
vegetation canopy dynamics to accurately predict the maximum potential 
terrestrial uptake of carbon under global environmental change.

The seasonal characteristics of terrestrial vegetation strongly regulate 
the global carbon (C) cycle1,2. Changes in growing-season length (GSL) 
and maximum seasonal photosynthesis well explain the interannual 
variations of gross primary production (GPP) but maximum seasonal 
photosynthesis (GPPmax) accounts for more of the interannual changes 

in GPP than does GSL3. Understanding the underlying mechanisms that 
determine GPPmax is therefore critical4. Evidence suggests an enhance-
ment of the peak growth of global natural vegetation due to environ-
mental changes5 and a widespread advance in the timing of the seasonal 
peak photosynthetic activity across the north caused by warming6. 
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a strategy prioritizing the allocation of C to leaves. This difference 
between DOYGPP and DOYCAN was consistent with a previous study15 and 
was also supported by GOME-2 SIF and gap-filled MODIS LAI (Extended 
Data Fig. 1). We also examined the climatic constraints on the timing of 
seasonal peak photosynthesis across northern ecosystems based on 
the positioning of DOYCSIF with respect to the peak timing of climatic 
factors6 (Methods). We found that seasonal temperature played a criti-
cal role across >75.9% of vegetated areas in northern ecosystems and 
water availability was the dominant factor for other regions (Fig. 2b). 
Interestingly, the geographical distributions of δDOYCSIF,NDVI and the 
dominant climatic constraint were strongly correlated. The tempera-
ture constraint was spatially consistent with a negative δDOYCSIF,NDVI 
and the water constraint was correlated with a positive δDOYCSIF,NDVI, 
indicating the impacts of climatic regulation on the mismatch between 
DOYGPP and DOYCAN. In other words, climatic factors seem to influence 
the strategy of seasonal allocation of photosynthetic C to the canopy 
in the northern lands.

Drivers of the negative δDOYCSIF,NDVI

Canopy development often consumes only a fraction of photosyn-
thate16. Plants usually have the ability to develop the densest canopy to 
match the highest seasonal resources availability through prioritizing 
the seasonal allocation of photosynthetic C to canopy. However, why 
the plants across most of the northern lands failed to do so is unknown. 
We therefore further investigated the underlying mechanisms of the 
prevalent earlier peak timing of seasonal photosynthesis than canopy 
structure (negative δDOYCSIF,NDVI). To do so, we trained BRT models to 
examine the influence of 18 biotic and abiotic factors on the negative 
δDOYCSIF,NDVI. These factors are closely associated with photosynthe-
sis and the allocation of photosynthates, including climatic factors 
(climatic conditions and synergies), foliar economic traits, hydraulic 
traits, indices of biodiversity and other related factors (Methods). 
The difference between DOYGPP and DOYCAN differed across vegetation  
types (Extended Data Fig. 2), so we developed separate BRT models for 
northern ecosystems (entire study area), forests, shrublands and grass-
lands. The BRT models performed reasonably well (R2 ranging from 
0.69 to 0.91) in explaining the spatial variations of negative δDOYCSIF,NDVI 
(Supplementary Fig. 2).

Climatic factors and foliar economic traits accounted for large 
fractions of the spatial variation in negative δDOYCSIF,NDVI in northern 
ecosystems and the other three plant types (25.3–46.2% for climatic 

GPPmax is jointly controlled by canopy structure and light-use efficiency 
(LUE) which are regulated by environmental conditions and the bio-
chemical characteristics of the vegetation7–10. The synchrony between 
the seasonal development of canopy structure and resource availability 
determines the magnitude of GPPmax and the potential maximum GPPmax 
would only be achieved when the densest canopy can match the highest 
resource availability7,10. In this case, the timing (day of the year, DOY) of 
GPPmax (DOYGPP) would be close to the timing of seasonal peak canopy 
structure (DOYCAN), that is, synchrony between DOYGPP and DOYCAN. 
However, whether plants can mediate the seasonal development of 
canopy structure to match the seasonal optimal resource availability 
to maximize GPPmax is unclear, especially under the dramatic global 
environmental changes. The lack of an indepth understanding of the 
underlying mechanisms controlling the synchrony between DOYGPP and 
DOYCAN and its impact on GPPmax constitutes a significant uncertainty 
in understanding the plant’s regulation mechanisms and ecosystem 
carbon uptake capacity under future climate change.

Here, we investigated the synchrony of seasonal peak timing 
between photosynthesis and canopy structure in northern ecosys-
tems (>30° N) and its influencing factors during 2000–2018 based on 
satellite observations and flux-tower measurements. We quantified 
the difference between DOYGPP and DOYCAN (δDOYGPP,CAN) using two 
solar-induced chlorophyll fluorescence (SIF) satellite datasets (spa-
tially contiguous SIF (CSIF11) and SIF from the Global Ozone Monitoring 
Experiment-2 (GOME-2 SIF12) as proxies for vegetation photosynthesis) 
and two vegetation indices (normalized difference vegetation index 
(NDVI) from the moderate resolution imaging spectroradiometer 
(MODIS) and gap-filled MODIS leaf area index (LAI)13 as proxies for 
canopy structure). The factors driving the spatiotemporal variation in 
the difference between DOYCSIF and DOYNDVI (δDOYCSIF,NDVI) were inves-
tigated on the basis of the boosted regression tree model (BRT)14 that 
incorporated a set of biotic and abiotic factors. An optimal GPPmax 
conceptual model was built to investigate the potential of ecosys-
tem GPPmax using flux-tower data (Methods). The performance of an 
ensemble of 14 state-of-the-art ecosystem models in reproducing the 
observed difference between DOYGPP and DOYCAN was also evaluated.

