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1. Transport Problem for Vegetation Canopies in One Spatial Dimension 
 
We consider the one-dimensional radiative transfer equation for a leaf canopy confined between 
depths z = 0 at the top and z =  at the bottom, that is the vertical ordinate is directed 
downwards. All directions are measured with respect to –z axis such that  for upward 
traveling directions. The canopy is assumed bounded at the bottom by a reflecting and absorbing 
ground and illuminated at the top by a mono-directional beam source (direct solar radiation) of 
intensity  along  and a diffuse source (skylight) of intensity , at wavelength . The 
appropriate transfer equation is 
 
  (1) 

 
and the boundary conditions are 
 
     (2a) 

     (2b) 

 
In the above,  is the wavelength-independent total interaction cross section or the extinction 
coefficient,  is the wavelength-dependent differential scattering cross section and is the 
wavelength-dependent bi-directional reflectance function of the ground, or understory, beneath 
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the vegetation canopy. The specific intensity I is thus wavelength dependent. However, for ease 
of expression, this dependence will be not explicitly shown for the reminder of this chapter. It is 
convenient to express the incident field as (cf. Chapter 4) 
 

   

   
 
where  is the fraction of total incident flux density at the top of the canopy, , is the 
total irradiance of the incident solar radiation at the top of canopy and is the anisotropy of the 
diffuse source.  
 
If the leaf normal orientation distribution function is assumed independent of depth z in the 
canopy, the two cross sections in Eq. (1) can be written as (cf. Chapter 3) 
 
  (3a) 

  (3b) 

 
where is the leaf area density distribution, G is the geometry factor 
 
   

 
and  is the area scattering phase function 
 
   

 
with being the leaf scattering phase function. The vertical coordinate z can be changed to 
cumulative leaf area index L by dividing Eq. (1) with . The vegetation canopy is now 
contained between L = 0 at the top and L =  at the bottom, where  is the leaf area index of 
the canopy. The transport problem in one spatial dimension for a vegetation canopy illuminated 
at the top with unit flux density and isotropic skylight is thus,  
 
  (4a) 

     (4b) 

 ,    (4c) 
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2. Separation of Uncollided and Collided Intensities 
 
It is convenient for numerical purposes and also to gain insight on the transport physics to 
separate the uncollided radiation field from the collided field, that is, 
 
  (5) 
 
where  is the specific intensity of uncollided photons and is the specific intensity of photons 
which experienced collisions with elements of the host medium. By introducing Eq. (5) in Eq. 
(4), the transport problem can be split into equations for the uncollided intensity, 
 
 , (6a) 

 ,    (6b) 

 ,    (6c) 

 
and collided intensity, 
 

  (7a) 

     (7b) 

 ,    (7c) 

 
In the above, Q is the first collision source 
 

  (8a) 

 
and S is the distributed source 
 

 . (8b) 

 
 
3. Uncollided Problem 
 
The solution to the uncollided problem [Eq. (6)] is, 
 
     (9a) 
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     (9b) 
 
where  
 

  (9c) 

 
denotes the probability of photons not experiencing collisions while traveling along  between 
depth L1 and L2 (L2>L1). The downward uncollided intensity at the top of the canopy 

 in Eq. (9a) is given by the boundary condition, Eq. (6b). The upward intensity at 
the ground  in Eq. (9b) can be evaluated as [cf. Eq. (6c)] 
 
 ,    (10) 

 
If the ground reflectance is wavelength-independent, then the normalized uncollided radiation 
field is also wavelength-independent because the extinction coefficient is wavelength 
independent in vegetation canopies. 
 
 
4. First Collision Problem 
 
The collided problem specified by Eq. (7) is difficult to solve because of the distributed source 
term [Eq. (8b)]. Analytical solutions are possible only in the case of simple scattering kernels. As 
noted previously, the scattering phase function  is generally not rotationally-invariant, and this 
precludes the use of many standard techniques developed in transport theory. If scattering in the 
medium is weak, a single-scattering approximation may suffice. The corresponding transport 
problem 
 
 , (11a) 

 , (11b) 

 ,    (11c) 

 
can be solved for the single-scattered intensity, , that is, radiation intensity of photons scattered 
once, with just the first collision source term, 
 

     (12a) 
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     (12b) 

 
where  is given by Eq. (10).  
 
