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Abstract: As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf
Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6
(C6) has been distributed since August 2015. This collection is evaluated in this two-part series with
the goal of assessing product accuracy, uncertainty and consistency with the previous version. In
this first paper, we compare C6 (MOD15A2H) with Collection 5 (C5) to check for consistency and
discuss the scale effects associated with changing spatial resolution between the two collections and
benefits from improvements to algorithm inputs. Compared with C5, C6 benefits from two improved
inputs: (1) L2G-lite surface reflectance at 500 m resolution in place of reflectance at 1 km resolution;
and (2) new multi-year land-cover product at 500 m resolution in place of the 1 km static land-cover
product. Global and seasonal comparison between C5 and Cé6 indicates good continuity and
consistency for all biome types. Moreover, inter-annual LAI anomalies at the regional scale from C5
and C6 agree well. The proportion of main radiative transfer algorithm retrievals in C6 increased
slightly in most biome types, notably including a 17% improvement in evergreen broadleaf forests.
With same biome input, the mean RMSE of LAI and FPAR between C5 and C6 at global scale are
0.29 and 0.091, respectively, but biome type disagreement worsens the consistency (LAI: 0.39, FPAR:
0.102). By quantifying the impact of input changes, we find that the improvements of both land-cover
and reflectance products improve LAI/FPAR products. Moreover, we find that spatial scale effects
due to a resolution change from 1 km to 500 m do not cause any significant differences.

Keywords: Leaf Area Index (LAI); Fraction of Photo-synthetically Active Radiation (FPAR); MODIS;
Collection 6; evaluation; consistency

1. Introduction

The launch of NASA’s Terra and Aqua satellites began a new era in remote sensing of Earth’s
atmosphere, oceans and land surface. On board these platforms, the MODerate resolution Imaging
Spectroradiometer (MODIS) instrument successfully started production and distribution of a variety of
products of Earth system parameters [1]. Among these parameters, Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation (0.4-0.7 um) absorbed by vegetation (FPAR) play an important
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role in most global models of climate, hydrology, biogeochemistry, and ecosystem productivity by
characterizing vegetation canopy structure and energy absorption capacity [2,3].

To take full advantage of MODIS’s multi-angular and multi-spectral observation ability, a physical
algorithm based on Radiative Transfer (RT) was developed for generating MODIS LAI/FPAR products
(MOD15) [4,5]. The MODIS science team aims to provide users with better products by updating
product cohorts that are called collections. Since the launch of Terra in December 1999, MODIS land
data records have been reprocessed four times. Having stage one validation status, Collection 3
(C3) is the first release of MODIS LAI/FPAR products and covered the period of November 2000 to
December 2002. The product accuracy of this version has been estimated using ground measurements
obtained from some field campaigns [6]. Collection 4 (C4) covered the period from February 2000 to
December 2006 and benefited from the improved inputs and updated look-up-tables (LUTs) [7]. Aimed
at reducing the impact of environmental conditions and temporal compositing period, Collection 5
(C5) combined Terra- and Aqua-MODIS sensor data and generated four LAI/FPAR products from
February 2000 to present [8]. In addition, C5 used a static 8-biome land-cover map instead of previous
6-biome one. Algorithm refinements were carried out over all biomes but with a major focus on woody
vegetation for which a new stochastic RT model was utilized [9].

Collection 6 (C6) represents the latest version and contains the entire time series from
February 2000 to the present. This version has been released and distributed free of charge to
the public since August 2015 and is expected to benefit from improvements to upstream inputs
of the LAI/FPAR algorithm. Before being released, LAI and FPAR products should go through three
procedures—algorithm development, product analysis, and validation [8]. Since C6 inherits the same
algorithm from C5, we focus on the last two steps and document them in this two-paper series. Product
analysis includes assessment of algorithm performance, version consistency and product uncertainty
caused by errors in input data [6-8,10]. A check of the consistency between different versions of
products is a good way to make sure that there are no theoretical or artificial errors (bugs) in computing
code. Moreover, products users should be aware of the improvements in a new version. In this paper,
we compare C6 with C5 to check for consistency in terms of spatial distribution, seasonal variations,
inter-annual anomalies and spatial coverage. The impact on algorithm retrievals due to changes in
inputs is also investigated. Product validation includes direct validation using field measurements,
indirect validation using other related parameters such as climatic variables, and inter-comparison
with other existing products [11-14]. This part is described in the second paper.