Results and discussion
Seasonal peak timing and potential climatic constraints
We first analysed the seasonal peak timing differences between veg-
etation photosynthesis, canopy structure and climatic variables. 
Soil-water content (SWC) peaked across northern vegetated land in 
May (DOYSWC = 134), followed by solar radiation (Rad) and temperature 
(TEMP) in June (DOYRad = 172) and July (DOYTEMP = 202) respectively. 
Vegetation generally reaches its annual maximum photosynthesis and 
canopy structure in July, which is closer to the timing of the seasonal 
peak temperature compared to SWC and Rad. The timings of peak 
seasonal photosynthesis and canopy structure were mismatched, with 
the former peaking 8 days earlier than the latter (DOYCSIF = 188 versus 
DOYNDVI = 196) (Fig. 1a). The spatial patterns of DOYCSIF and DOYNDVI were 
nevertheless similar. Photosynthesis and canopy structure peaked 
around July and August at high northern latitudes and in southern 
China, closer to the timing of the seasonal peak of temperature, and in 
other temperate regions they peaked much earlier, closer to the timing 
of the seasonal peak of SWC (Fig. 1b–f). The spatial patterns of DOYGPP 
and DOYCAN derived from CSIF and NDVI were corroborated by the inde-
pendent GOME-2 SIF and gap-filled MODIS LAI (Supplementary Fig. 1).

Photosynthesis peaked earlier than canopy structure in >87.5% 
of the northern vegetated area (average negative δDOYCSIF,NDVI = −10 d) 
(Fig. 2a). The widespread negative δDOYCSIF,NDVI suggested that the 
vegetation at most northern latitudes did not allocate sufficient C to 
leaves to form the maximum canopy structure until the seasonal pho-
tosynthetic peak. In contrast, 12.3% of northern vegetation (mainly in 
midwestern Eurasia, parts of China and midwestern North America) had 
a positive δDOYCSIF,NDVI (average positive δDOYCSIF,NDVI = 5 d), indicating 

a

120 140 160 180 200 220 240

DOY (day of year)

0

0.02

0.04

0.06

Pr
ob

ab
ili

ty
 d

en
si

ty 172 202

134

188
196

DOYSWC
DOYRad

DOYCSIF
DOYTEMP
DOYNDVI

Rad

CSIF NDVI SWCTEMP

April a
April b
May a
May b
June a
June b
July a
July b
August a
August b

M
onth

b

c d e f

Fig. 1 | Timings of seasonal peak photosynthesis, canopy structure and 
climatic variables. a, Probability densities of DOYCSIF, DOYNDVI, DOYSWC, DOYRad 
and DOYTEMP in northern ecosystems. The dotted lines and numbers indicate their 
averages weighted by area and CSIF value at the pixel level. b–f, Spatial patterns 
of DOYRad, DOYCSIF, DOYNDVI, DOYTEMP and DOYSWC in northern ecosystems. The 
legend shows the month of peak timing, with ‘a’ and ‘b’ indicating the first half 
and second half of the month, respectively.
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conditions, 14.3–19.3% for climatic synergy and 17.9–35.7% for foliar 
economic traits) (Fig. 3). Climatic factors strongly influenced the peak 
timings of seasonal photosynthesis and canopy structure in three ways: 
supplying solar radiation, regulating LUE and determining the strategy 
for allocating photosynthates. An obvious limitation of light was first 
detected at high northern latitudes, with a relative contribution of 
radiation of 22.6% in shrublands (Rad 15.7% and δDOYCSIF,Rad 6.9%). We 
emphasize that a decrease in radiation after summer solstice may not 
support ongoing vegetation photosynthesis and may therefore alter 
the seasonal synergy between photosynthesis and canopy structure, 
consistent with a recent study reporting a limitation of light on autum-
nal photosynthesis17. LUE is sensitive to environmental conditions, as 
predicted by many LUE models18. Climatic synergistic variables would 
have obvious relative contributions if climatic factors significantly 
accounted for the negative δDOYCSIF,NDVI by inhibiting LUE. However, 
this was not supported due to the low contributions of δDOYCSIF,TEMP 
and δDOYCSIF,SWC. The apparent contribution of temperature in forests 
(TEMP 12.0%) and shrublands (TEMP 7.1%) could therefore be partly 
attributed to its influence on adaptive strategies of allocating photo-
synthates. Previous studies have reported that low temperatures could 
increase the proportion of new C allocated to roots in forests16,19, lead-
ing to a later seasonal peak of canopy structure than photosynthesis. 
We nonetheless cannot exclude the possibility that climatic factors 
contributed to the negative δDOYCSIF,NDVI through other physiological 
processes, even though their influences may not have been as strong 
as those mentioned above.

