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1. Transport Problem for Vegetation Canopies in One Spatial Dimension

We consider the one-dimensional radiative transfer equation for a leaf canopy confined between
depths z = 0 at the top and z = z,; at the bottom, that is the vertical ordinate is directed
downwards. All directions are measured with respect to —z axis such that p >0 for upward
traveling directions. The canopy is assumed bounded at the bottom by a reflecting and absorbing
ground and illuminated at the top by a mono-directional beam source (direct solar radiation) of
intensity I, along Q. and a diffuse source (skylight) of intensity I;, at wavelength A. The
appropriate transfer equation is

121,29+ 0z O, (2,0) = [0, (2.2 > Q)1 (2,2) M

4n
and the boundary conditions are

Ik (Z = O,S_)) = Ioks(g_) _S_)o) + Id)\ (9)5 M < 09 (2a)
Lz=2,9=1 [dp, @ > Q|u|L(z=2,2). n>0. (2b)
2n~

In the above,c is the wavelength-independent total interaction cross section or the extinction
coefficient, o, is the wavelength-dependent differential scattering cross section and p, is the
wavelength-dependent bi-directional reflectance function of the ground, or understory, beneath



the vegetation canopy. The specific intensity I is thus wavelength dependent. However, for ease
of expression, this dependence will be not explicitly shown for the reminder of this chapter. It is
convenient to express the incident field as (cf. Chapter 4)

1,(@) = 48(Q-0, F, (2=0),

Ko |

[,(Q) =(1-1y)d,(z=0,Q)F, (z=0)

where f;. is the fraction of total incident flux density at the top of the canopy, F,,(z =0), is the
total irradiance of the incident solar radiation at the top of canopy and d, is the anisotropy of the
diffuse source.

If the leaf normal orientation distribution function g; is assumed independent of depth z in the
canopy, the two cross sections in Eq. (1) can be written as (cf. Chapter 3)

0(2.2) = u,(2)G(Q). (3a)
05(2.Q = Q) =u,(2) 1TQ - Q). (3b)

where u, is the leaf area density distribution, G is the geometry factor

G(Q) =5 [0 g, (Q0) ]2 +Q|

2n*

and [ is the area scattering phase function

1r@ > 0)=5- [dQe @)1Q; « Q7@ > Q)
2n*

withy, being the leaf scattering phase function. The vertical coordinate z can be changed to
cumulative leaf area index L by dividing Eq. (1) with u; . The vegetation canopy is now
contained between L = 0 at the top and L = L; at the bottom, where L, is the leaf area index of
the canopy. The transport problem in one spatial dimension for a vegetation canopy illuminated
at the top with unit flux density [F,, (L = 0) =1]and isotropic skylight is thus,

~n LY +GLOILY) =1 [aaT@ > 9)1L.0), (4a)
4n
IL-0.9) - 3@-0)+ U, <o, (4b)
(L=Ly. Q) =1 [dQp, (@ > Q)W [IL=Ly.Q), n>0. (40)
2



2. Separation of Uncollided and Collided Intensities

It is convenient for numerical purposes and also to gain insight on the transport physics to

separate the uncollided radiation field from the collided field, that is,

I(L,Q) =1°(L,) +1°(L,)

)

where 1° is the specific intensity of uncollided photons and I€is the specific intensity of photons
which experienced collisions with elements of the host medium. By introducing Eq. (5) in Eq.

(4), the transport problem can be split into equations for the uncollided intensity,

~u L LY+ LY =0,

PL=0,0)= 4 50-0)+ 1) yco,
| 1, | T
(L =Ly, Q) =1 [d2p,(2->0Q)
2n

u' IO(L:LHag)a u>05

and collided intensity,

- ICLY) + G@I(L.Q) = QL) +SL.O),
I°(L=0,2)=0, u<O0,
CL=Ly.Q) =1 [d0p, @ > Q[ [I9L=Ly.Q), n>0,
2

In the above, Q is the first collision source

QL) =1 [dQT@ - I (L.Q)
4n

and S 1s the distributed source

S(L.Q) = [dQ'T(@ - Q)I°(L.Q).
4n

3. Uncollided Problem
The solution to the uncollided problem [Eq. (6)] is,

IO(L,S_)):IO(LZO,Q) P[Qa(L'O)]a H<O:

(6a)

(6b)

(6¢)

(7a)
(7b)
(7c)

(8a)

(8b)

(9a)



IP(L,Q) =I°(L=Ly,QPQ Ly -L), pn>0 (9b)

where

P[Q, (L2-L1)]= exp{— L Gyw2- Ll)} (9¢)

n

denotes the probability of photons not experiencing collisions while traveling along Q between
depth L1 and L2 (L2>L1). The downward uncollided intensity at the top of the canopy
I°(L =0,Q) in Eq. (9a) is given by the boundary condition, Eq. (6b). The upward intensity at
the ground I°(L =Ly,Q) in Eq. (9b) can be evaluated as [cf. Eq. (6¢)]

PL=LyQ=1 [dQp, Q> QW [(L=0.2)PQ.(Ly-0)], n>0.  (10)
21~

If the ground reflectance is wavelength-independent, then the normalized uncollided radiation
field is also wavelength-independent because the extinction coefficient is wavelength
independent in vegetation canopies.

4. First Collision Problem

The collided problem specified by Eq. (7) is difficult to solve because of the distributed source
term [Eq. (8b)]. Analytical solutions are possible only in the case of simple scattering kernels. As
noted previously, the scattering phase function I' is generally not rotationally-invariant, and this
precludes the use of many standard techniques developed in transport theory. If scattering in the
medium is weak, a single-scattering approximation may suffice. The corresponding transport
problem

~R AL+ GOT(L.Q) = QL.Q), (11a)

I'L=0,Q0)=0, n<o0, (11b)

ML=L,=1 [d2p,@—>Q[u[IL=L,.Q), u>0 (11¢)
21

can be solved for the single-scattered intensity, I', that is, radiation intensity of photons scattered
once, with just the first collision source term,

L
I'(L,Q) = de'Q(L',Q)P[Q,(L—L')], u<o, (12a)
0

1
It



Ly
I'(L,Q) = ﬁ .[dL'Q(L',Q)P[-Q, (L-D)]+I'(L =L, QPEQL,-L), u>0, (I2b)
ML
where I'(L =L,,,Q) is given by Eq. (10).

5. Successive Orders of Scattering Approximation

The specific intensity of photons that experienced two collisions in the medium I? can be solved
with knowledge of first scattered intensity I' as follows,

L
2(L,Q) =ﬁ fau's . @P@.@-Ly. <o, (13a)
g

Ly
P(L,Q) = m [dL's,L,QPIQ,(L-L)]+ P(L =L, QP@L,~L), n>0, (13b)
L

where the distributed source term evaluated with first scattered intensity is

S,(L.Q) =1 [da'T(@ - Q)I'(L.Q). (14)
T
4n
The foregoing may be generalized for n-th order of scattering as

L
I"(L,Q) =ﬁ [dL's, (L. Q)PQ.(L-1)]. u<o0, (15a)
0

Ly
I'(L,Q) = ﬁ JdLs, (L QPIQ.(L-L)]+ (L = L,,QP@L, -L), u>0. (I5b)
L

The total intensity I and sources S can be evaluated as

IL,Q) =1"1L9)+Y 'L, (16)

S(L,Q) = S,(L,Q).. (16b)

n=l

In practice, the summation in Eq. (16) is limited to N-orders of scattering. Figure 1 shows
convergence of
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at the top L=0, and the bottom, L = L,;, of the canopy. One can see that loge follows a straight
line if n exceeds a certain number, indicating that &, ~ cA'. Absolute value of the slope A is the
value of the convergence which depends on the re-collision probability, p, single scattering
albedo, @, and the maximum boundary reflectance, p,(6V). For the black soil problem (cf.
Chapter 4), A = w,p,. Thus the number of iterations needed to achieve a desired accuracy € is
inversely proportional to the rate of convergence, i.e. n = | Ing/ c|/ A, and depends on canopy
structure (p), leaf optics (@, )and boundary reflective properties (p,(dV)). In general, A is an
increasing function of these variables and thus the higher p, @,, and p,(6V) are, the slower
convergence is [Knjazikhin, 1990]. This method has been applied to model vegetation reflection
by Myneni et al. [1987].
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6. Gauss-Seidel Iteration Procedure for the Collided Problem