This paper is organized as follows. Section 2 briefly reviews the MODIS LAI/FPAR algorithm
and documents improvements seen in C6. Section 3 details the consistency between C6 and C5 along
four fronts. Section 4 demonstrates the benefits from improved land-cover and reflectance products
that are inputs to the algorithm. A simulation experiment about scale effects is also presented in this
section. Concluding remarks are presented in Section 5.

2. MODIS LAI/FPAR Products

2.1. Algorithm Theoretical Description

The operational MODIS LAI/FPAR algorithm consists of a main algorithm that is based on the
three-dimensional radiative transfer (3D RT) equation. By describing the photon transfer process, this
algorithm links surface spectral bi-directional reflectance factors (BRFs) to both structural and spectral
parameters of the vegetation canopy and soil [15,16]. Given atmosphere-corrected BRFs and their
uncertainties, the algorithm finds candidates of LAI and FPAR by comparing observed and modeled
BRFs that are stored in biome type specific LUTs. All canopy/soil patterns for which observed and
modeled BRFs differ within biome-specified thresholds of uncertainties (e.g., 30% and 15% for red and
near-infrared bands, respectively, for forest biomes) are considered candidate solutions and the mean
values of LAI and FPAR from these solutions are reported as outputs. The law of energy conservation
and the theory of spectral invariance are two important features of this main algorithm. The detailed
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theoretical basis of the algorithm and implementation aspects are documented in references [1,5,17].
The main algorithm may fail to localize a solution if uncertainties of input BRFs are larger than
threshold values or due to deficiencies of the RT model that result in incorrect simulated BRFs. In such
case, a back-up empirical method based on relations between the Normalized Difference Vegetation
Index (NDVI) and LAI/FPAR [4,18] is utilized to output LAI/FPAR with relatively poor quality—this
is called the backup algorithm.

2.2. Algorithm Inputs

Theoretically, the MODIS algorithm can make use of multiple atmosphere-corrected BRFs and
their uncertainties. Currently, the MODIS algorithm only utilizes daily surface reflectance at red
(648 nm) and near-infrared (858 nm) bands because of high uncertainties in other bands [19]. The
uncertainty of input BRFs from the calibration and atmospheric correction process will propagate into
the products even if the science algorithm is sound. As critical information, reflectance uncertainties as
well as model uncertainties are incorporated to set the threshold of difference between observed and
modeled BRFs [5]. Another important input is the biome map, in which global vegetation is classified
into eight biomes with different canopy and soil patterns (Figure S1). The eight biomes are: (B1) grasses
and cereal crops; (B2) shrubs; (B3) broadleaf crops; (B4) savannas; (B5) evergreen broadleaf forests; (B6)
deciduous broadleaf forests; (B7) evergreen needleleaf forests and (B8) deciduous needleleaf forests.
With simplifying assumptions and standard constants (e.g., vegetation and soil optical properties)
which are assumed to vary with biome and soil types only, using a biome map as prior-knowledge can
reduce the number of unknowns of the “ill-posed” inverse problem [1,20].

2.3. Temporal Compositing and Quality Control

Figure 1 shows the flow of MODIS LAI/FPAR C6 production. The algorithm ingests MODIS daily
red and near-infrared (NIR) BRFs and a biome map to generate daily LAI/FPAR retrievals without
pre-quality-control on inputs. A temporal compositing approach is used to select the best retrievals
and generate 8-day or 4-day products from daily retrievals. The compositing algorithm is a two-step
scheme: (1) the retrievals are selected according to algorithm path: main algorithm retrievals have
the highest priority, and if none are available, back-up algorithm retrievals are selected; (2) the LAI
value is selected based on maximum FPAR value [8]. Compositing reduces the impact of day-to-day
artificial variations in surface reflectance that are due to cloud and residual atmospheric effects and it
is effective in removing contaminated retrievals. As well as LAI/FPAR values, MODIS products store
the corresponding quality control (QC) data layers and the users are advised to consult the quality
flags when using these products [7]. The key indicator of the quality of retrievals is the algorithm path,
which distinguishes the following five categories: (1) main algorithm without saturation; (2) main
algorithm with saturation; (3) back-up algorithm due to bad geometry; (4) back-up algorithm due to
other problems; and (5) not produced. In addition to algorithm path, the QC layer provides information
about presence of clouds, aerosols, and snow, inherited from input reflectance products.