Foliar economic traits are closely associated with plant photosyn-
thetic capacity, representing plant nutritional status and amount of 
foliage20. Nitrogen concentration per unit dry mass (Nm), phosphorus 
concentration per unit dry mass (Pm) and specific leaf area (SLA) were 
used to account for foliar economic traits. Pm was the primary fac-
tor driving the spatial variation in negative δDOYCSIF,NDVI, explaining 
20.1% and 15.2% of the variation for forests and northern ecosystems, 
respectively (Fig. 3). Nutrient limitations have two main physiological 
impacts on plant growth: primarily limiting the development of leaf 
area and secondarily regulating photosynthesis21. Foliar phosphorus (P) 
concentration plays a more important role than nitrogen (N) concentra-
tion in limiting the development of leaf area21,22 but foliar N concentra-
tion has a stronger and more direct influence than P concentration in 

regulating photosynthesis23,24. Our results emphasize a larger contribu-
tion of foliar P concentration than N concentration (Pm 15.2% versus 
Nm 5.6% for northern ecosystems), suggesting that foliar properties 
may contribute to negative δDOYCSIF,NDVI primarily by delaying canopy 
development. Delayed canopy structure cannot develop in parallel with 
the maximum photosynthetic activity. Nm also did not significantly 
contribute at high northern latitudes (Nm 2.2% for shrublands), even 
though widespread N limitation has been reported25,26, implying that 
the effects of nutrient limitations on photosynthetic capacity were 
not responsible for the seasonal mismatch between photosynthesis 
and canopy structure.

As a structural component of genetic material, P strongly controls 
cell division and the synthesis of enzymes. Experimental studies have 
reported that plants reduce the growth of biomass before stored P 
is depleted27. Stoichiometry, however, cannot easily set a threshold 
of P concentration because the growth of biomass declines before 
P becomes limited23. Recent studies have paid more attention to N 
limitation in northern ecosystems because, as a dominant compo-
nent of enzymes, N directly influences photosynthetic enzymatic  
activity28–30. Our study emphasizes the neglected effect of P limitation 
on canopy development at ecosystem scales. This restriction may result 
in delayed canopy development and seasonal decoupling of photosyn-
thesis and canopy structure and thus influence ecosystem potential 
maximum photosynthesis, even though it is not linearly connected 
to photosynthetic activity. The dominant factor driving the spatial 
variation in negative δDOYCSIF,NDVI differs across plant types, partly due 
to variations in the complexity of canopy structure and environmental 
conditions (Fig. 3). The seasonal synergy between photosynthesis and 
canopy structure for forests was primarily controlled by P limitation 
(Fig. 3a). For shrublands at high northern latitudes, radiation limitation 
(22.6%) and biodiversity (24.2%) were dominant factors. Biodiversity 
was a proxy for environmental resources and can reflect the synthe-
sized phenological responses from different species at the ecosystem 
level31,32. The accumulation of C between daytime photosynthesis and 
night-time consumption by respiration directly determined the sea-
sonality of canopy structure for grasslands, where the diurnal range in 
temperature (Tdr) was larger than that for other plant types (Tdr 18.3%). 
In conclusion, the maximum seasonal photosynthesis was generally 
hindered by late canopy development due to nutrient limitation and 
climatic regulation in northern ecosystems.

GPPmax potential under an optimized δDOYGPP,CAN

The degree to which GPPmax would be enhanced if the late development 
of canopy structure could be adjusted to match the most abundant 
resources in a strategy of vegetation optimization is another critical 
question. We therefore idealized the seasonal peak timing of canopy 
structure using flux-tower data based on an optimal GPPmax conceptual 
model (Methods). The seasonality of canopy structure in this model 
was regulated to find an optimal peak timing when environmental 
resources were most abundant and then an optimal GPPmax was recon-
structed jointly by the optimal canopy structure and the most abundant 
resources (for conceptual illustration see Extended Data Fig. 3). The 
difference between optimized and observed GPPmax (δGPPmax) can be 
regarded as the potential increase of ecosystem GPPmax and the differ-
ence between optimized and observed DOYNDVI (δDOYNDVI) indicates 
the days of mismatch between the timings of the highest availability 
of resources and seasonal peak canopy structure. Our results indicated 
that canopy structure peaked later than photosynthesis at >80% of the 
flux sites (average negative δDOYGPP,NDVI = −11 d) and later than the peak 
of environmental resources (average negative δDOYNDVI = −19 d), imply-
ing that more resources would be obtained with an advanced peak tim-
ing of canopy structure (Fig. 4). A larger asynchrony between seasonal 
peak timings of photosynthesis and canopy structure (δDOYGPP,NDVI) 
generally indicated a larger potential increase of GPPmax (R2 = 0.68) 
and a more intensive regulation of the peak timing of canopy structure 
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Fig. 2 | Comparison between the timings of seasonal peak photosynthesis 
and canopy structure in northern ecosystems. a, Spatial pattern of the 
seasonal peak timing difference between photosynthesis and canopy structure 
represented by δDOYCSIF,NDVI (DOYCSIF − DOYNDVI). b, Climatic constraints of 
temperature (blue) and soil-water content (orange) on vegetation photosynthesis 
in northern ecosystems, represented by absolute δDOYCSIF,TEMP (DOYCSIF − DOYTEMP) 
and δDOYCSIF,SWC (DOYCSIF − DOYSWC), respectively. The absolute values indicate the 
degree of climatic constraints. Blue or orange color of each pixel represents the 
dominant limiting factor, temperature or soil-water content, respectively.
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(δDOYNDVI). We emphasize that a potential increase of GPPmax (average 
δGPPmax = 0.17 g C m−2 d−1) would be achieved by advancing the seasonal 
peak timing of canopy structure. These results at the site level imply 
that the prevalent earlier peak timing of seasonal photosynthesis than 
of canopy structure at northern latitudes probably led to suboptimal 
maximum seasonal photosynthesis.