Consider the collided problem specified by Eq. (7). Discretize the angular variable €2 into a
finite number of directions, Q i» j=1,2, ..., M, with the weights denoted by w i Similarly,
discretize the spatial variable L, that is, divide Ly into N layers, each of thickness AL. We use
the notation L; and Li+1 to denote successive layers. The collided radiation at Lir> and L; in
downward directions can be written as

IC(Li+2,Qj) = IC(Li,Qj)*P(Qj,2AL) + /|| *J"LiLHZ dL’ J(L”,)P[Q;,(Li+2-L)], u<0,(17)

where J = Q + S is the source term, that is, the sum of first collision and distributed sources. If
AL 1s small, then the following approximation is valid



i+2

L,
L [dL i, e)Pio;, (L, - L))
M L,
Lis»
=L [duaw,)pre, - Ly
‘”j‘ L,
_ 1 1
_J(LM,QJ.){G(QJ_J 1—exp ‘uj‘G(Qj)zAL (18)

where the source in the intervening layer is evaluated as

M
J(Li, Q) = %Zwk Qe — Q) IC(L; 0, Q) + QL €2)). (19)
k=1

A similar approximation and equation can be derived for upward directions (u > 0).
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Figure 2. Convergence of multiple scattering
sources (S) at the top of the canopy (a) and at the
bottom of the canopy (b) during the iteration
process. The total Leaf Area Index (LAI) of the
canopy is 5. The canopy is illuminated by
diffuse radiation and by direct solar radiation
along the direction (6=150°, ¢=0°). Direct
radiation accounts for 70% of the total incoming
flux (F4»=0.7). The leaf normal distribution of
the canopy is planophile (mostly horizontal
leaves). At NIR wavelengths, leaf reflectance
(pnir) 1s 0.475, leaf transmittance (znir) is 0.45,
and soil reflectance (psoil) is 0.2.

The resulting system of linear algebraic equations can be solved iteratively for the unknowns
IC(Li,Qj), 1=1,2,..., N,j=1, 2,..., M, using the Gauss-Seidel iteration procedure. The
downward and upward intensities are computed from layer to layer for every iteration step. For
instance, in the n-th iteration, the values of the downward intensities in layer i+2 are computed
from the downward intensities of layer i and i+1 of the same iteration step and from the upward
intensities of layer i+1 of the previous iteration step n-1. The convergence of the source with

iteration count is shown in Fig. 2.

The advantages of this method are that the internal radiation field is readily available without
additional labor and it is possible to account for vertical in-homogeneities in canopy structure
and optics. The main limitation is that the iteration becomes tedious in optically deep canopies at



strongly scattering wavelengths. This method has been used to model vegetation reflectance by
Knyazikhin and Marshak [1991], and Liang and Strahler [1993].

7. Discrete Ordinates Method for the Collided Problem

We now consider numerical solution of the transport problem for the collided intensity in one
spatial dimension using the discrete ordinates method as developed in neutron transport theory.
In this method, photons are restricted to travel in a finite number of discrete directions, usually
the quadrature directions, such that the angular integrals are evaluated with high precision. The
spatial derivatives may be approximated by a finite difference scheme, to result in a set of
equations which can be used to solve for the collided radiation field by iterating on the
distributed source. This method has been used by Shultis and Myneni [1988] to model the
radiation regime in vegetation canopies.

We consider the transport problem for the collided intensity [Eq. (7)]. The angular dependence of
the transport equation is approximated by discretizing the angular variables p and ¢ into a set of
[N x M] discrete directions. The source terms are evaluated by numerical quadrature where
[1;,¢;] are the quadrature ordinates and the set of corresponding weights are [w;,w;]. The
transport equation for the collided intensity [Eq. (7)] can be written as

“Higr B L Q) +G(Q; ) I°(L,Q; ) =Q(L,; ;) +S(L,Q; ) (20)

where the first collision and distributed sources are:

N M
1 ; o
Q(L, QIJ)_EHZ:; mZ:;WmF(Qn,m ->Q HI(LQ, ), (21a)
1 N M
S(L,QLJ-):;HZ:;W n%w LQ,, > )DICLQ, ). (21b)

The vegetation canopy contained between L =0 and L =L is divided into K layers of equal
thickness AL . The spatial derivative in Eq. (20) is approximated as

[I (Lk+1 > Q ) ~1I¢ (Lk > Qi,j )]
aL I (Lk+0 5> Ql _]) AL > (22)

where k+0.5 is the center of the layer between the edges k and k+1. The discretized version of
transport equation thus reads as

1€ Ly Q) - 1Ly 24)]
- k+1 ,JAL ko7 Th] +G(Qi,j)IC(Lk+0.Sagi,j):




=Q(Ly105-€2; )+ S0, (23)

withk=1,2,...,K,1i=1,2,..., Nand j =1, 2,..., M. To reduce the number of unknowns, a
relation between cell-edge and cell-center collided intensities is required. Typically the following
1s used,

[€(Lyy05,Q; ) » (1) [€(Ly, Q; ) +axIC(Ly,;,Q;;), n<O0, (24a)

and if a = 0.5, the cell-center intensity is the arithmetic average of the cell-edge intensities.

Equation (23) can be solved for I¢(L,,,,Q; ) in terms of I°(L,, ;) in view of Egs.(24) as

I¢ (L1 i) = ;5 I¢ (L, €Q255) = by I(Ly05,€25), w<O0, (25)

and for I(L, ,Q. ;) in terms of I¢(L, ,,Q, ;) as

€L, Q) = ¢ I9(L 1, Q) +di; J(Ly05,2;5), 1>0. (26)
In the above,
1+[1-alf,, o7a)
a. . =— , a
" [1-a fu]
b, = £ 27b
47 G@, -t ]’ (70)
1-[1-0a]f,
C =i 27¢
L [1+af;] (27¢)
d. = £ 27d
5T 6@ o]’ (279)
fi;= —Mi , (27e)
J(Lyi05-€215) = QL5562 1) +S(Ly 1 5.€2; ) (271)

These equations are of the standard form except for the angular dependence of the coefficients aij
through di;j because of the geometry factor G. The set of Egs. (25) and (26) can be used to solve
for collided intensity as follows. While sweeping downwards in the phase space, Eq. (25) is used
to step successively down in the mesh. At the bottom, the boundary condition is handled as

N2 M
IC(LKH’Qi,j) = %zwn zwm ps(Qn,m - Qi,j)Iun| IC(LKH’Qn,m) . (28)
n=I m=1



Note that i = (N/2)+1,..., N in the above. Now, Eq. (26) is used to sweep through the grid in
upward directions. The distributed source is upgraded [Eq. (21b)] using the relations between
cell-edge and cell-center intensities [Eqgs. (24)]. This procedure is repeated until the cell-edge
intensities in successive iterations do not differ by more than a preset threshold value — the
convergence of the source with iteration is shown in Fig. 3.
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Figure 3. Convergence of multiple scattering
sources (S) at the top of the canopy (a) and at the
bottom of the canopy (b) during the iteration
process. The total Leaf Area Index (LAI) of the
canopy is 5. The canopy is illu-minated by
diffuse radiation, and by direct solar radia-tion
along the direction (6=150°, ¢=0 °). Direct radia-
tion accounts for 70% of the total incoming flux
(fsir=0.7). The leaf normal distribution of the
canopy is planophile (mostly horizontal leaves).
At NIR wavelengths, leaf reflectance (pnir) is
0.475, leaf trans-mittance (zir) is 0.45, and soil
reflectance (psoit) is 0.2.

Numerical results illustrating how vegetation canopy reflectance (and transmittance) changes
with respect to leaf area index and sun-view inclination angles are shown in Fig. 4.
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Bi-Hemispherical Reflectance (BHR) at red
wavelengths (~ 0.7um) as a function of canopy
green leaf area index (LAI). Ground reflectance
(psoit) for the two different soil types is (a) 0.125
(typical soil reflectance); and (b) 0 (black soil).
The other problem parameters are as in the
standard problem described in the figure caption.