Remote Sens. 2016, 8, 359 40f 16

Daily LAI/FPAR Algorithm

8 or 4 MODIS Daily MODIS Multi-Year
Land Surface BRFs Land Cover (Biome Map)
(MXD09GA) (MCDLCHKM)

Main RT
Algorithm?

RTLUTs Back-Up LUTs
(Optimal Quality) (Sub-optimal Quality)

e —— 8 or 4 Daily LAI/FPAR Retrievals R ——
77777777777777777777777777777777 (MXD15A1H) T

Success

2-Step Compositing Algorithm

Step1: N=0
Select N Main
RT Retrievals

Selected Back-Up
Retrievals

Selected
Candidates

1 Step2: Select the retrieval with the Maximum FPAR ‘
I

! ' i I

N>0

8-Day Terra 8-Day Aqua
LAI/FPAR LAI/FPAR
(MODI5A2H) (MYD15A2H)

4-Day Combined
LAI/FPAR
(MCD15A3H)

8-Day Combined
LAI/FPAR
(MCD15A2H)

Figure 1. Algorithm flow of MODIS LAI/FPAR Collection 6 production. Four different global products
with different compositing (8-day or 4-day) periods and sensor platform combinations (Terra and/or
Aqua) are available.

2.4. Improvements of Collection 6

MODIS LAI/FPAR C6 uses the same science algorithm and LUTs as C5. However, this new
version can still benefit from improved inputs as discussed below. As the only two inputs, the
intermediate data at 1 km resolution of surface reflectances and biome map are replaced by their
500 m version, thus enabling the C6 LAI/FPAR products to have half-kilometer spatial resolution. The
significance of this upgrade is two-fold. First, downstream land surface models can benefit from this
finer resolution LAI/FPAR products. Second, the LAI/FPAR algorithm uses biome type classification
to reduce unknown parameters and each pixel is assumed to belong to only one biome type with
some pre-set structural and optical parameters. This assumption is more likely to be satisfied at
finer resolutions because of the higher heterogeneity in coarse pixels [21]. Moreover, the smaller
pixel ground coverage can reduce the scale gap between remote sensing pixels and ground point
measurements, which will reduce uncertainties and human labor during the process of products
validation using ground measurements [6,22].

The new version of publicly available MODIS daily surface reflectances (MOD09GA C6) is used
to replace the previous intermediate dataset (MODAGAGG) which was generated by aggregating
four MODO09GA C5 pixels [23]. This makes it possible for the community to test their own LAI/FPAR
algorithms and compare with MODIS products. Improved aerosol retrieval and correction algorithm
are employed in the generation of MOD09GA C6 dataset. Moreover, BRDF database is used to better
constrain the thresholds used in the snow /cloud detection algorithm. MODIS land-cover product C5
(as input for LAI/FPAR C6) is also reported to be significantly improved through algorithm refinement
and input data revise. Comparison of C5 land-cover with C4 (as input for LAI/FPAR C5) showed
substantial differences. Cross-validation accuracy assessment indicates an overall accuracy of 75%
in C5 land-cover product [24]. In addition, C6 LAI/FPAR replaced the static land-cover input with
new multi-year land-cover maps generated with three years of C5 land-cover data. Compared with
the previous static land-cover, this new biome type source has a three-year temporal resolution and
thus can capture the dynamic changes of biome types. According to previous experience [1,7], C6
LAI/FPAR products can benefit from the improved upstream reflectance and land-cover products [25].
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3. Consistency between C5 and C6 LAI/FPAR Products

Good consistency between different product versions creates confidence in LAI/FPAR data sets
in both product producers and users, while poor consistency such as large differences diverts attention
away from both of them. In this paper, we study the consistency between C5 and C6 along four fronts
as discussed below. Note that, except for Sections 3.1 and 3.4 we only focus on the retrievals from the
main algorithm.