Ecosystem models overestimated δDOYGPP,CAN

We evaluated the performances of 14 dynamic global vegetation 
models (DGVMs) that participated in the ‘Trends and drivers of the 
regional scale sources and sinks of carbon dioxide’ project (TRENDY 
v.7) in reproducing the timings of seasonal peak photosynthesis and 
canopy structure using their GPP and LAI results33. The results indicated 
that all the models overestimated the number of days that vegetation 
photosynthesis preceded canopy structure (δDOYGPP,LAI) compared 
with observations, due to a notably delayed peak timing estimation 
of canopy structure (DOYLAI) (Fig. 5 and Supplementary Figs. 3 and 4). 
Benefiting from the mechanistic understanding of photosynthetic 
processes and the unified photosynthesis module, that is, Farquhar 
model or its variants34, the DGVMs simulated a reasonable peak timing 
of photosynthesis (Supplementary Fig. 5). However, the simulation of 
the seasonal dynamics of canopy structure involved processes that 
are currently poorly understood and represented, especially the sea-
sonal C allocation mechanisms, resulting in reported systematic bias 
of modelled seasonal variations in LAI35,36.

The modules of C allocation in recent DGVMs are mainly developed 
on the basis of three strategies: (1) allometric relationships between 
plant organs37,38, (2) resource limitation on vegetation growth39 and (3) 
both allometric relationships and resource limitation40,41. We divided 
the TRENDY models into three groups according to their strategies for C 
allocation. We found that the models developed on the basis of a single 
C allocation strategy provided better (but still poor) simulations of the 
peak timing of canopy structure (DOYLAI from 195 to 230 for allometric 
relationships and DOYLAI = 213 for resource limitation) compared with 
observations (DOYNDVI = 196) (Fig. 5). However, models considering both 
allometric relationships and resource limitation do not improve their 
performance, simulated notably delayed peak timings of canopy struc-
ture (DOYLAI from 221 to 255) and thus overestimated the δDOYGPP,CAN 
(δDOYGPP,LAI from −58 to −25 d). Our results emphasized that all the C 

allocation mechanisms represented in current DGVMs need further 
improvements and that combining allometric and resource limitation 
theories without refinement does not improve the performance of the 
models in simulating seasonal canopy dynamics.

Increasing discrepancy between DOYCSIF and DOYNDVI

Satellite observations suggested that the discrepancy in peak tim-
ing between vegetation photosynthesis and canopy structure sig-
nificantly increased during 2000–2018 (0.39 d per decade, P = 0.04)  
(Fig. 6a). The overall increasing discrepancy between DOYCSIF and 
DOYNDVI across the northern lands indicated that the northern veg-
etation might not be able to tackle the environmental changes and 
sufficiently alter its seasonal foliar allocation to achieve a larger GPPmax  
(Fig. 6b). The DGVMs from TRENDY project failed to capture the 
observed trends in the discrepancy between DOYCSIF and DOYNDVI, in terms 
of both the overall trend (0.32 ± 0.48 d per decade, P = 0.36) and spatial  
pattern (Fig. 6a,c).
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We further explored the effects of rising atmospheric CO2 con-
centration and climate change on the increasing discrepancy between 
DOYCSIF and DOYNDVI during 2000–2017 based on the BRT model that 
considers temporal varying atmospheric CO2 concentration and cli-
mate change (Methods). The results indicated that the increasing 
discrepancy was mainly due to the rising CO2 (0.46 d per decade)  
and that it was slightly alleviated by climate change (−0.03 d per 
decade) (Extended Data Fig. 4). The rising CO2 amplified the dis-
crepancy between DOYCSIF and DOYNDVI across most of the northern 
vegetated lands (Extended Data Fig. 4d), probably due to a combined  
result of earlier DOYCSIF due to the CO2 fertilization effects on photo-
synthesis and a relatively stable DOYNDVI that was probably limited by 
temperature and nutrients and a more conservative carbon allocation 
strategy25,42,43. The increasing CO2-induced discrepancy suggested 
that, despite the positive effects of CO2 fertilization on GPPmax (ref. 5),  
there was room for further enhancement of GPPmax under the 
assumption that the northern vegetation develop seasonal maxi-
mum canopy structure earlier. The effect of climate change on 
δDOYCSIF,NDVI trend was relatively weak compared with rising CO2 
but, interestingly, negative effects of climate change were found 
in most temperature-limited regions, indicating that warming  
climate alleviated the discrepancy between DOYCSIF and DOYNDVI 
during past two decades (Extended Data Fig. 4e). We also  
explored the contributions of rising CO2 and climate change to the 
changes in δDOYGPP,LAI based on TRENDY models. The model simu-
lations showed a positive effect of climate change (0.75 ± 0.73 d 
per decade) and a negative effect of rising CO2 (−0.10 ± 0.25 d per 
decade) with large spreads (Supplementary Fig. 6), opposite to  
the results based on the BRT models. Nevertheless, further studies 
are needed, especially field experiments designed to investigate 
the underlying mechanisms controlling δDOYGPP,CAN, which could  
provide explicit guidance to further improve the knowledge and imple-
mentation of processes and mechanisms that drive the variations in 
vegetation canopy development in state-of-the-art ecosystem models.