Bi-Hemispherical Reflectance (BHR) at NIR
wavelengths (~0.9um) as a function of canopy
green leaf area index (LAI). Ground reflectance
(psoi) for the two different soil types is: (a) 0.2
(typical soil reflectance); and (b) 0 (black soil).
The other problem parameters are as in the
standard problem described in the figure caption.

Bi-Hemispherical Transmittance (BHT) at red
(~0.7um) and NIR (~0.9um) wavelengths as a
function of canopy green leaf area index (LAI).
The other problem parameters are as in the
standard problem described in the figure caption.
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Figure 4. The illumination conditions for these cases are as follows — the canopy is illuminated by diffuse
solar radiation and direct solar radiation along the direction (0=150°, ¢=0 °). Direct solar radiation
accounts for 70% of the total incoming flux (Fg4i=0.7). The leaf normal distribution is planophile (mostly
horizontal leaves). At NIR wavelengths (a), leaf reflectance (pnir) is 0.475 and leaf transmittance (znir) is
0.45. At red wavelengths (b), (preq) is 0.075, and (zreq) is 0.035.

8. Two-Stream Approximations

In cases where the angular distribution of the radiation field is of less interest, the transport
equation can be angle-integrated to derive the appropriate equations for radiation fluxes. One
example is the case where one is interested in the evaluation of hemispherical reflectances, BHR
or DHR. The resulting differential equations can be solved analytically in some cases. Methods
based on flux approximations have been widely used to model vegetation canopy radiation
regime because of their simplicity and the possibility of analytical solutions, ([Allen and
Richardson, 1968]; [Suits, 1972]; [Dickinson, 1983]; [Verhoef, 1984]; [Sellers, 1985]; amongst
others).

12



Consider the transport problem stated by Eq. (1) and (2). The downward flux density F¢ is
defined as

FIL)= [dQ|p[1L.Q).

21

Integrating Eq. (1) over all downward directions, but with change of vertical coordinate z to
cumulative leaf area index L,

dQ G(Q) I(L,Q
iFd(L)+Fd(L)L“— SOOI

oL Fd(L)
J,. def, do'lr@ -oiLe)
— Fu (L) 2n— 2+ TT
Fu(L)
. def,_do lr@ o))
+F4(L) == ua 29
and simplifying results in a differential equation for the downward flux density
aiLFd(L) + K¢ FI(L) = K¢ Fo (L) + K¢ FO(L). (30)
Similarly, a differential equation for the upwards flux density can be derived
—%F“(L)+K}‘ F'(L) = K! F'(L) + K¢ FU(L). (31)
The initial values for Egs. (30) and (31) are
Fi(L=0)= fdir|Mo| Ly +(1—1f4) J-dg_zd|”d| [4(Qy), (32)
2mn—
FY(L=Ly)=rF4(L=Ly) (33)

where 15 1s the hemispherical reflectance of the ground underneath the canopy. While these initial
value problems seem simple enough, it is not easy to rigorously derive expressions for the
coefficients K in the general case of distributed leaf normals and anisotropic scattering kernels.
However, approximate expressions generally surface in many practical instances.

We consider the simple case of a horizontally homogeneous leaf canopy consisting of horizontal
leaves. The geometry factor G(Q) =| | and the area scattering phase function is simply

13



TLHR, pp'>0,

rQ->9)= , '
{leuu . ' <0.

Specular reflection from leaf surfaces is ignored in this formulation. In the above p, and 1, are
the leaf hemispherical reflectance and transmittance. The coefficients for this canopy
are, K{ =1, K¢ =p;, K¢ =1, ,K}' =1,K4 =1, andKY =p, .The differential equations (30) and
(31) can be rewritten as

LFI(L) =p (L) +(x, ~DF(L), (342)

-L P (L) =p FUD)+ (- DFY (L), (340)

That is, the changes in the downward flux density are given by the sum of backscattered upward
flux density (the gain term) and the fraction of downward flux density that is not forward
scattered (the loss term). Similarly, the changes in the upward flux density are given by the sum
of backscattered downward flux density (the gain term) and the fraction of upward flux density
that is not forward scattered (the loss term). The transport equations can be solved with the initial
values [Egs. (32) and (33)] to obtain downward and upward radiation flux density in the
medium.

If the leaves are spherically distributed, the geometry factor G(Q) = 0.5 and the area scattering
phase function is given by

Q- Q)= %(sinﬁ —Bcosp) + %cosB ,

where 3 =arccos(Q' e ), again on the assumption of negligible specular reflection from leaf
surfaces. Analytical expressions for the coefficients K and solution of the corresponding
transport equations for downward and upwards fluxes are straightforward, although tedious.

9. The Hot-Spot Effect

The hot spot results from considerations of the relative sizes of scatterers in the canopy (leaves,
branches, twigs, etc.) in relation to the wavelength of the radiation. Shadowing is ubiquitous and
mutual shadowing of scatterers is predominant. The reflected radiation field tends to peak about
the retro-illumination direction under such cases - this is termed the hot spot effect in vegetation
remote sensing (Fig. 5). The shape and magnitude of the hot spot depends on the structure of the
medium and is especially pronounced at shorter wavelengths where scattering is weak because
the shadows are darker. The hot spot phenomenon is observational evidence of the limitations of
theoretical developments that ignore scatterer size and resulting directional correlations in the
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interaction cross sections. Inclusion of such considerations in the transport equation is feasible
but complicated [Myneni et al., 1991]. Here we present a simple methodology for inclusion of
the hot spot phenomenon in the transport equation. A model of the hot spot effect in the limit of
single scattering can be found in Kuusk [1985].

The hot spot effect can be included in the transport equation through the use of a modified total
interaction cross section 6 (cf. Marshak [1989]),

E(L 9 Q,) _ o(L,Q2) {l—eXp[—KD(Q.g)]}, (g_}.g_y) <0, 35)
SR o(L,Q), Qe Q) >0,

where « is a parameter related to the ratio of vegetation height to characteristic leaf dimension.

Its values were estimated to be between 1 and 8 from experimental data. The distance D is given
by

DQ.Q)= ﬁ+¢+—2(9‘f—2) .

TR 1T

This particular model for the modified total interaction cross section has two desirable features,
namely, that forQ =—-Q', & vanishes to result in the hot spot, and for large scattering angles, it
approaches the standard cross section 6. Note that G is always positive.

Figure 5. The hot spot effect of a vegeta-
tion canopy.

Consider the one-dimensional leaf canopy transport problem. Let the total radiation intensity be
represented as I = [°+I'+I™ that is, as the sum of uncollided, first collision and multiple collision
intensities. Further, assume for ease of presentation that the incident diffuse skylight [4=0, that is,
fair=1. The transport problems for 1° and I', specified by Egs. (6) and (11), are modified using &
instead of o, or equivalently, instead of G instead of G [cf. Eq. (3a)]. The solutions for the
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downward intensities 1° and I' given by Egs. (9a) and (12a) remain unchanged since G=G for
(QeQ')>0. The upward uncollided and first collided radiation intensities are, however,
modified because of the modified cross section. They read

(LQ) =1L =Ly, QPIQ.Q,, Ly ~L)], 1>0, (362)
Ly
I(LQ)= |—:l| [dUo,@PR.Q,.('~L)], u>0 (36b)
L
where
P[s_z,s_zo,(Lz—Ll)]=exp{—ﬁG@,go)(Lz—Ll)} (37)

denotes the probability of photons not experiencing collisions while traveling along Q_  from
the top of the canopy (L = 0) to depth L2 and along Q from L2 and L1 (L2 > L1). This is the
required bi-directional gap probability for implementing the hot spot effect.