3.1. Global Distribution

The spatial distribution of LAI and FPAR over the globe during two 8-day composite periods
in January and July in the year 2003 are shown in Figure 2a,d and Figure S2. For both LAI and
FPAR, there is no visually distinguishable difference between C5 and the new C6. The products from
two collections exhibit similar spatial patterns. FPAR shows a similar distribution pattern to LAIL
which can be explained by radiative transfer theory [1]. The LAI patterns closely coincide with the
biome type distribution (Figure S1)—high LAI over forests and low LAI over herbaceous vegetation.
As expected, tropical evergreen forests (e.g., amazon rain forests) have high LAI values (up to 7);
somewhat less green are the middle latitude broadleaf forests (e.g., eastern United States). Except
bare land and deserts, regions covered by grasses and shrubs generally have low LAI values. The
globe looks greener in boreal summer time because of ample illumination conditions over the northern
hemisphere, which has greater land surface.
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Figure 2. Global distribution of LAI/FPAR from January (17-24 January) and July (12-19 July) of 2003.
Panel (a-d) are color-coded maps of MODIS C6 and C5 LAIL Figure S2 shows FPAR. Area-equal
sinusoidal projection is used here; panels (e,f) show the latitudinal distribution of global LAI and FPAR,
respectively. The latitude interval is 0.1°. In these plots, MODIS C6 and C5 use red and blue lines,
respectively. Solid and dashed lines depict January and July, respectively.

Figure 2e,f compare the zonal mean LAI and FPAR values from C5 and C6 in January and July. For
both LAI and FPAR, the profiles derived from C6 and C5 products match well at most latitude bands
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and show consistent latitudinal distribution of LAI and FPAR values. There are two obvious peaks in
the tropics (23°N-23°S) which can be explained by the dense vegetation coverage in the three tropical
rainforests (South America, Africa and Southeast Asia). As illumination is ample, there is no obvious
seasonal difference in these latitude bands. In the higher latitudes, the northern hemisphere shows
clear seasonal difference than the southern hemisphere. This is because the dominant biome types
in the southern hemisphere are savannas, shrubs and grasses that have smaller seasonal variations
than the forests that dominate the northern hemisphere [26] (see Figure S1). We also notice that C5
underestimates C6 in the bands 50°N-55°N and 63°N-70°N. This is caused by changes in input biome
type and will be further discussed in Section 4.1.

3.2. Spatial Coverage of Main Algorithm

As a key indicator of the quality of retrievals, the algorithm path of each pixel is stored in the
LAI/FPAR products. By comparing the retrieval rate of different algorithm paths at global scale, we
can evaluate the overall quality of the products from C5 and Cé6. The main algorithm outputs retrievals
at high precision in the case of low LAI and at moderate precision when LAI is high and surface
reflectance has low sensitivity to LAL In the case of main algorithm failure, low-precision retrievals
are obtained from the empirical back-up algorithm. Figure 3a compares the biome-specific yearly and
globally averaged retrieval rate of different algorithm paths. C6 and C5 show similar patterns for all
biomes except biome 5 (evergreen broadleaf forests) and biome 7 (evergreen needleleaf forest). C6
shows 17% and 7% higher main algorithm retrieval rates than C5 for biomes 5 and 7, respectively. This
improvement is due to an updated biome map, which will be discussed in Section 4.1. As the main
algorithm has better performance than the backup algorithm, the success rate of the main algorithm
(Retrieval Index, RI) can be seen as a quality indicator. The RI of all biome types except biomes 5 and
7 is higher than 90%. Biomes 1 to 4 have the highest RI (more than 95%). The retrieval rate of main
algorithm without saturation is lowest in the case of evergreen broadleaf forests because of reflectance
saturation in dense canopies. This means the reflectances do not contain sufficient information to
localize a LAI value. The other three forest types also show a large proportion of retrievals under
saturation. Because evergreen needleleaf forests are located in the high latitude regions where the
solar zenith angles are low in winter season, biome 7 shows obvious backup algorithm retrievals that
are due to poor sun-sensor geometry. Nevertheless, C6 shows slightly higher RI than C5.
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Figure 3. Comparison of global retrieval rate of different algorithm paths (retrieval index) for eight
biome types. (a) Yearly and globally averaged (in 2003) retrieval rate of different algorithm paths.
Possible algorithm paths are (i) Main (Main algorithm without saturation); (ii) Main-S (Main algorithm
with saturation); (iii) BackUp-G (Backup algorithm because of bad sun-sensor geometry); (iv) BackUp-O
(Backup algorithm because of other reasons) and (v) Not Retrieved (not executed because BRF data are
not available). For each biome, the left bar is for C5 and right one is for C6; (b) Annual variation of
main algorithm spatial coverage in 2003 (upper plot is for C5 and lower plot is for C6). This statistic is
done after quality control using cloud and aerosol flags.