 
5. Successive Orders of Scattering Approximation 
 
The specific intensity of photons that experienced two collisions in the medium  can be solved 
with knowledge of first scattered intensity  as follows, 
 

    , (13a) 

     (13b) 

 
where the distributed source term evaluated with first scattered intensity is  
 

 . (14) 

 
The foregoing may be generalized for n-th order of scattering as 
 

    , (15a) 

     (15b) 

 
The total intensity  and sources S can be evaluated as 
 

  (16a) 

 . (16b) 

 
In practice, the summation in Eq. (16) is limited to N-orders of scattering. Figure 1 shows 
convergence of  
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at the top L=0, and the bottom, , of the canopy. One can see that  follows a straight 
line if n exceeds a certain number, indicating that . Absolute value of the slope  is the 
value of the convergence which depends on the re-collision probability, p, single scattering 
albedo,  and the maximum boundary reflectance, . For the black soil problem (cf. 
Chapter 4), . Thus the number of iterations needed to achieve a desired accuracy  is 
inversely proportional to the rate of convergence, i.e. , and depends on canopy 
structure (p), leaf optics ( )and boundary reflective properties ( ). In general,  is an 
increasing function of these variables and thus the higher p, , and  are, the slower 
convergence is [Knjazikhin, 1990]. This method has been applied to model vegetation reflection 
by Myneni et al. [1987]. 

 
 
6. Gauss-Seidel Iteration Procedure for the Collided Problem 
 
Consider the collided problem specified by Eq. (7). Discretize the angular variable  into a 
finite number of directions, , j = 1, 2, …, M, with the weights denoted by . Similarly, 
discretize the spatial variable L, that is, divide LH into N layers, each of thickness . We use 
the notation Li and Li+1 to denote successive layers. The collided radiation at Li+2 and Li in 
downward directions can be written as 
 

     IC(Li+2,Ωj) = IC(Li,Ωj)*P(Ωj,2ΔL) + 1/|µj| * ʃLi
Li+2 dL’ J(L’,Ωj)P[Ωj,(Li+2-L’)],   u < 0 , (17) 

 
 
where J = Q + S is the source term, that is, the sum of first collision and distributed sources. If 

 is small, then the following approximation is valid 
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  (18) 

 
where the source in the intervening layer is evaluated as 
 

 . (19) 

 
A similar approximation and equation can be derived for upward directions (u > 0). 

 

Figure 2. Convergence of multiple scattering 
sources (S) at the top of the canopy (a) and at the 
bottom of the canopy (b) during the iteration 
process. The total Leaf Area Index (LAI) of the 
canopy is 5. The canopy is illuminated by 
diffuse radiation and by direct solar radiation 
along the direction (θ=150o, φ=0o). Direct 
radiation accounts for 70% of the total incoming 
flux (Fdir=0.7). The leaf normal distribution of 
the canopy is planophile (mostly horizontal 
leaves). At NIR wavelengths, leaf reflectance 
(ρnir) is 0.475, leaf transmittance (τnir) is 0.45, 
and soil reflectance (ρsoil) is 0.2. 

 
The resulting system of linear algebraic equations can be solved iteratively for the unknowns 

, i = 1, 2,…, N, j = 1, 2,…, M, using the Gauss-Seidel iteration procedure. The 
downward and upward intensities are computed from layer to layer for every iteration step. For 
instance, in the n-th iteration, the values of the downward intensities in layer i+2 are computed 
from the downward intensities of layer i and i+1 of the same iteration step and from the upward 
intensities of layer i+1 of the previous iteration step n-1. The convergence of the source with 
iteration count is shown in Fig. 2. 
 
The advantages of this method are that the internal radiation field is readily available without 
additional labor and it is possible to account for vertical in-homogeneities in canopy structure 
and optics. The main limitation is that the iteration becomes tedious in optically deep canopies at 
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strongly scattering wavelengths. This method has been used to model vegetation reflectance by 
Knyazikhin and Marshak [1991], and Liang and Strahler [1993]. 
 
7. Discrete Ordinates Method for the Collided Problem 
 
We now consider numerical solution of the transport problem for the collided intensity in one 
spatial dimension using the discrete ordinates method as developed in neutron transport theory. 
In this method, photons are restricted to travel in a finite number of discrete directions, usually 
the quadrature directions, such that the angular integrals are evaluated with high precision. The 
spatial derivatives may be approximated by a finite difference scheme, to result in a set of 
equations which can be used to solve for the collided radiation field by iterating on the 
distributed source. This method has been used by Shultis and Myneni [1988] to model the 
radiation regime in vegetation canopies. 
 
We consider the transport problem for the collided intensity [Eq. (7)]. The angular dependence of 
the transport equation is approximated by discretizing the angular variables µ and  into a set of 
[N x M] discrete directions. The source terms are evaluated by numerical quadrature where 
[ ] are the quadrature ordinates and the set of corresponding weights are [ ]. The 
transport equation for the collided intensity [Eq. (7)] can be written as 
 
  (20) 

 
where the first collision and distributed sources are: 
 

  (21a) 

  (21b) 

 
The vegetation canopy contained between  and  is divided into K layers of equal 
thickness . The spatial derivative in Eq. (20) is approximated as 
 

  (22) 

 
where k+0.5 is the center of the layer between the edges k and k+1. The discretized version of 
transport equation thus reads as  
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  (23) 
 
with k = 1, 2, , K, i = 1, 2, , N and j = 1, 2, , M. To reduce the number of unknowns, a 
relation between cell-edge and cell-center collided intensities is required. Typically the following 
is used, 
 
 ,   , (24a) 
 ,    (24b) 
 
and if , the cell-center intensity is the arithmetic average of the cell-edge intensities. 
 