The multiple collision transport problem is similar to the collided intensity transport problem
specified by Eqgs. (7) except that the first collision source Q in Eq. (7a) is replaced by the second
collision source,

QL.Q) =1 [dQT(@ - QI (L.Q).
4

The above formulation allows simulation of the hot spot effect with transport equations. This is
accomplished in an ad hoc manner by utilizing a modified interaction cross section for the
uncollided and first collided intensities arising from incident solar radiation and using the
standard cross section for multiply collided transport problem. The uncollided and collided
intensities due to incident diffuse skylight can also be solved the standard way utilizing the
unmodified cross section.

While the above formalism allows inclusion of the hot spot effect, it does result in a system that
violates the energy conservation principle, because the transport problem for the collided
intensity is, strictly speaking,
- M%IC (L,Q)+ G(L.QIC(L,Q) = Q(L,Q) +S(L.Q) + [G(Q) - G(Q.Q,)]I°(L.Q),
I°L=0,2)=0, pn<0,
NL=LyQ)=1 [dp (@ > Q)W [1°L=L;. Q). p>0.
2~
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This is equivalent to a transport equation for the total intensity I [Eqgs. (1)] with an additional
fictitious internal source, [G(!_))—G((_!,!_)O)]- I€(L,Q), which results in violation of the energy
conservation principle. This has implications for the inverse problems where this principle is
used as a constraint.

10. Discrete Ordinates Method in Three Spatial Dimensions

We consider a spatially heterogeneous leaf canopy contained between 0 <z <Z;, 0 <x <X, 0 <
y < Ys, where Xs, Ys, and Zs denote the dimensions of the stand. The canopy is assumed
homogeneously illuminated on the top and lateral faces by a mono-directional beam source
(direct solar radiation) of intensity I, along €2, and a diffuse source (skylight) of intensity 1.
The ground below the canopy is assumed to reflect and absorb the radiation field non-
homogeneously. The radiation intensity in the governing transport equation,

0 0 0 _ ' ' '
—no 1) +n 51(2,9) +& 51(2,9) +o(r, Q)I(r, Q) = Jnd!l o, (1,Q = Y I(r,2),

is separated into uncollided (1°) and collided (I¢) fields. In the above, r=(X,y,z), and p, 0
and & are the direction cosines with respect to the z, y and x dimensions.

The uncollided problem is given by the transport equation

0 0 0 -
—ng 19 +n51°(£,9)+§51°(£,9) +0o(r, QI(r, Q) =0, (38a)

and the boundary conditions

I(x,y,2=0,Q) = 1,3(Q-Q,)+1,(Q), <0, (38b)
10(x=0,,2,Q) =1,3Q-0Q,)+1,(Q), &>0andp<0, (38¢)
P(x=X,.,,2Q)=1,3Q-Q,)+1,(Q), &<0andp <0, (38d)
(x,y=022)=1,8Q-Q,)+1,(Q). 1>0andp <0, (38¢)
Py =Y,202)=1,8Q-2,)+1,(Q). n<0andu<0, (380)

P(y.z=Z,Q =1 [dQp (. y.Q > QWP yz=Z,.Q), n>0. (38g
2n

In the above, p,is the wavelength-dependent bi-directional reflectance function of the ground
below the canopy. The solution to the uncollided problem is

19(r,Q) = 1°(rg, Q) P[Q,

r-ry ]a l’l<05 (393)
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1(r, Q) = I°(ry, Q) P[Q,

r—ry

I, n>0 (39b)

where r;is a point on the top or the lateral faces of the canopy and r;is a point on the ground
below the canopy. The quantity

P[Q,

[r,—1,|
r,-1f]= eXP[— [dso(r, + sS_l,f_l)] (40)
0

denotes the probability of photons not experiencing collisions while traveling along Q between
the points r, and r,.

The collided problem is given by the transport equation

I I+ LI + o Q) 1°EQ) =S Q1 Q). (412)

where the distributed source S and first collision source Q are

S(r,Q) = [dQ6,(5Q' > Q)I¢(r,Q),
4n
Qr,Q) = [dQ'o,(nQ — Q)1°(r, Q).

4n

The boundary conditions for the collided intensity are,

I€(x,y,2=0,Q)=0, p<O0, (41b)
I€(x=0,y,2,Q)=0, £>0, (41¢)
IC(x=X,,y,2Q)=0, £<0, (41d)
I°(x,y=0,2,Q)=0, n>0, (41e)
I°(x,y=Y,,z,Q)=0, n<0, (411)

C(yz=2,Q) =1 [d0p (y.Q > Q|0 [1°(y.2=2,Q), n>0. (@l
2m-
Thus, the medium is considered non-re-entrant from the top and lateral faces as far as the
collided radiation intensity is considered.

The vegetation canopy is divided into cells bounded by X;,, X35,..., Xgup (0f
widthAX ), ¥, Y325---5 Yy (of widthAy), and z,,, z5,,..., Z,;, (of width Az). The cross
sections 6 and o are assumed to be piece-wise constant and can take new values only at the
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cell-boundaries. ~ Within  the cell volumeV;,, bounded by (X, <X<Xp),

(Yiyn <Y<Yiip) and (z,_,, <z<z,,,), the cross sections are denoted as ¢,, and o, .

Introducing the first-order finite-difference approximation for the spatial derivatives in the angle-
discretized transport equation for the collided intensity and integrating over the cell volume,
yields

_“ndeIdX [In (X, y’Zi+1/2) _In (X’ YsZiap )]
ik
My jdzj dx [I, (X, ¥ 412,2) — 1, (X, ¥ 21252)]
ik
+&, [dz[dy [T, K125 ¥:2) = (X2, Y,2)]
i

+ O pijk I dzj dyI dx I, (x,y,2)
ik
= I dzj dy_[ dxJ, (x,y,2), (42)
i)k
where J is the total source (S+Q) and, I dx denotes integration from X,_;, to X,,;,, and so on.

The subscript n denotes the discrete direction of photon travel. Dividing Eq. (42) by the cell
volume Vj;, results in

Ky M
Az [Injk (Zinp)— Injk (zioip)]+ A_y [Tk (Yj+1/2 )~ Lok (ijl/z )]
§

+ A—; [Inij (Xya1) — Inij (X)) + GnijkInijk =J nijk * (43)

In the above, the average radiation intensities over the cell surfaces are

Lk (Zis10) = ﬁAy_[dXJ.dy L, (X, Y,Zi112)s (442)
ko
Lk (inl/z) = ﬁjdxjdz L, (x, Yis2s z), (44b)
koo
1
Im’j Xya1p) = FAY'!‘dZ'j[ dy I, (X105 ¥52)- (44¢)

Similarly, the averages over the cell volume of the specific intensity and the total source are

_ |
Tnjc = AxAyAz { dX{ y Ji‘dz b0 o
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J. = dx|dy |dzJ (x,y,z 45b
nijk AXAyAZ'[ ! y.[ ( y ) ( )

Equation (43) is exact but not closed. To solve for the cell-center angular intensities I, and the
flows across the three surfaces through which photons can leave the cell volume, three additional
relations are required (note that the flows across the three surfaces through which photons enter
the cell are known either from the boundary conditions or from previous calculations). The
following simple relations can be used for this purpose

L # O'S[Injk (Ziap) + L (zi0)) (46a)
Inijk ~ 0.5[1 (YJ+1/2 )+ L (Vo)) (46b)
L = 0501 (X)) + Ly (X010 (46¢)

These relations are simple but can lead to negative intensities, in which case remedies must be
implemented in the algorithm. The simplest solution is set the offending intensity to zero and
proceed with the calculation.