Remote Sens. 2016, 8, 359 7 of 16

The seasonal variations of Rl in C5 and C6 for all eight biomes in 2003 shown in Figure 3b indicate
that the annual cycles of C6 and C5 are quite consistent. As in Figure 3a, the RI of biome 5 has been
improved from C5 to C6. A strong seasonality is seen in needleleaf forests (biomes 7 and 8) with RI
varying from about 90% during the boreal summer to less than 30% during the boreal winter. The RI
of deciduous needleleaf forests can even be zero in the boreal winter season. The decrease of Rl in
the boreal winter results from unsuitable illumination conditions, extreme solar zenith angles, and
snow or cloud contamination. The fact that almost all needleleaf forests appear only in the northern
hemisphere makes the seasonal variation more obvious.

3.3. Seasonal LAI/FPAR Variations

Seasonal variations in C5 and C6 LAI/FPAR retrievals are shown in Figure 4 and Figure S3.
These lines show globally averaged biome-specific LAI/FPAR values as a function of Julian day
in 2003. This analysis only uses retrievals derived by the main algorithm. We note that C5 and
C6 products show good consistency of LAI/FPAR seasonal variations. All biome types except for
evergreen broadleaf forests and savannas show seasonality at different levels. The retrievals over
deciduous forests demonstrate expected obvious seasonality in both LAI and FPAR. LAI of deciduous
broadleaf forests (deciduous needleleaf forests) drops from around 5 (3) in boreal summer to around
0.5 (<0.5) in boreal winter. With ample illumination in tropics and subtropics, evergreen broadleaf
forests have LAI values of about 5 through the year with negligible seasonal variations. By checking
the seasonal variations of the algorithm path (see Figure S4), we find that the missing part in case
of deciduous needleleaf forests is due to unavailable retrievals from main algorithm because of bad
sun-sensor geometry (solar zenith angle larger than 52.5° or view zenith angle larger than 67.5°).
Seasonal variations of algorithm path can also explain these erratic artifacts in LAI/FPAR variations
(e.g., the sudden drop at DOY 10 to 20 and the peak around DOY 200 for deciduous needleleaf forests
in Figure 4a).

Global LAI MODIS C5 vs. C6 (Main only) (Biome Type: B1 =2 B3 B4 B5 B6 BT Bf) Global FPAR MODIS C5 vs. C6 (Main only) (Biome Type: B1 =2 B3 B4 55 B6 BT BS)
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O AN W E OO~

o
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|
[ %
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o
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MODIS C6 FPAR
§ e e
~ o
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oCaN LA OO~
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50 100 150 200 250 300 365 (d) 50 100 150 200 250 300 365
Day of Year (2003) Day of Year (2003)

—_
(2]
~

Figure 4. Seasonal variations of globally averaged MODIS (a) LAI C5; (b) FPAR C5; (c) LAI C6;
and (d) FPAR C6 in 2003. Left panels show seasonal LAI trajectories over four different forest types
(evergreen broadleaf forest (B5), deciduous broadleaf forest (B6), evergreen needle leaf forest (B7)
and deciduous needle leaf forest (B8)). FPAR panels (right) show other four non-forest biome types
(grasses/cereal crops (B1), shrubs (B2), broadleaf crops (B3) and savannas (B4)). LAI of non-forest
biome types and FPAR of forest types are shown in Figure S3 for the sake of clarity.