Equation (23) can be solved for  in terms of  in view of Eqs.(24) as 
 
 ,   , (25) 
 
and for  in terms of  as 
 
 ,   . (26) 
 
In the above, 

 , (27a) 

 , (27b) 

 , (27c) 

 , (27d) 

 , (27e) 

  (27f) 
 
These equations are of the standard form except for the angular dependence of the coefficients ai,j 
through di,j because of the geometry factor G. The set of Eqs. (25) and (26) can be used to solve 
for collided intensity as follows. While sweeping downwards in the phase space, Eq. (25) is used 
to step successively down in the mesh. At the bottom, the boundary condition is handled as 
 

 . (28) 
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Note that i = (N/2)+1,…, N in the above. Now, Eq. (26) is used to sweep through the grid in 
upward directions. The distributed source is upgraded [Eq. (21b)] using the relations between 
cell-edge and cell-center intensities [Eqs. (24)]. This procedure is repeated until the cell-edge 
intensities in successive iterations do not differ by more than a preset threshold value – the 
convergence of the source with iteration is shown in Fig. 3.  

 

Figure 3. Convergence of multiple scattering 
sources (S) at the top of the canopy (a) and at the 
bottom of the canopy (b) during the iteration 
process. The total Leaf Area Index (LAI) of the 
canopy is 5. The canopy is illu-minated by 
diffuse radiation, and by direct solar radia-tion 
along the direction (θ=150o, φ=0 o). Direct radia-
tion accounts for 70% of the total incoming flux 
(fdir=0.7). The leaf normal distribution of the 
canopy is planophile (mostly horizontal leaves). 
At NIR wavelengths, leaf reflectance (ρnir) is 
0.475, leaf trans-mittance (τnir) is 0.45, and soil 
reflectance (ρsoil) is 0.2. 

 
Numerical results illustrating how vegetation canopy reflectance (and transmittance) changes 
with respect to leaf area index and sun-view inclination angles are shown in Fig. 4. 
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Bi-Hemispherical Reflectance (BHR) at red 
wavelengths (~ 0.7µm) as a function of canopy 
green leaf area index (LAI). Ground reflectance 
(ρsoil) for the two different soil types is (a) 0.125 
(typical soil reflectance); and (b) 0 (black soil). 
The other problem parameters are as in the 
standard problem described in the figure caption. 

 

Bi-Hemispherical Reflectance (BHR) at NIR 
wavelengths (~0.9µm) as a function of canopy 
green leaf area index (LAI). Ground reflectance 
(ρsoil) for the two different soil types is: (a) 0.2 
(typical soil reflectance); and (b) 0 (black soil). 
The other problem parameters are as in the 
standard problem described in the figure caption. 

 

Bi-Hemispherical Transmittance (BHT) at red 
(~0.7µm) and NIR (~0.9µm) wavelengths as a 
function of canopy green leaf area index (LAI). 
The other problem parameters are as in the 
standard problem described in the figure caption. 
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Hemispherical Directional Reflectance Factor 
(HDRF) in the solar principal plane. For back 
scattering, φview= φ0 + , and for forward 
scattering, φview= φ0. The total Leaf Area Index 
(LAI) of the canopy is 3.0, and the soil reflectance 
is 0.2. Optical parameters of the canopy for the 
two lines are: (a) leaf reflectance is 0.7, and leaf 
transmittance is 0.225; (b) leaf reflectance is 
0.225, and leaf transmittance is 0.7. The other 
problem parameters are as in the standard problem 
described in the figure caption. 

 

Bi-Hemispherical Reflectance (BHR) at NIR (right 
axis) and RED (left axis) wavelengths  as a 
function of solar zenith angle. The total Leaf Area 
Index (LAI) of the canopy is 3.0. The other 
problem parameters are as in the standard problem 
described in the figure caption. 

Figure 4. The illumination conditions for these cases are as follows – the canopy is illuminated by diffuse 
solar radiation and direct solar radiation along the direction (θ=150o, φ=0 o). Direct solar radiation 
accounts for 70% of the total incoming flux (Fdir=0.7). The leaf normal distribution is planophile (mostly 
horizontal leaves). At NIR wavelengths (a), leaf reflectance (ρnir) is 0.475 and leaf transmittance (τnir) is 
0.45. At red wavelengths (b), (ρred) is 0.075, and (τred) is 0.035. 
 