This study used data from multiple sources and analysed the syn-
chrony between the timings of seasonal peak photosynthesis and 
seasonal peak canopy structure at northern latitudes. Our findings 
identified a widespread mismatch between the two peak timings and 
an increasing discrepancy between them, suggesting that northern 

vegetation could not mediate the seasonal canopy structure to match 
the availability of resources to maximize its growth, with climatic 
regulation and nutrient limitation being potential vital reasons.  
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Fig. 5 | Timings of seasonal peak photosynthesis and canopy structure in 
northern ecosystems simulated by the 14 TRENDY models. a, Comparison 
of modelled DOYLAI and δDOYGPP,LAI with observed DOYNDVI and δDOYCSIF,NDVI. The 
coloured dots and error bars represent the spatial means ± 0.5 s.d. among grid cells 
and the corresponding sample size n of each model was also provided. The numerical 

labels indicate different strategies of allocation of photosynthetic carbon: (1) 
allometric relationship between plant organs, (2) resource limitation on vegetation 
growth and (3) both allometric relationships and resource limitation. The grey 
dotted lines and shading represent the spatial means ± 0.5 s.d. among grid cells of 
observation (n = 25,928). b, Same as a but for DOYGPP and δDOYGPP,LAI. Obs, observed.
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Fig. 6 | Changes in the mismatch in seasonal peak timing between 
photosynthesis and canopy structure. a, Interannual changes in observed 
absolute δDOYCSIF,NDVI (black lines) and model-simulated absolute δDOYGPP,LAI 
(green lines) obtained by averaging 14 TRENDY models. The solid lines with 
markers and dotted lines indicate annual mismatched days and regression lines. 
The trend is calculated by the Theil–Sen estimator and the two-sided significance 
test is estimated by the Mann–Kendall. Double asterisks indicate significant 
trend at P < 0.05 (P = 0.04 for observation and P = 0.36 for model simulation). 
The green shading indicates the uncertainty range represented by the mean 
value ± 0.5 intermodel standard deviation. b,c, Spatial patterns of the trends 
in absolute δDOYGPP,CAN derived from observed δDOYCSIF,NDVI during 2000–2018 
and model-simulated δDOYGPP,LAI during 2000–2017. The absolute value of 
δDOYGPP,CAN represents the degree of mismatch in seasonal peak timing between 
photosynthesis and canopy structure regardless of their relative order.
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The current DGVMs generally performed poorly in identifying the 
observed mismatch in peak timing. Incorporating the findings of this 
study will provide new insights for improved modelling of seasonal 
vegetation growth (for example, P cycling and its effects on regulating 
peak vegetation growth). These mechanisms will help improve our 
understanding and projection of the maximum potential uptake of C 
by terrestrial vegetation under dramatic global environmental change.

Methods
Datasets and study area
We used the clear-sky CSIF dataset with 4-day temporal and 0.05° spa-
tial resolutions to derive the annual peak timing of vegetation photo-
synthesis (DOYCSIF) from 2000 to 2018 in northern ecosystems (>30° N). 
The CSIF dataset uses surface reflectance from the MODIS Collection 6 
(C6) (MCD43C1) as inputs and trains machine-learning algorithms on 
daily SIF observations from Orbiting Carbon Observatory-2. It was dem-
onstrated to capture well the seasonal dynamics of satellite-observed 
SIF, which shows high consistency with ecosystem GPP44–46 and thus 
CSIF is suitable for vegetation phenology retrievals as a proxy for 
GPP11,17. We used the NDVI dataset from the MODIS C6 (MOD13C1) with 
16-day temporal and 0.05° spatial resolutions to retrieve the annual 
peak timing of vegetation canopy structure (DOYNDVI) from 2000 to 
2018. Continuous snow cover leads to abundant missing data at high 
northern latitudes, so we reconstructed the NDVI time series using 
an adaptive method of spatiotemporal tensor completion based on 
the ‘pixel reliability’ layer from the MOD13C1 dataset to improve the 
quality of the data47. We then interpolated the CSIF and reconstructed 
NDVI datasets to daily temporal resolution using linear interpolation. 
Another 16-day NDVI dataset with 500-m spatial resolution from the 
MODIS C6 (MOD13A1) was also used to extract the seasonality of canopy 
structure around flux-tower sites.

To test the robustness of the peak timing of photosynthesis 
derived from CSIF, we used an independent SIF dataset from GOME-2 
(ref. 48). The GOME-2 SIF v.28 product suffered from sensor degradation 
and large uncertainties due to low signal levels49 and thus it is not suit-
able for long-term trend analysis. We therefore derived the peak timing 
from the multiyear mean seasonal cycle of daily average SIF during 
2007–2018. We also used a reprocessed LAI dataset13 to characterize the 
peak timing of canopy structure in northern ecosystems to ensure the 
robustness of our analyses. This LAI data were generated by reprocess-
ing the MODIS C6 LAI product with 8-day temporal and 0.05° spatial 
resolutions and it performed more continuously and consistently in 
temporal and spatial domains than MODIS LAI13, suitable for seasonal 
peak timing retrievals.