In this manner, the angular and spatial dependence of the transport equation is discretized while
insuring that the condition of positivity, symmetry and balance are satisfied. In each octant, the
incoming and outgoing flows are identified depending on the sign of the direction cosines in
order not to violate the principle of directional evaluation, that is, sweeping in the phase-space
along the direction of photon flow only. Using Egs. (46), the exiting flows can be eliminated to
solve for the cell center intensity. A generic equation for the cell center intensity can be written
as

2 2 2
Jm_]k + Au Injk (Z1+1/2 ) + Any Inlk (yjil/Z) + A&)? Inij (inl/z)
I 47)
nijk —
o 42 My 26,

nije Az Ay Ax

The three flows in the numerator represent the incoming flows across the three faces of the cell
and are specific to an octant. The cell center intensity evaluated with Eq. (47) is then used in the
relations given in Egs. (46) to evaluate the three outgoing flows. For example, in octant 1, p,,
n,and &, are positive. The three incoming flows are I, (z; ), L (¥iop)and 1;(Xy ). The
outgoing flows to be evaluated are I, (Zi1), L (Yinp)and I;(Xy,). This phase-space
sweeping along the direction of photon travel is embedded in an iteration on the distributed
source with appropriate convergence criteria built in. Details on the implementation and
acceleration techniques for the iterative procedure can be found in Myneni et al. [1990].

nij
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Problem Sets

e Problem 1. Derive the one-angle form of the vegetation transport problem.

e Problem 2. Derive the one-angle form of the collided and uncollided transport problems.

e Problem 3. Derive the analytical solution of the one-angle uncollided transport problem.

e Problem 4. Solve the two-stream differential equations for upward F* and downward Fd¢
fluxes in a vegetation canopy of horizontal leaves

LFI(L)=p P (L) + (5, - DF(L),

LR (L) =p FU(L)+ (5, ~DFH (L),

with the boundary conditions
F4(L=0)=F¢,
Fy(L=Ly)=r,F¢(L=Ly).

e Problem 5. Show the limiting form of F" for the case of a very dense canopy.
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Chapter 4 Derivations by Shabanov et al.

Problem 1. Derive the one-angle form of the vegetation transport problem.

Solution. The 1D radiative transfer equation for vegetation canopies is

12 16.0)+u, ()G Q) 16,9) = "2 [0 1.9 > 12,2, (M

The vertical coordinate z can be changed to cumulative leaf area index L by dividing Eq. (1) with

u, (z), the leaf area density distribution (L =u, (z)-z),

_“aL I(L,Q) +GL,Q)I(L,Q) =1 de’ I(L,Q - QILQ). )

In the following derivations we will assume that the geometry factor and the area scattering

phase function are independent of the azimuth angle and cumulative leaf area index, namely,

G(L,) = G(w), (3a)

%F(L,Q’ 5 Q)= %rm' " (3b)

In this case the 1D transport equation can be reduced to a one angle problem by averaging Eq.

(2) over azimuth angle, ¢ . The derivations for the first and second items on the left hand side

and the remaining item on the right-hand side of Eq. (2) are shown in Eq. (4a)-(4c) below:

2n
1 T -2 2
> {dcp[ 21|l j dOI(L,p, @) =—p (Lop), (42)

2n

5 [dele.ouL.0)]- j do G(L, @, ) I(L,11,0) = G (L. ), (4b)
0



2n

1 ' ' /
o [do| JdaT(L.Q > Q)I(L,Q)

0 4n

2n 1 2n
= o [do [dw [do'T(L.p' > 1¢' > @) AL.1' @)
0 -1 0

1
=2n [dw T (W' - w) I(L.p). (4c)

-1

In the above we introduced angularly averaged intensity,
1 2n
I(L,w)== |do I(L .
(L= ! 0 (L., 9)
Therefore, the one-angle form of 1D RT equation is

1
~i L) + GO L) = 2 [ i T = ) [Lap). (3)
-1

The corresponding boundary conditions are

L =0,10)=1,3(n—p,) + (W), 1<O, (62)

0
I(L =Ly, w) =2[dulw|p, (W > WIL = Lyy,p), p>0, (6b)
-1

where

£y FE (L=0
IO(M):| L F (L=0)=fgS,, S, EM’
l’l0| |M0|

Id (“‘) :(1 - fdir )do (L = 07 M) Fin (L = O) = (1 _fdir )Sd7 Sd = do (L = 09 u) Fin (L = 0)



Problem 2. Derive the one-angle form of the collided and uncollided transport problems.

Solution. The total intensity, I, can be separated into uncollided, I°, and collided, I€,

components, namely,

I(L,p) =1°(L,p) +1€(L, ). (1)

Substituting Eq. (1), into the one angle transport problem (cf. Problem 1, Egs. (5)-(6)), one can
split the total problem into the uncollided problem,

L) + G I (L) =, (2a)
IO(L = Oa“) = fdirsoé(u_uo)+(1_fdir)sda n< 07 (2b)
0
1L =Ly, w) = 2[ dw]p (' > WI°(L = Lyp,u), p>0. (20)
-1
and the collided problem,
a 1
~p A (L) + G T (L) = 2 [dp T — w10 (Lop) + 16 (L)) (32)
-1
IC(L=0,u)=0, n<O, (3b)
0
IE(L =Ly, =2[ dufu]p, (W > WICL =Ly, 1), n>0. (30)
-1

Problem 3. Derive the analytical solution of the one-angle uncollided transport problem.

Solution. The one-angle transport equation for the uncollided radiation is (cf. Problem 2, Eq.

(2a))



0 _Gw
a_LIO(LaH)_ m IO(Lau) (1)

The solution of this equations is
(L) =A()- exp( Gy j

where coefficient A(p) is determined from boundary conditions (cf. Problem 2, Eq. (2b) for
pu <0, and (2¢) for u>0).

If un <0 (downwelling radiation),

IO(L’H):[du WO =)+ (1- fdir)sd]'eXp(%Lj.

(2a)

If u>0 (upwelling radiation),

IO

[fdirso5(u'—Mo)+(1_fdir)sd]eXP( Elu)(L LH))

[du o2|Ho|Ps (e = 1) eXp( ﬁ“‘))LHj

(o]

(— GI(:,* ) LHH : exp(%(L - LH)j. (2b)

0
+(1—1f4)Sq
-1

Note, in the case of dense canopies

IO(L,M)|LH_)OO — 0.



Problem 4. Solve the two-stream differential equations for upward F* and downward F9 fluxes

in a vegetation canopy of horizontal leaves
O F(L) = p, F'(L) +(r, ~DF(L
s D =pF (L) +(x ~DF(L),
-L P =p L)+ (x, - DF'(L),
with the boundary conditions

F/(L=0)=F,

F'(L=L,)=rF'(L=L,).

Solution. The two-stream equations in this problem correspond to a homogeneous system of
linear differential equations, which can be solved using matrix method. The original system can

be rewritten in a matrix form as follows

y'(L)=Ay(L), (1a)
where
(L)_[Fd(m} L= aFm A{m—l) L } (1b)
T ey 27 aiLFu(L)’ Lo —(-D)

If matrix A has n=2 independent eigenvectors v, and v,corresponding to eigenvalues A, and

A, , then the general solution of Egs. (1a)-(1b) is

y(L) =C, exp(A,L)v, (L) + C, exp(X,L)v, (L). (2)

The eigenvalues of matrix A can be found as follows:



det(A - r) =0

= (1, - 1-M)(, —1+1)+p; =0

= A, =th=1(1- rL)2 - pi. (3a)

The corresponding eigenvectors are

-1
Yl,z(L) = |:(TL —lik)/plj . (3b)

Substituting Eq. (3a2)-3(b) into Eq. (2) and taking into account definition in given in Eq. (1b), we

have
Fd(L) = —C, exp(AL) — C, exp(—AL), (4a)
Fv(L) =C,Aexp(AL) + C,Bexp(—AL),
where
A:rL—l—K’ B:TL_IJF}L. (4b)
PL PL

Combining Eq. (4a)-(4b) with original boundary conditions, one solves for C,; and

C, .Therefore, the solution of the two-stream model is

d _ d (A+r)exp(-AL) — (B + 1) exp(—A[2L,; — L])
F) =k (A +1)—(B+r1)exp(-2AL,) ’

— (A +1)Bexp(—AL) + (B + r)A exp(—A[2L,, — L])

F'(L)=F (A +1,)— (B+1)exp(—2AL;) ’




where coefficients, A, A, and B are given by Eq. (3a) and (4b).

Problem 5. Show the limiting form of F" for the case of a very dense canopy.

Solution. Recall (cf. Problem 4),

—(A +r1g)Bexp(-AL) + (B +rg)Aexp(=A[2L;; —L])

Fu(L) = F§ (A+r1,)—(B+r1,)exp(—2ALy) ’

where

_1- 1
L Pt et o W L WY P

PL PL

Therefore, in the case of dense canopies

. l-t1—yd-1,)+p’
F (L)‘LH% > E L2 7P exp(-LyJ(1—1,)* +p2).