 
8. Two-Stream Approximations 
 
In cases where the angular distribution of the radiation field is of less interest, the transport 
equation can be angle-integrated to derive the appropriate equations for radiation fluxes. One 
example is the case where one is interested in the evaluation of hemispherical reflectances, BHR 
or DHR. The resulting differential equations can be solved analytically in some cases. Methods 
based on flux approximations have been widely used to model vegetation canopy radiation 
regime because of their simplicity and the possibility of analytical solutions, ([Allen and 
Richardson, 1968]; [Suits, 1972]; [Dickinson, 1983]; [Verhoef, 1984]; [Sellers, 1985]; amongst 
others). 
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Consider the transport problem stated by Eq. (1) and (2). The downward flux density Fd is 
defined as 
 
 .  

 
Integrating Eq. (1) over all downward directions, but with change of vertical coordinate z to 
cumulative leaf area index L, 
 

   

   

 , (29) 

 
and simplifying results in a differential equation for the downward flux density 
 
  (30) 

 
Similarly, a differential equation for the upwards flux density can be derived 
 
  (31) 

 
The initial values for Eqs. (30) and (31) are 
 
  (32) 

  (33) 
 
where rs is the hemispherical reflectance of the ground underneath the canopy. While these initial 
value problems seem simple enough, it is not easy to rigorously derive expressions for the 
coefficients K in the general case of distributed leaf normals and anisotropic scattering kernels. 
However, approximate expressions generally surface in many practical instances.  
 
We consider the simple case of a horizontally homogeneous leaf canopy consisting of horizontal 
leaves. The geometry factor  and the area scattering phase function is simply 
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Specular reflection from leaf surfaces is ignored in this formulation. In the above  and  are 
the leaf hemispherical reflectance and transmittance. The coefficients for this canopy 
are, , , , ,  and .The differential equations (30) and 
(31) can be rewritten as 
 
  (34a) 

 . (34b) 

 
That is, the changes in the downward flux density are given by the sum of backscattered upward 
flux density (the gain term) and the fraction of downward flux density that is not forward 
scattered (the loss term). Similarly, the changes in the upward flux density are given by the sum 
of backscattered downward flux density (the gain term) and the fraction of upward flux density 
that is not forward scattered (the loss term). The transport equations can be solved with the initial 
values [Eqs. (32) and (33)] to obtain downward and upward radiation flux density in the 
medium. 
 
If the leaves are spherically distributed, the geometry factor  and the area scattering 
phase function is given by 
 

 ,  

 
where , again on the assumption of negligible specular reflection from leaf 
surfaces. Analytical expressions for the coefficients K and solution of the corresponding 
transport equations for downward and upwards fluxes are straightforward, although tedious. 
 
 
9. The Hot-Spot Effect 
 
The hot spot results from considerations of the relative sizes of scatterers in the canopy (leaves, 
branches, twigs, etc.) in relation to the wavelength of the radiation. Shadowing is ubiquitous and 
mutual shadowing of scatterers is predominant. The reflected radiation field tends to peak about 
the retro-illumination direction under such cases - this is termed the hot spot effect in vegetation 
remote sensing (Fig. 5). The shape and magnitude of the hot spot depends on the structure of the 
medium and is especially pronounced at shorter wavelengths where scattering is weak because 
the shadows are darker. The hot spot phenomenon is observational evidence of the limitations of 
theoretical developments that ignore scatterer size and resulting directional correlations in the 
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interaction cross sections. Inclusion of such considerations in the transport equation is feasible 
but complicated [Myneni et al., 1991]. Here we present a simple methodology for inclusion of 
the hot spot phenomenon in the transport equation. A model of the hot spot effect in the limit of 
single scattering can be found in Kuusk [1985]. 
 
The hot spot effect can be included in the transport equation through the use of a modified total 
interaction cross section  (cf. Marshak [1989]), 
 

  (35) 

 
where  is a parameter related to the ratio of vegetation height to characteristic leaf dimension. 
Its values were estimated to be between 1 and 8 from experimental data. The distance D is given 
by  
 

 .  

 
This particular model for the modified total interaction cross section has two desirable features, 
namely, that for ,  vanishes to result in the hot spot, and for large scattering angles, it 
approaches the standard cross section . Note that  is always positive. 
 

 

Figure 5. The hot spot effect of a vegeta-
tion canopy. 

 
Consider the one-dimensional leaf canopy transport problem. Let the total radiation intensity be 
represented as I = I0+I1+Im, that is, as the sum of uncollided, first collision and multiple collision 
intensities. Further, assume for ease of presentation that the incident diffuse skylight Id=0, that is, 
fdir=1. The transport problems for I0 and I1, specified by Eqs. (6) and (11), are modified using  
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downward intensities I0 and I1 given by Eqs. (9a) and (12a) remain unchanged since = G for 
. The upward uncollided and first collided radiation intensities are, however, 

modified because of the modified cross section. They read 
 
     (36a) 

     (36b) 

 
where  
 

  (37) 

 
denotes the probability of photons not experiencing collisions while traveling along   from 
the top of the canopy (L = 0) to depth L2 and along  from L2 and L1 (L2 > L1). This is the 
required bi-directional gap probability for implementing the hot spot effect. 
 