Surface air temperature (TEMP), shortwave radiation (Rad) and 
SWC were used in this analysis to define the climatic constraints on 
vegetation photosynthesis in northern ecosystems. TEMP and Rad 
were obtained from the Climatic Research Unit-National Centers for 
Environmental Prediction (CRU-NCEP v.9) with 6-hourly temporal and 
0.5° spatial resolutions. The SWC dataset was provided by the Global 
Land Data Assimilation System (GLDAS v.5)50 with 3-hourly temporal 
and 0.25° spatial resolutions and we adopted SWC to a depth of 40 cm. 
These data were aggregated into daily temporal and 0.5° spatial resolu-
tions to derive their annual peak timings (DOYTEMP, DOYRad and DOYSWC) 
from 2000 to 2018.

We used the FLUXNET2015 Tier 1 dataset51 to analyse the potential 
increase of GPPmax based on a conceptual model. We first rigorously 
selected sites and focused on the sites with only one seasonal GPP 
peak from spring to autumn (52 sites, Supplementary Table 1). We 
controlled daily flux data with >75% valid observations and calculated 
daily GPP as the average of both night-time52 and daytime53 partition-
ing methods. We also compared the GPP estimates of both methods 
and excluded biased daily GPP to reduce the uncertainty caused by the 
NEE-partitioning method. The observed seasonal cycles of GPP and Rad 
were extracted from the daily data with valid fluxes.

The vegetation map was derived from the MODIS C6 (MCD12Q1) 
with the International Geosphere-Biosphere Programme (IGBP) clas-
sification scheme. We only considered vegetated areas >30° N with 
one peak during the growing season from summer to autumn. Veg-
etated areas with multiple peaks throughout the year were eliminated 
using harmonic analysis. We also ignored the vegetated areas with low 
seasonality based on a threshold of the coefficient of variation of the 
annual seasonal cycle of NDVI (>0.2).

Retrieval of peak timing
The peak timing was identified as the DOY when the variable arrived at 
its annual maxima. We retrieved annual peak timings of vegetation pho-
tosynthesis (DOYCSIF and DOYSIF), canopy structure (DOYNDVI and DOYLAI) 
and climatic factors (DOYTEMP, DOYRad and DOYSWC) from 2000 to 2018. 
We applied a non-parametric singular spectrum analysis (SSA) to obtain 
smoothed time series, reduce noise and maintain the seasonal signal 
of the time series54. SSA first decomposes the original time series into 
oscillatory components and noises with different frequencies based 
on the singular value decomposition and then reconstructs seasonal 
signals using the decomposed components. This non-parametric 
approach can reduce noise components, makes no prior assump-
tions about the original time series and is widely used to reconstruct  
time series6,55.

Definition of climatic constraints
We investigated the impacts of climatic constraints on vegetation pho-
tosynthesis in northern ecosystems on the basis of the framework pro-
posed by ref. 6. This framework is based on two fundamental principles. 
First, vegetation photosynthesis and radiation will be seasonally con-
sistent without climatic limitations, suggesting that DOYCSIF tends to be 
equal to DOYRad. Second, DOYCSIF will tend to be closer to the peak timing 
of the dominant limiting factor to obtain this more restricted resource 
than other factors. We adopted the idea of this framework using the 
peak timings of climatic factors as proxies for resource availability and 
defined the difference between DOYCSIF and DOYTEMP (δDOYCSIF,TEMP) and 
the difference between DOYCSIF and DOYSWC (δDOYCSIF,SWC) as the tem-
perature and water constraint on vegetation photosynthesis, respec-
tively. The sequential order of the peak timings of climatic factors in 
northern ecosystems had three scenarios: DOYSWC < DOYRad < DOYTEMP, 
DOYRad < DOYSWC < DOYTEMP and DOYRad < DOYTEMP < DOYSWC (Supple-
mentary Fig. 7). We analysed the climatic constraints on vegetation 
photosynthesis on the basis of all three scenarios, different from the 
original framework which only considered the most common scenario 
in northern ecosystems (DOYSWC < DOYRad < DOYTEMP).

Spatial analysis
We retrieved the seasonal peak timings of photosynthesis, canopy 
structure and climatic variables and analysed their multiyear average 
differences from 2000 to 2018 (Fig. 1). We then quantified the mis-
match in peak timing between photosynthesis and canopy structure 
(δDOYCSIF,NDVI) and examined the climatic constraints on the peak timing 
of photosynthesis across northern ecosystems (Fig. 2).