P



Chapter 04: Derivations

Derivation 1: Solve the following differential equations for the upward (F*) and downward
(F?) fluxes for a canopy with horizontal leaves,

0

D RL) =y FUD) + (1) FUD), (1a)
I B = pp )+ (1) FU(L) (1)

Derivation 2: Show the explit form for F™* in the limiting case of a very dense canopy.

Derivation 3: Derive expressions for the coefficients K, K¢, K¢, K, K% and K¥ in the
case of a canopy with uniform leaf normal orientation (G = 0.5) and bi-Lambertian leaf
scattering only [I" given by Eq. (2.22)]. For definitions of these coefficients see § I'V.8.

Derivation 4: For the uniform leaf normal and rotationally invariant scattering kernel prob-
lem in Derivation 3, for which you derived the coefficients, solve the differential equations for
the upward (F*) and downward (F?) fluxes. Again, derive the expression for the upward
(F*) flux in the limiting case of a very dense canopy.

Derivation 5: Derive the two-stream transport equations given in Sellers (Canopy re-
flectance, photosynthesis and transpiration. Int. J. Remote Sens., 6:1335-1372, 1985) starting
with the radiative transfer equation.



Chapter 04: Derivation 1 Answer:

For a horizontally homogeneous leaf canopy consisting of horizontal leaves, we have the
simplifed differential radiative transfer equations for the upward (F*) and downward (F'¢)

fluxes
2 FUL) = ppF*(L) + (rp, — 1)FU(L) (1)
2 F(L) = p FU(L) + (r, — 1) F(L)

with the boundary conditions

FYL =0)=F¢

(2)
FY(L = Ly) = r,F4(L = Ly)

Our goal is to get the analytical solution of Eq. (1) using four parameters of pr, 7, s,
and F¢.
We solve first equation of Eqgs.(1) for Fy(L) and substitute into the second equation to

obtain the differential equation

dFUL) 5y
The differential equaiton
’FY(L) 5o,

can be adjoined by analogy. The constant « in Eqs. (3) and (4) is specified by the relation
a=[1-m)*—p]" (5)

General solution of Eqns. (3) and (4) are
FYUL) = Cre® + Coe™ (6)

and

Fu(L) — 03€aL 4 C4€—aL (7)

1



respectively, where C4, Cy, C3 and Cj are constants, which are to be specified by using

boundary conditions

Fi(L = 0) = F?
FY(L=0)=Fv
OFL) ([, = 0) = pp F + (71, — 1) ¢ (8)

WAL = 0) = —pLF — (71, — 1) Fy
{ Fu(L LH)—’I“S (L:LH)
Plugging Egs. (6) and (7) into (8) we obtain

(

Cy+ Cy = Fy
Cy+Cy=F,
a(Cy — Cy) = pF¥ + (1, — 1) Fd (9)

a(Cs = Cy) = —pp Iy — (1, = 1) Fy'
CgeaLH + C4€7aLH = Ts(CleaLH + CgefaLH)

\

The solutions of these equations are

. o) — pLFg_(12—aTL—a)Fg
C, = (I*TL+042)§§*PLF6‘
Oy = (I*TLJrOéZ)j‘é‘*PLFOd (10)
O, = PLFod—(12—aTL—C¥)F§
L Fy' = Zie a?:jﬂif Fd
where a; = ry, — %, ag =1y — A, by =1~ T by =1- rsA'y and A" = 17;704 = 1—¢LL+a'

Then we get our final solutions of Eqns. (1) as following

Fd(L) _ FdalefaLiazefa@LHfL)

al— a2e—2aLH

FU(L) delefa(ZLH L) bze_"‘L

a1 —ase —2alpg

(11)




Chapter 04: Derivation 2 Answer:

For upward (F") flux of a canopy with horizontal leaves, we have

ble_a(2LH_L) _ b2€—aL

F“(L) = F{¢

a; — age~2lu
In the case of a very dense canopy, Ly — 00. So we have

—b —alL
Fyr) = R0

a|; — 0
Note that a; = r, — % and by, =1 —r,A". So we have

b —alL
(L) = Fg%
(reA’ — 1)eok

1

TS_A/

= FjAe ! (3)

:F(;i




Chapter 04: Derivations
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Derivation 3:

Derive expressions for the coefficients K{, K¢, K¢, K{*,K¥, K% in the case of a
canopy with uniform leaf normal orientation (G = 0.5) and bi_Lambertian leaf
scattering only.

Starting from general radiative transfer equation:

The normalized scattering phase function (1/4m)P for diffuse scattering only is

4(Q — Q
P Q) = %
Rewriting equation (1) as
3[ L, s 1 2 , , , o l l
D) | GI(Lp,0) = 2 [ 1 /0 Py, &5 1, )G ()L, i, &) di' d. - (2)

In the case of uniformly distributed leaf normals, G(f2) is 0.5, and the area scattering
phase function and hence P(u, ¢; u', ¢') is rotationally invariant:

rQ —0) = L;—L(sinﬁ — Bcos B) + % cos 3, (3)
T
where 8 = arccos(2' e Q) = arccos{sin #sin §' cos(¢ — ¢') + cosf cos'}.

For phase function as a function only of the scatttering angle, Chandrasekhar (1960)
has shown that the azimuthal integral satifies
27

p(u,u')Z% ; P(p,¢;1', ¢") do,

With two point quadrature approximation

/_1 P, W) I(L, p') dp' = p(p, p1) I(Ly pa) + p(p, —pa ) I (L, —pia),

and the additional definition of azimuthal averaged intensity I(L, u)

27
(L) = /0 (L, ) do,

we can get a simpler expression for the hemispherical integration of the rightside term of
the RT equation (2),
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/ {p(p, pa) (L, p) + p(pt, —pa ) I(Ly —pu1) } dp

0 0
= (m) [ pn) i+ T =) [ pl =) du.
-1 —1
To further simplify the above term, define the quantity 5;

1 0
Bi = 5/ P, 1) dp!
-1

1 ! ! !
= 1= [ pluin)du',
0

and make the following quadrature-like approximation for downwelling flux F¢(L) and up-
welling flux F*(L)

Fi(L) = / (L, ) dp
~  mI(L, =),
F(L) = / (L) d
~ pul(L, ),

indicating the following approximation
[(Laul) = Fu(L)/lu’lv

I(L,—p) =~ FYL) /.
So we get simplified expression,

0

A L) [ o) At T(E=p) [ ol =) = S (=B PHL)+ 5P (D)).

Now, applying the operator [, _ df to equation (2),

/ (=) I(L, )} d+2 /0 I(E, p) dp = g/“l du/jn d¢/11/02ﬂP(u,¢;u’,¢’)I(L,u’,¢’)du’daﬁ’



OF4(L) 1
oL 201 2,u
Similarily, for the upwelling flux, applying the operator f27r+ dQ) to equation (2), we can get

/ ()L, 1)} dt » /01 I(L, p)dp = ;’—;/01 du/:ﬁ d¢/_11/027rP(u,¢;u',¢')I(L,u’,¢')du’dfﬁ’,

FYL) = (1—-B)FYL) + B F*(L)}. (4)

1

—MZL(L) + Q—IIHF“(L) = %{I(L,m)/o p(p, pa) dp+ I(L, —pa) /Olp(u, —p) dpt,
_% +2_11“Fu(L) _ ;J—lfl{ﬁle(L)Jr(l—ﬁl)F“}. (5)
Rearranging equation (4) and (5) as
P = - - ) + 2 ), ©)
D) By g wn o) ®

With Gaussian choice, p; = %

The only unknown parameter is 31, so the key then is to derive 8; with normalized
scattering phase function infered from equation (3) for uniformly distributed leaf normal,

1 2m
Plup) = oo | Pludip', o) do

4 2m

= 270,05 ), {g—;(sinﬂ—ﬂcosﬁ)+%cosﬂ}d¢
4 2w
= WL/ {———}COSﬁd¢+ / sin 3 do
' 4 [

= m{———} {SmOSlnB cos(¢ — ¢)+cos9c050}dq§+ / sin 3 d¢
= % ?——}cosﬁcosﬁ +—/ sin 3 dg,

L

B 2#1 27
= ﬂwL{___ 3772/ du/ sin 3 d¢.