The multiple collision transport problem is similar to the collided intensity transport problem 
specified by Eqs. (7) except that the first collision source Q in Eq. (7a) is replaced by the second 
collision source, 
 
 .  

 
The above formulation allows simulation of the hot spot effect with transport equations. This is 
accomplished in an ad hoc manner by utilizing a modified interaction cross section for the 
uncollided and first collided intensities arising from incident solar radiation and using the 
standard cross section for multiply collided transport problem. The uncollided and collided 
intensities due to incident diffuse skylight can also be solved the standard way utilizing the 
unmodified cross section. 
 
While the above formalism allows inclusion of the hot spot effect, it does result in a system that 
violates the energy conservation principle, because the transport problem for the collided 
intensity is, strictly speaking,  
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This is equivalent to a transport equation for the total intensity I [Eqs. (1)] with an additional 
fictitious internal source, , which results in violation of the energy 
conservation principle. This has implications for the inverse problems where this principle is 
used as a constraint. 
 
 
10. Discrete Ordinates Method in Three Spatial Dimensions 
 
We consider a spatially heterogeneous leaf canopy contained between 0 < z < Zs, 0 < x < , 0 < 
y < Ys, where Xs, Ys, and Zs denote the dimensions of the stand. The canopy is assumed 
homogeneously illuminated on the top and lateral faces by a mono-directional beam source 
(direct solar radiation) of intensity  along  and a diffuse source (skylight) of intensity . 
The ground below the canopy is assumed to reflect and absorb the radiation field non-
homogeneously. The radiation intensity in the governing transport equation, 
 
 ,  

 
is separated into uncollided ( ) and collided ( ) fields. In the above, , and   
and  are the direction cosines with respect to the z, y and x dimensions.  

The uncollided problem is given by the transport equation 
 
  (38a) 

 
and the boundary conditions 
 
     (38b) 
     (38c) 
     (38d) 
     (38e) 
     (38f) 

 ,    (38g) 

 
In the above, is the wavelength-dependent bi-directional reflectance function of the ground 
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     (39b) 
 
where is a point on the top or the lateral faces of the canopy and is a point on the ground 
below the canopy. The quantity  
 

  (40) 

 
denotes the probability of photons not experiencing collisions while traveling along  between 
the points  and . 
 
The collided problem is given by the transport equation 
 
  (41a) 

 
where the distributed source S and first collision source Q are  
 
   

   

 
The boundary conditions for the collided intensity are, 
 
     (41b) 
     (41c) 
     (41d) 
     (41e) 
     (41f) 

 ,    (41g) 

 
Thus, the medium is considered non-re-entrant from the top and lateral faces as far as the 
collided radiation intensity is considered. 
 
The vegetation canopy is divided into cells bounded by …,  (of 
width ), …,  (of width ), and …,  (of width ). The cross 
sections  and are assumed to be piece-wise constant and can take new values only at the 
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cell-boundaries. Within the cell volume , bounded by , 
 and , the cross sections are denoted as  and . 

 
Introducing the first-order finite-difference approximation for the spatial derivatives in the angle-
discretized transport equation for the collided intensity and integrating over the cell volume, 
yields 
 
   

   

   

   

  (42) 

 
where J is the total source (S+Q) and, denotes integration from  to , and so on. 
The subscript n denotes the discrete direction of photon travel. Dividing Eq. (42) by the cell 
volume results in 
 

   

  (43) 

 
In the above, the average radiation intensities over the cell surfaces are 
 
  (44a) 
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  (44c) 

 
Similarly, the averages over the cell volume of the specific intensity and the total source are 
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  (45b) 

 
Equation (43) is exact but not closed. To solve for the cell-center angular intensities  and the 
flows across the three surfaces through which photons can leave the cell volume, three additional 
relations are required (note that the flows across the three surfaces through which photons enter 
the cell are known either from the boundary conditions or from previous calculations). The 
following simple relations can be used for this purpose 
 
  (46a) 
  (46b) 
  (46c) 
 
These relations are simple but can lead to negative intensities, in which case remedies must be 
implemented in the algorithm. The simplest solution is set the offending intensity to zero and 
proceed with the calculation. 
 