We used the BRT model to quantify the relative contributions of 
18 extrinsic and intrinsic factors to the spatial variation in negative 
DOYCSIF,NDVI. The BRT model is a machine-learning method based on the 
regression tree and boosting method, which can accommodate miss-
ing data and handle complex interactive effects between predictors. 
We developed four BRT models dependent on plant type (northern 
ecosystems, forests, shrublands and grasslands). The BRT models were 
established on the basis of the ‘gbm’ R package and defined with a tree 
complexity of 5, a bag fraction of 0.5 and a learning rate of 0.001 or 0.01 
based on the sample size of the response factor. All numeric variables 
were standardized (z-scores) and the response variable satisfied the 
assumption of normality in the BRT models. Other analysis and figure 
generation for this study were performed in MATLAB (R2019b).
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Eighteen variables were used as explanatory factors in the BRT 
models, including: climatic factors—TEMP, SWC, Rad and Tdr for cli-
matic conditions and correlation coefficient between TEMP and SWC 
(r(TEMP, SWC)), δDOYCSIF,TEMP, δDOYCSIF,SWC and δDOYCSIF,Rad for climatic 
synergies; foliar economic traits—Nm, Pm, the ratio of Nm to Pm (N:P) 
and SLA; hydraulic traits—maximum rooting depth (rooting depth) 
and canopy height (height); indices of biodiversity—anthropogenic 
species richness (ASR) and plant species (species); and other related 
factors—GSL and tree density (Supplementary Table 2). Climatic factors 
were divided into two subcategories—climatic conditions and climatic 
synergies—to emphasize the effects of different processes on the peak 
timing of seasonal vegetation. Although these explanatory variables 
may be partially correlated, the BRT model makes no assumptions 
about variable interactions and can handle the interactions between 
the explanatory variables14.

TEMP, SWC and Rad were averaged from 2000 to 2018. Tdr was 
obtained from NCEP v.9 and averaged during the growing season 
of the study period to determine their effect on vegetation growth. 
We took foliar economic traits and hydraulic traits into account 
because they are closely associated with vegetation photosynthetic 
capacity and the dynamics of water transport, respectively. Foliar 
economic traits include Nm, Pm, N:P and SLA, derived from the trait 
maps based on the TRY database56 (https://www.try-db.org/TryWeb/
Home.php). Hydraulic traits contain maximum rooting depth and 
canopy height obtained from the Global Earth Observation project 
for Integrated Water Resource Assessment and the Global 1 km Forest 
Canopy Height dataset57. We also adopted variables of biodiversity 
in the BRT models, including ASR and plant species because biodi-
versity and ecosystem functions and processes, such as terrestrial C 
storage and productivity, are strongly correlated. ASR was developed 
by ref. 58 using a set of global models and estimates of anthropogenic 
species gains and losses. Data for plant species were obtained from 
the dataset Number of Plant Species by Terrestrial Ecoregion devel-
oped by ref. 59. We aggregated all the variables into a common spatial  
resolution of 0.5°.

Optimal GPPmax conceptual model
To explore the potential increase in GPPmax of the northern ecosystems, 
we built an optimal GPPmax conceptual model based on flux-tower 
data and model framework of LUE and the fraction of absorbed pho-
tosynthetically active radiation (FAPAR) (equation (1)). In this model, 
the seasonality of photosynthesis was partitioned into two sections: 
development of canopy structure and availability of environmental 
resources. An optimized GPPmax would be achieved if plants could 
regulate their peak timing of seasonal canopy structure (DOYNDVI) 
to match the timing of the highest availability of resources in a year 
(DOYResources). We therefore first derived the dynamic of availability of 
environmental resources from the seasonality of photosynthesis by 
integrating equations (1)–(3).

LUE(t) =
GPP(t)

PAR(t) × FAPAR(t)
(1)

GPP was obtained from eddy-covariance flux data, representing 
the seasonality of photosynthesis. Photosynthetically active radia-
tion (PAR) can be regarded as an extrinsic resource and calculated 
as the product of observed Rad from the flux tower and a coefficient 
(set to be 0.45). FAPAR was directly related to the development of 
canopy structure and estimated as a linear function of NDVI, which was 
obtained from the MOD13A1 dataset within a radius of the flux-tower 
site (1 km for forests and 200 m for grasslands and shrublands). LUE 
can therefore be estimated on the basis of equation (1) and t represents 
the day number of the year.

LUE(t) = HTN(t) × LeafAge(t) (2)

LUE is jointly controlled by hydrothermal and nutrient conditions 
(HTN) and leaf phenology (Leaf Age), closely related to environmental 
resources and canopy structure. In equation (2), Leaf Age was quanti-
fied as a linear function of NDVI60 and HTN can therefore be estimated.

PAR(t) ×HTN(t) =
GPP(t)

FAPAR(t) × LeafAge(t)
(3)

In equation (3), the product of PAR and HTN represents the effects 
of environmental resources on photosynthetic processes, and the 
product of FAPAR and Leaf Age indicates the section of photosynthe-
sis related to canopy structure. We can therefore estimate the sea-
sonal dynamic of availability of environmental resources and derive 
DOYResources.

OptimizedGPPmax = (FAPAR × LeafAge)max × (PAR ×HTN)max (4)

An optimized GPPmax would be achieved as the product of  
seasonal maximum canopy structure and environmental resources, 
assuming that plants could regulate the densest canopy structure to 
obtain the most abundant resources, namely adjusted DOYNDVI equal 
to DOYResources.