Since the last term is relatively small, the following approximation could be made

o ﬂwL{_ 3



Derivation 4:

For the uniform leaf normal and rotationally invariant scattering kernel prob-
lem in Derivation 3, for which you derived the coefficients, solve the differential
equations for the upward (F*) and downward (F?) fluxes. Again, derive the
expression for the upward (F*) flux in the limiting case of a very dense canopy.

Solving the linear differential-integral equations (6) and (7) with constant coefficients:

OF4(L
W — oy FiL) + CoF (L), ®)
oL
OF*(L
() _ C3FY(L) + C4F*(L), (9)
OL
where
Ch —ﬁ[l —wr(1=pB1)] =—Cu,
Co = (10)
03 = _u;l;ﬁl = _CQ,
Ci=5-[1—wr(l-B)],
and By = - {% — 4L} = .
The boundary conditions are
FYL=0)=F"F"(L=Lg)=aFYL=Lg). (11)

where a is surface albedo and FO is the incident solar flux on the upper boundary of canopy.
From characterization matrix equation

Ci—X Cs —0
Cs Co— X | 7
we get
/\1,2 = i\/0203—0104
1
= 12—\/[1 —wr (=B = (wh)?
M1
= +L\/1—w\/1—w+2wﬂl.
2w

So, F4(L) and F*(L) have following gerneral forms of solution,

Fd(L) = AleiAL + Ble)‘L,
FU(L) = Agei)‘L + BZEAL,

where A = 5-v1 —wyT—w +2wp1.

Plugging equations (12) to equations (8) and (9), the A;, By, A2 and By are con-
strained by
(A+C1)Ar = —Ca A,

(A= C1)A1 = CaBs. (13)



Combined with two boundary conditions :

FU(L=0)= A, + B, = F°,

FY(L = Ly) = Ase ™ # 4 BoerMtt = oFy(L = Ly) = a{Aje ™ M# + Biern) (14)
Solving A, By, A2 and B from the above four equations (13) and (14), we get
— A\—C1-C:
A= A—C1— Cza)Jr()\Jré’l+é§a)ezp(72)\LH)F
A, = (A+C1)a+Cs jal
2 (A=C Cga)+()\+01+02a)emp( 2XLg) ’ (15)
B1 — C1+Cs FO
(A+01+C2a)+()\ C— Cza)ezp(Z)\LH) )
B ( )\701)&702

0
>\+Cl+02a)+(>\—01—Cga)eacp(QALH) F

A, Cq and Cs all have ﬁ, and A, By, As, B> are all linear combinations of these three

parameters, so i can be dropped simultaneously when calculating downwelling F¢(L) and

upwelling flux F*(L).

The final solutions of F¢(L) and F*(L) are expression (12) with the above resolved
coefficients.In the case of black soil (o = 0),the four coefficients in the solutions can be
simplified as

A—Cy
Ay (A=C1)+(M+Cy ) p(— 2)\LH)F
As = 5=
B, = o0 ﬁof R }7 (16)
(A+C1)+(A=C1)exp(2ALn)
By = —C FO.
(A+C1)+(A—C1)exp(2AL )
In the limiting case of a very dense canopy (Lyg — 00),
A =
(A+C )a+C2 10
Ay = 5= Ci Gl (17)
B; =0,
By = 0.
From equation (11), the upwelling flux is
FY(L) = Aye ™™ 4 By,
— A26—AL’
_ ()\+Cl)a+CQF0 —AL
()\ Cl CQCM)
_ (V1 —wrvVT —wr +2wrfi)a +wrf FOo—VI=wry/T=wrt2wLfiL/(2u1)

VI—wiVl—wp +2w B+ [1 —wp(1 = B1)] —wrfra



I. One-angle form of radiative transfer equation

The radiative transfer equation for vegetation canopies is

- M%I(z,9)+ uL(Z)G(Z,Q)I(Z,Q) = HLT(Z)LRF(Z,Q' — Q)(Z,Q')dg . 1)

Dividing the above equation through by the leaf area density distribution u (Z) , we can change
the vertical coordinate from depth z to cumulative leaf area index L, namely,

8 1 , N
- 1(L.0)+ GL.)(L.Q)- ELHF(L,Q - oJL.o ke . @

Assume the angular distribution of leaves, G(L,Q) and F(L,Q' — Q), are independent of the
azimuth angle ($,¢'). The above equation can be reduced to a one-angle problem by simply

averaging over the azimuth angle ¢ :

1

250

n d
-1 )]d)-—ua—Lz—f Lgd = - - ILp).

1 2 1 2«
oL e -5 [ OL.owiL.omd

1 n
=G(L,w— [ IL,p,w)dp =G(L,wI(L,u),
27 Jo

2%5 [[mr(LQ ~e)l.o b ]1¢-—f dof dn [ TL. —pu = WIL.0 1 )dp
- dof T =L 00 = [dgf T = IL)

=20 duT(L,w — wIL,u),

where I(L,u) = 2—175 jf "L, 0,w)do .

So one-angle form of equation (2) is given by

- uaiLI(L,u)+ G(L,uw)I(L,u)=2 LF(L,M' — Ly )dy 3)

Let assume the angular distribution of leaves, G(L,Q) and F(L,Q' — Q) , are independent of the
cumulative leaf area index L. Equation (3) can be simply reduced to



0 , o
- ua—LI(L,u)+ G(u)I(L,u)= ZLF(M — WLy )dy
with the boundary conditions,

I(L = 0,0) = T8 — o )+ Ty () <0,
L=L,.u= 2];du' W o, (W =L =L Ju> 0 <0,

where

£,
I, = I dir IFL(L=O) =f;S,, S, =F (L=0)/Iu,l,and,

0

I, =(-f, )d,(L=0,wF (L=0)=(1-f,)S,,S, =d,(L=0,u)F, (L=0).

II. Two-stream approximation of radiative transfer model

1. The I(L, u) can be separated into the uncollided and collided components

I(L.p) =1 (L) +I° (L) .

The transport equation (4) can be split into equation for the uncollided problem

5
(S 1°(L,p) =
no 1 (L) + G (L) =0

IO(L = O’M)= fdirsoé(u_ Mo)"‘(l_fdir )Sd,u <0,

I°(L=Ly.u)= 2]:du' Wb =L =Ly s on <0

and collided problem

- MaiLIC (La M)"' G(M)IC (L,M) = Zﬁlr(l,{' — M):IO (L’M') +1I¢ (L,M')]du,' ,

I(L=0,u)=0,u<0 ,
I(L=L,.u)= 2]:du' W o, (W = e [L =Ly > 0, <0.

2. The uncollided problem

Let K:G(u)/ u , equation (8) can be written as

“

&)
(6)

(7

®)

(€))
(10)

(11)

(12)
(13)



0
2 1(L.u) = KI° (1 14

with the boundary conditions (9) and (10). We get the solution

1°(L,u) = [, S, —uy)+ (1=, )S,lexp(KL),u <0 , (15)

1°(L,u) = 2]:du' w1, = (L = Ly Jexp(R(L-L,))

= 2]: d 1o, (0 = i Syd( =) + (1= £, )8y 1exp(G( Ly, /1 )exp(K(L ~ Ly, )
=21, 1p, (o = WS exp(G(ug )Ly, /g )exp(K(L - L))+ 2(1 -, )S,
[jil W, = )o@ = W exp(Gu Ly /w )du Texp(K(L Ly ),u> 0,0 <0.  (16)

For the dense canopy, we simplify equation (16) as
1°(L,u)=0, u>0. (17)
3. The collided problem

The right hand in the collided problem (11) can be rewritten as

2! Tl = w1 ) + @Ol = 2 T = i L )du' + 2 P’ = 1 (L )d
Let consider the dense vegetation for the first component in the right hand

LF(M' — W (L )dy =LF(M' > W Syd( — 1) + (1~ )8, Jexp(Gu L/ )dp

=, SeT(, — wWexp(G(u,)L/p,) +(1-f,, )SdLF(u' — wexp(G(u)L/uw)du .