In this manner, the angular and spatial dependence of the transport equation is discretized while 
insuring that the condition of positivity, symmetry and balance are satisfied. In each octant, the 
incoming and outgoing flows are identified depending on the sign of the direction cosines in 
order not to violate the principle of directional evaluation, that is, sweeping in the phase-space 
along the direction of photon flow only. Using Eqs. (46), the exiting flows can be eliminated to 
solve for the cell center intensity. A generic equation for the cell center intensity can be written 
as 

  (47) 

 
The three flows in the numerator represent the incoming flows across the three faces of the cell 
and are specific to an octant. The cell center intensity evaluated with Eq. (47) is then used in the 
relations given in Eqs. (46) to evaluate the three outgoing flows. For example, in octant 1, , 

and are positive. The three incoming flows are  and . The 
outgoing flows to be evaluated are  and . This phase-space 
sweeping along the direction of photon travel is embedded in an iteration on the distributed 
source with appropriate convergence criteria built in. Details on the implementation and 
acceleration techniques for the iterative procedure can be found in Myneni et al. [1990]. 
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Problem Sets 
 
• Problem 1. Derive the one-angle form of the vegetation transport problem. 
• Problem 2. Derive the one-angle form of the collided and uncollided transport problems. 
• Problem 3. Derive the analytical solution of the one-angle uncollided transport problem. 
• Problem 4. Solve the two-stream differential equations for upward  and downward  

fluxes in a vegetation canopy of horizontal leaves 

   

   

with the boundary conditions 
   
   
• Problem 5. Show the limiting form of  for the case of a very dense canopy. 
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Chapter 4 Derivations by Shabanov et al. 
 
Problem 1. Derive the one-angle form of the vegetation transport problem. 

 

Solution. The 1D radiative transfer equation for vegetation canopies is  

 

  (1) 

 

The vertical coordinate z can be changed to cumulative leaf area index L by dividing Eq. (1) with 

, the leaf area density distribution ( ), 

 

  (2) 

 

In the following derivations we will assume that the geometry factor and the area scattering 

phase function are independent of the azimuth angle and cumulative leaf area index, namely, 

 

  (3a) 

  (3b) 

 

In this case the 1D transport equation can be reduced to a one angle problem by averaging Eq. 

(2) over azimuth angle, . The derivations for the first and second items on the left hand side 

and the remaining item on the right-hand side of Eq. (2) are shown in Eq. (4a)-(4c) below: 
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  (4c) 

 

In the above we introduced angularly averaged intensity, 

 

   

 

Therefore, the one-angle form of 1D RT equation is 

 

  (5) 

 

The corresponding boundary conditions are  
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 ,    (6b) 
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Problem 2. Derive the one-angle form of the collided and uncollided transport problems. 

 

Solution. The total intensity, I, can be separated into uncollided, , and collided, , 

components, namely,  

 

  (1) 

 

Substituting Eq. (1), into the one angle transport problem (cf. Problem 1, Eqs. (5)-(6)), one can 

split the total problem into the uncollided problem, 

 

  (2a) 

     (2b) 

 ,    (2c) 

 

and the collided problem, 

 

  (3a) 

     (3b) 

 ,    (3c) 

 

 

Problem 3. Derive the analytical solution of the one-angle uncollided transport problem. 

 

Solution. The one-angle transport equation for the uncollided radiation is (cf. Problem 2, Eq. 

(2a))  
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  (1) 

The solution of this equations is 

 

   

 

where coefficient  is determined from boundary conditions (cf. Problem 2, Eq. (2b) for 

 and (2c) for ). 

 

If  (downwelling radiation), 

 

  (2a) 

 

If  (upwelling radiation), 

 

   

   

  (2b) 

 

Note, in the case of dense canopies 

 

   

 

 

)(L,I)G()(L,I
L

00 µ
µ
µ

=µ
¶
¶

,L)G(exp)(A)(L,I0 ÷
ø
ö

ç
è
æ

µ
µ

×µ=µ

)A(µ

0,µ < 0µ >

0µ <

[ ] .L)G(expS)f1()δ(Sf)(L,I ddiroodir
0 ÷

ø
ö

ç
è
æ

µ
µ

×-+µ-µ=µ

0µ >

[ ] ÷
ø
ö

ç
è
æ -

µ¢
µ¢

-+µ-µ¢µ®µ¢rµ¢µ¢=µ ò )LL()G(expS)f1()δ(Sf)(d2)(L,I H

0

1-
ddiroodirs

0

ê
ë

é
÷
ø

ö
ç
è

æ
µ
µ

-×µ®µrµ= H
o

o
osoodir L

)G(
exp)(2Sf

.)LL()G(expL)G(exp)(d2S)f1( HH

0

1-
sddir ÷

ø
ö

ç
è
æ -

µ
µ

×
ú
ú
û

ù
÷
ø
ö

ç
è
æ

µ¢
µ¢

-µ®µ¢rµ¢µ¢-+ ò

.0)(L,I
HL

0 ®µ
¥®



5 

Problem 4. Solve the two-stream differential equations for upward  and downward  fluxes 

in a vegetation canopy of horizontal leaves 

 

   

   

 

with the boundary conditions 

   

   

 

Solution. The two-stream equations in this problem correspond to a homogeneous system of 

linear differential equations, which can be solved using matrix method. The original system can 

be rewritten in a matrix form as follows 

 

  (1a) 

 

where 

 

        (1b) 

 

If matrix  has n=2 independent eigenvectors  and corresponding to eigenvalues  and 

, then the general solution of Eqs. (1a)-(1b) is 

 

  (2) 

 

The eigenvalues of matrix  can be found as follows: 
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  (3a) 

 

The corresponding eigenvectors are 

 

  (3b) 

 

Substituting Eq. (3a)-3(b) into Eq. (2) and taking into account definition in given in Eq. (1b), we 

have 

 

  (4a) 

 

where 

 

    (4b) 

 

Combining Eq. (4a)-(4b) with original boundary conditions, one solves for  and 
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where coefficients, , A, and B are given by Eq. (3a) and (4b). 