Model simulations
We used GPP and LAI outputs from 14 DGVMs from the TRENDY S3 
simulations (dynamic CO2, climate and land use) to evaluate the perfor-
mances of recent DGVMs to simulate peak vegetation growth33. These 
DGVMs included CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, 
JSBACH, JULES, LPJ-GUESS, LPX, OCN, ORCHIDEE, ORCHIDEE-CNP, 
SURFEX and VISIT (details of individual models in Supplementary 
Table 3). We retrieved annual peak timings of vegetation photosyn-
thesis (DOYGPP) and canopy structure (DOYLAI) from 2000 to 2017 
and calculated their difference (δDOYGPP,LAI). Then we compared the 
results with observed DOYCSIF, DOYNDVI and δDOYCSIF,NDVI, respectively  
(Figs. 5 and 6 and Supplementary Figs. 3–5). The model outputs from 
TRENDY S0-S2 simulations were also used in our study and were 
reported in the temporal analysis section. All model outputs were 
linearly interpolated to daily temporal resolution and aggregated to 
0.5° spatial resolution.

Temporal analysis
To explore the temporal variation of the mismatch in peak  
timing between vegetation photosynthesis and canopy structure  
and its potential drivers, we first examined the trend in abso-
lute δDOYCSIF,NDVI during 2000–2018, with positive and negative  
trends representing increasing and decreasing discrepancies between 
DOYCSIF and DOYNDVI, respectively (Fig. 6). Then, we identified potential 
drivers of the trend in δDOYCSIF,NDVI by developing a new BRT model 
considering temporal varying atmospheric CO2 concentration and  
climatic variables. The new BRT model was initially built on the basis 
of the relationship of spatiotemporal variation between δDOYCSIF,NDVI 
and 19 explanatory variables, including varying atmospheric  
CO2 concentration and 18 explanatory variables used in the spa-
tial analysis. The effects of CO2 fertilization and climate change  
on the trend in δDOYCSIF,NDVI can therefore be attributed based on 
the differences between the simulated results under varying CO2 or 
climate and constant CO2 or climate during 2000–2018 (Extended  
Data Fig. 4). Likewise, we estimated the contributions of CO2 ferti-
lization and climate change to the trend in absolute δDOYGPP,LAI  
based on the model outputs from the TRENDY S0-S2 simulations  
(Supplementary Fig. 6).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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Data availability
The CSIF dataset is from https://doi.org/10.17605/OSF.IO/8XQY6. The 
GOME-2 SIF dataset is from https://avdc.gsfc.nasa.gov/pub/data/satel-
lite/MetOp/GOME_F/. The MODIS NDVI dataset is from https://lpdaac.
usgs.gov/products/mod13c1v006/. The reprocessed LAI dataset is from 
http://globalchange.bnu.edu.cn/research/laiv6. The FLUXNET2015 
dataset is from https://fluxnet.org/data/fluxnet2015-dataset/. The 
surface air temperature and Rad datasets are from https://rda.ucar.edu/
datasets/ds314.3/. The SWC dataset is from https://disc.gsfc.nasa.gov/
datasets/GLDAS_NOAH025_3H_2.1/summary?keywords=GLDAS. The 
SLA, Nm and Pm datasets are from https://github.com/abhirupdatta/
global_maps_of_plant_traits. The canopy height and maximum root-
ing depth datasets are from https://webmap.ornl.gov/ogc/dataset.
jsp?dg_id=10023_1 and https://wci.earth2observe.eu/thredds/catalog/
usc/root-depth/catalog.html. The ASR and plant species datasets 
are from https://ecotope.org/anthromes/biodiversity/plants/data/ 
and https://databasin.org/datasets/43478f840ac84173979b22631c
2ed672/. The tree density dataset is from https://elischolar.library.
yale.edu/yale_fes_data/1/.

Code availability
All computer codes for the analysis of the data are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Comparison between the timings of seasonal peak photosynthesis and canopy structure in northern ecosystems based on multiple 
proxies. Spatial patterns of the seasonal peak timing difference between photosynthesis and canopy structure represented by δDOYGOME-2 SIF, NDVI (a) and δDOYCSIF, LAI (b).
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Extended Data Fig. 2 | Mean differences of seasonal peak timings between 
photosynthesis and canopy structure for different ecosystem types. 
Northern ecosystems (n = 2578665), forests (n = 788343), shrublands 
(n = 765928), and grasslands (n = 344205). Boxplots show the median, maximum, 

minimum, 25th, and 75th quartiles values (without outliers). The coloured letters 
represent significant differences (all p values = 9.56 × 10−10, two-sided Tukey’s 
HSD test) in average δDOYCSIF, NDVI among ecosystems estimated by one-way 
analysis of variance (ANOVA).
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Extended Data Fig. 3 | Illustration of the optimal GPPmax conceptual model. 
Coloured curves indicate the seasonal cycles of environmental resources 
(Resource, blue), photosynthesis (GPP, orange), and canopy structure (NDVI, 

green). The seasonal peak timing of the canopy structure is adjusted to match 
the highest availability of environmental resources (DOYNDVI = DOYResource), and 
therefore the optimized maximum seasonal GPP was achieved.
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Extended Data Fig. 4 | Attribution of the trends in absolute δDOYCSIF, NDVI 
in northern ecosystems during 2000–2017. a, Trends in spatially averaged 
absolute δDOYCSIF, NDVI derived from satellite observation (OBS) and BRT 
models (Predicted), and attributed respectively to rising CO2 (CO2), climate 

change (Climate), and other factors (Others). b-e, Spatial patterns of the 
trends in absolute δDOYCSIF, NDVI corresponding to the columns in a. The satellite 
observation was resampled to 0.5° to match the spatial resolution of explanatory 
variables in the BRT model.
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