The collided equation (11) becomes

-2 (L) + G (L) = 26, 8,0, — wexp(Gla, )L /1)
oL (1)

+2(1-f,)S [ T(w — wexp(G(u)L/w)dw + 2 T(w — wI*(L,u)du
-1 -1

and with the boundary condition (12) and (13).
4. Approximate solution for diffuse contribution

Let assume the canopy is vertically homogeneous. Multiply equation (18) by Iul/G(w) and
integrate u over [-1,0],[0,1], respectively,



[l _
jj[G( o )I(Luldu = [ul* (L =T (L) 1

fl[G()'“' (L ldu = I Lwdu =)

G(w
dul 0 =__i10 L
j;[ S (L,u)ldu wo T

Wi, 3
fl[ b G oL “(L.u )ldu ML

_ f{ (I;(”)I (L,u)}du,

where w =
j: ul® (L, u)dw

j;[(l}(iul) 2ﬂ IF(M' - M)I"(Lu')du'ldu

lwl \ , : :
- f[i2f Tl = w8800~ wg) + (1= £,,)5, Texp(K Lydy [d

G(w)
= 2f . S, exp(G(uy)L/uy) [ T(u, =
exp(G(u,) u)ﬂ (n M)G() w
#2(1=£,,)8, [ exp(G()L/wMdu [ T —w)m u

=3, So exp(G(ug )L/ wg)yg (wy) + (1=1,)S,v3 (L),
Wh o (o) =2[ T'(u, PN
ere Y, (Uo) j;(u M)G()M

HLy=2 G(u)L/u T —w——d
Ya (L) j:exr)( (w) u)duﬂ (w M)G()M



! MI ' o ' ,
[ [@ 2f Tl = ) (L )a ]au
= _j(;‘l [G_T:) 2LF(M' — ledirsoﬁ(pv' —u,)+(1="f, )Sd]GXp(K'L)dM' du

= 26, S, exp(G o)L/ 1, . T,y — —u)m "

#2(1= £,)8, [ exp(GOL/W )W [T — -w—— G( du

=1, S, exp(G(uy)L/u)yo (o) + A =14 )S,vq (L)

where v (1) = 2 (1, = —w%du, and,

L)y=2 Gu)L/ I(u —
Y. (D)= feer( (w) u)duf m M)G()

f[M 2f T M)F(Lu')du'ldu

G(w

=2 G( ; qu T = WL+ [ T = I (L )du ]

-2( Lt S W T = I (Lo dp +2[ T = I (L~ )du
—h'I°(L) § +h I°(L) |,

where

2f G LT = W (L )y

,and,
f ul® (L, w)du

2fG( ) ufF(—u' — wWI°(L,-u )du

j:uf (L,wdw



o lul | . g
—2( T'lu — Luw)du |d
f_l[G(M) L (u M)I(M)ulu
— 0 _M '% C ' ' 0 '% C ' '
—2f_lmdu[jif(u W (Lo )dw +2f T = wI* (Low)dy |
-2f Lt o W TG = = (Lo )du + 2 T(=p' = I (Lo )dy |
—h'IS(L) f +h (L) |,

where

au = -l (L )du

G( ) ,and,

f_ll wl I°(L,wdu

2fG( ) uj:F(—u' —>—M)I°(L,—u')du"

[l (L wdu

So equation (19) can be rewritten as

—E%LF(L) P +I°(L) 1= hII°(L) T +h I°(L) |

+5 .S, exp(G(wy)L/uy)yg(we) + A=f,)S,v: (L),

- a C C +7C -7C

Ma—LI (L) § +I°(L) |=hII(L) T +h7I°(L) |

+55,:.S0 exp(G(uo )L/ 1)y, (o) + (L=1£4)Syy 4 (L).

5. The two-stream approximation of radiative transfer model

Let treat the individual leaves as isotropic scattering elements, and make the following
identification.

ht =h” =(1-po,
h” =h =po,

Sovs () = 0BG (1) /1ty = wUK By, Ky = G(y) /1y,
Sovo (o) = wu(l =BGy )/ 1y = 0uK (1= By).



The w is single leaf albedo, B and 3, are the upscattering parameters for the diffuse and direct
beams, respectively. g_k is the average inverse diffuse optical depth per unit leaf area and is

approximated by p = /G(n)dw . The detailed definition of other parameters can be found in
Pp y u=ju/oudu |y

related reference.

Here let ignore the diffuse source Sy, that is, f4i,=1, the above equation becomes

ST L) AT (1= Bl (L) T -BoT* (L) 4= £, S, exp(Guy L/, ()
= —l_*aiLF(L) 141 = (1= B)oIl* (L) 1 -BoT* (L) |= wpK B, exp(K, L), (19)
RAET () 4 +19(L) | =D T (L) 1 =hIE (L) b= £, S, exp(Olag L/ s ()

= EaiLF(L) | +[1-(1-B)o]I*(L) | = wuK,(1-B,)exp(K,L) . (20)

Equation (19) and (20) are the two-stream approximation radiative transfer model.
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The ESn Quadrature Scheme by Shabanov et al.

The accuracy of numerical solution of the transport equation with method of discrete ordinates
highly depends on selection of quadrature, or method of discretization (cf. Chapter 6). The

S, quadratures were developed by Dr. Carlson to optimize discretization of transport equation in
the angular domain [Bass et al., 1986]. The major advantage of the S quadratures is a more

homogeneous, compared to other quadratures, distribution of nodes over the surface of sphere,
which allows in some cases to achieve the required accuracy of numerical calculations with less
number of nodes per octant [Bass et al., 1986]. Below we detail one simple and efficient version,

called the ES_ quadratures.

Figure 1. The nodes of ES_ -quadratures for

n=s.

The construction the ES, quadrature, n=2,4,6..., is illustrated for the first octant ¢ €[0,7/2],
ne[0,1]. The octant is divided into n(n+2)/8 parts of equal area, w, =4n/[n(n+2)] using
latitudes,  defined as L=H,,, £=0,1,...,n/2 and  longitudes, defined as
O=Q, nap m=0,1,...,n/2—-7+1 (Fig. 1). The ¢—th layer over u consists of n/2—/+1
parts of equal area w,. The total area of the ¢—th layer is mw,/2, where w, is the layer

width:



4in-20-2
W, = [n(n—_|_2))] =W = Heyn- (1)

The coordinates of the boundaryp,,,,, and center, {1, of the layer are

[n—27+2][n-2(¢—£1)]

W =1- n(n+2) s
o h-2042)?
ho=l= ()

The nodes of the quadratures are

Ro=H o+, 6:0,1,...,%, (3)
S 2
0 =220 A v laoay], m=1,2.. 00+ (4)
tm T2 n-20+42 "2 P ) '

Here m is the sector number in the ¢ —th layer. Parameters f and A are tuning parameters, the

value of which are selected to achieve exact evaluation of the following integrals:
2n 1
[do[u'du, k=0,1,2.
0 -1

Namely,

n/2 n/2n/2-0

n/2
zwﬁuﬁ :%a WoEim :%ZW(/‘MZ'
=1 =1

/=] m=

In the above, y,, &, and 1, are Cartesian coordinates of unit vector Q(6, @)

“/f = COs e(” éé,m = Vl _Mé COS(p(,m’ n(f,m = Vl_ l"’[ Sin (‘p({,m'



For the ES  quadratures the following equalities are valid:
WOZai,m = Woznim = WOZ uj,m - % '
£,m /,m m

The quadratures for the remaining 7 octants are derived using symmetry conditions: p — —pu,
¢®——¢, t/2—@—>n/2+¢. Note, however, the ES, quadratures do not posses full symmetry
with respect to rotation about coordinate axis X-Y-Z by 90°, as opposed to the general case of S,
quadratures. Finally, in the case of plane-parallel and spherical geometries the 1-D ES,

quadratures can be used, where weights and nodes over interval [0,1] are specified by Eqgs (2)

and (3) only.
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