 

 

Problem 5. Show the limiting form of  for the case of a very dense canopy. 

 

Solution. Recall (cf. Problem 4), 
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I.  One-angle form of radiative transfer equation

The radiative transfer equation for vegetation canopies is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ''

4

'L
L d,zI,zzu,zI,zGzu,zI

z
ΩΩΩ→ΩΓ

π
=ΩΩ+Ω

∂
∂

µ− ∫ π   .                    (1)

Dividing the above equation through by the leaf area density distribution ( )zu L , we can change
the vertical coordinate from depth z to cumulative leaf area index L, namely,

( ) ( ) ( ) ( ) ( )  d,LI,L1,LI,LG,LI
L

''

4

' ΩΩΩ→ΩΓ
π

=ΩΩ+Ω
∂
∂

µ− ∫ π .                        (2)

Assume the angular distribution of leaves, ( )Ω,LG  and ( )Ω→ΩΓ ',L , are independent of the
azimuth angle ( ',φφ ).  The above equation can be reduced to a one-angle problem by simply
averaging over the azimuth angle φ :

( ) ),L(I
L

d),,L(I
2
1

L
d,LI

L2
1 2

0

2

0
µ

∂

∂
µ−=φµφ

π∂

∂
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 Ω
∂

∂
µ−

π ∫∫
ππ

,

( )[ ]
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2
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2
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2
1

2

0

2

0

2

0
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π
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φµφµφ
π

=φΩΩ
π

∫

∫∫
π

ππ

where ∫
π

φµφ
π

=µ
2

0
d),,L(I

2
1),L(I .

So one-angle form of equation (2) is given by

( ) ( ) ( ) ( ) ''1

1

' d),L(I,L2,LI,LG,LI
L

µµµ→µΓ=µµ+µ
∂
∂

µ− ∫− .                                            (3)

Let assume the angular distribution of leaves, ( )Ω,LG  and ( )Ω→ΩΓ ',L , are independent of the
cumulative leaf area index L.  Equation (3) can be simply reduced to

( ) ( )[ ]

),,L(I),L(d2
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( ) ( ) ( ) ( ) ''1

1

' d),L(I2,LIG,LI
L

µµµ→µΓ=µµ+µ
∂
∂

µ− ∫− ,                                            (4)

with the boundary conditions,

( ) ( ) ( ) 0,II,0LI d00 <µµ+µ−µδ=µ= ,                                                          (5)

( ) ( ) ( ) 0,0,,LLI||d2,LLI ''
H

'
s

'1

0

'
H <µ>µµ=µ→µρµµ=µ= ∫ ,                              (6)

where

0dirL
0

dir
0 Sf)0L(F

||
fI ==
µ

= , ||)0L(FS 0L0 µ== , and,

( ) ( ) ddirL0dird Sf1)0L(F),0L(df1I −==µ=−= , ( ) )0L(F,0LdS L0d =µ== .

II.  Two-stream approximation of radiative transfer model

1. The ( )µ,LI  can be separated into the uncollided and collided components

           ( ) ),L(I),L(I,LI co µ+µ=µ .                                                (7)

The transport equation (4) can be split into equation for the uncollided problem

( ) ( ) ( )  0,LIG,LI
L

oo =µµ+µ
∂
∂

µ− ,                                            (8)

( ) ( ) ( ) 0,Sf1Sf,0LI ddir00dir
o <µ−+µ−µδ=µ= ,                                            (9)

( ) ( ) ( ) 0,0,,LLI||d2,LLI ''
H

o'
s

1

0

''
H

o <µ>µµ=µ→µρµµ=µ= ∫   ,                (10)

and collided problem

( ) ( ) ( ) ( ) ''c'1

1

o'cc d)],L(I),L(I[2,LIG,LI
L

µµ+µµ→µΓ=µµ+µ
∂
∂

µ− ∫−  ,                 (11)

( ) 0,0,0LIc <µ=µ=  ,                                                     (12)

( ) ( ) ( ) 0,0,,LLI||d2,LLI ''
H

c'
s

'1

0

'
H

c <µ>µµ=µ→µρµµ=µ= ∫ .                       (13)

2.  The uncollided problem

Let K= ( ) µµ /G , equation (8) can be written as
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( ) ( ) ,LKI,LI
L

oo µ=µ
∂
∂ ,                                                               (14)

with the boundary conditions (9) and (10). We get the solution

( ) 0),KLexp(]S)f1()(Sf[,LI ddir00dir
o <µ−+µ−µδ=µ  ,                              (15)

( ) ( ) ( )

( )
( ) ddirH0H00dir0s0

H
'

H
'
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s
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0
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H
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s
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∫

∫

( ) 0)),LL(Kexp(]d)/L)(Gexp()(||[ H
''

H

1

0

'''
s

' >µ−µµµµ→µΓµ→µρµ∫ , 0' <µ .         (16)

For the dense canopy, we simplify equation (16) as

( )µ,LIo =0, 0>µ .                                                            (17)

3.  The collided problem

The right hand in the collided problem (11) can be rewritten as

( ) ( ) ''c1

1

'''1

1

o'''c'1

1

o' d),L(I)(2d),L(I2d)],L(I),L(I[2 µµµ→µΓ+µµµ→µΓ=µµ+µµ→µΓ ∫∫∫ −−−
 .

Let consider the dense vegetation for the first component in the right hand
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The collided equation (11) becomes

( ) ( ) ( )

,d),L(I)(2d)/L)(Gexp()(S)f1(2
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0
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∂

∂
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∫∫ −−

            (18)

and with the boundary condition (12) and (13).

4.  Approximate solution for diffuse contribution

Let assume the canopy is vertically homogeneous.  Multiply equation (18) by |µ|/G(µ) and
integrate µ over [-1,0],[0,1], respectively,
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5.  The two-stream approximation of radiative transfer model

Let treat the individual leaves as isotropic scattering elements, and make the following
identification.
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The ω is single leaf albedo, β and β0 are the upscattering parameters for the diffuse and direct
beams, respectively. µ  is the average inverse diffuse optical depth per unit leaf area and is

approximated by ∫ µµµ=µ
1

0
d)(G/ .  The detailed definition of other parameters can be found in

related reference.

Here let ignore the diffuse source Sd, that is, fdir=1, the above equation becomes

)()/L)(Gexp(Sf)L(I)L(I)1()L(I)L(I
L 00000dir

cccc µγµµ↓=βω−↑ωβ−−↑+↑
∂
∂

µ− +

)LKexp(K)L(I)L(I])1(1[)L(I
L 000

ccc βµω↓=βω−↑ωβ−−+↑
∂
∂

µ−⇒ ,                    (19)

)()/L)(Gexp(Sf)L(Ih)L(Ih)L(I)L(I
L 00000dir

cccc µγµµ↓=−↑−↓+↓
∂
∂

µ −−
−

+
−

)LKexp()1(K)L(I])1(1[)L(I
L 000

cc β−µω↓=ωβ−−+↓
∂
∂

µ⇒  .                                  (20)

Equation (19) and (20) are the two-stream approximation radiative transfer model.
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The ESn Quadrature Scheme by Shabanov et al. 
 
 
The accuracy of numerical solution of the transport equation with method of discrete ordinates 

highly depends on selection of quadrature, or method of discretization (cf. Chapter 6). The 

quadratures were developed by Dr. Carlson to optimize discretization of transport equation in 

the angular domain [Bass et al., 1986]. The major advantage of the quadratures is a more 

homogeneous, compared to other quadratures, distribution of nodes over the surface of sphere, 

which allows in some cases to achieve the required accuracy of numerical calculations with less 

number of nodes per octant [Bass et al., 1986]. Below we detail one simple and efficient version, 

called the quadratures. 

 

 

 

Figure 1. The nodes of -quadratures for 

n=8.  

 

 

The construction the quadrature, n=2,4,6…, is illustrated for the first octant , 

. The octant is divided into  parts of equal area,  using 

latitudes, defined as  and longitudes, defined as 

 (Fig. 1). The  layer over  consists of  

parts of equal area . The total area of the  layer is , where  is the layer 

width:  
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  (1) 

 

The coordinates of the boundary  and center,  of the layer are 

 

 ,  

 . (2) 

 

The nodes of the quadratures are 

 

  (3) 

  (4) 

 

Here m is the sector number in the layer. Parameters f and  are tuning parameters, the 

value of which are selected to achieve exact evaluation of the following integrals: 

 

 ,     

 

Namely, 

 

 ,     

 

In the above, ,  and  are Cartesian coordinates of unit vector  
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For the quadratures the following equalities are valid: 

 

 .  

 

The quadratures for the remaining 7 octants are derived using symmetry conditions: , 

, . Note, however, the  quadratures do not posses full symmetry 

with respect to rotation about coordinate axis X-Y-Z by 900, as opposed to the general case of  

quadratures. Finally, in the case of plane-parallel and spherical geometries the 1-D  

quadratures can be used, where weights and nodes over interval [0,1] are specified by Eqs (2) 

and (3) only. 
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