3.4. Inter-Annual LAI Anomalies

In this section, we check the consistency of 13 years (2002-2014) of LAI anomalies from C5 and
C6. The importance of this work is two-fold. First, an LAI anomaly represents the difference between
LAI values of a specific year and the multi-year mean LAI value, from which we can deduce potential
annual variations in carbon, water and energy balances. Second, using independent geographic
variables to explain the annual variation of LAl is a good way to validate the products indirectly.
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The spatial and temporal averages of LAI anomalies from C5 and C6 during the period from
2002 to 2014 (2000 and 2001 were discarded because of missing data) are compared in Figure 5.
Panel (a) shows the anomaly of annual averaged LAl in two precipitation-limited regions (Eastern
Australia and Northeastern Brazil). For both regions, C5 and C6 LAI anomalies match very well. The
correlation coefficients between C5 and C6 in the two regions are 0.972 and 0.975, respectively. The
LAI in Northeastern Brazil shows a large decrease in 2012, which can be explained by the severe
drought in Northeast Brazil in that year [27]. Panel (b) shows anomaly of growing season (May to
September) averaged LAI in two temperature-limited regions (North America and Eurasia). Also
for these two regions, C5 and C6 show similar LAI annual variations. We note that the slopes of C6
are slightly higher than C5 in all these plots. This is because the improved sensor calibration of C6
solved the Terra MODIS sensor degradation issue in C5 [28]. A more detailed explanation for these
LAI inter-annual variations will be presented in the second part of this two-paper series.
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Figure 5. Comparison of anomalies of spatially averaged LAI values from C5 (blue solid lines) and C6
(red dashed lines). Panel (a) shows the anomaly of annual averaged LAI in two precipitation-limited
regions (Eastern Australia, 20°S—-40°S, 145°E-155°E and Northeastern Brazil, 3°5-12°S, 35°W—45°W).
Panel (b) shows the anomaly of growing season (May to September) averaged LAI in two
temperature-limited high latitude (>60°N) regions (North America and Eurasia). Correlation coefficient
(r) between the two MODIS collections and its significance (p) are given in each panel. Moreover,
slopes are provided as indicators of the trend of inter-annual LAL

4. Benefits from Improved Input Data

From the above comparisons, we see there are no significant discrepancies between C5 and
C6 products in terms of global distribution, seasonal variations, inter-annual LAI anomalies and
spatial coverage of high quality retrievals. However, pixel-to-pixel comparison still shows differences
between C5 and C6 at the regional scale. As C6 inherits the algorithm and LUTs from C5 directly, the
improvements in input data and change of spatial resolution are the only two sources of LAI/FPAR
differences between the two versions. Here we investigate and quantify the impact of input changes
and the scale effect of the algorithm.

4.1. Benefits from Biome Map Improvement

As an important prior knowledge about the land surface, a biome map is utilized to reduce
the number of unknowns in the inverse problem of LAI/FPAR estimation. In the operational
algorithm, structurally and spectrally different parameterization in 3D RT is used for each biome type.
Specification of biome type for each pixel is thus critically important to choose the correct RT dependent
LUT for LAI/FPAR estimation. Errors in biome classification can therefore propagate into LAI/FPAR
retrievals. Numerical experiments suggest that a mismatch in biome specific LUT will result in either



Remote Sens. 2016, 8, 359 9of 16

alow RI and/or incorrect LAI/FPAR values [1]. Conversely, increased biome accuracy will help to
reduce uncertainty in LAI/FPAR products. As LAI/FPAR production requires prior knowledge of
surface biome type, the biome input is generally based on an earlier version of land-cover product.
This means C4 and C5 land-cover products have been used for C5 and C6 LAI/FPAR production,
respectively. Biome input (based on C5 MODIS land-cover product) for C6 LAI/FPAR production is
reported to be substantially improved relative to the biome input (based on C4 MODIS land-cover
product) for C5 LAI/FPAR production in terms of accuracy, stability across years due to refinements
in the land-cover classification algorithm and ancillary datasets used [24].

Figure 6a shows the proportion of pixels derived from each biome type in the C6 biome map
for each class in the C5 biome type at the global scale during 2001 to 2003. Some biomes in C6, for
example biomes 1, 2, 4, 5 and 8, are relatively consistent with C5 (more than 70% consistency). Around
30% of the pixels labeled as biome 6 and biome 7 in C5 change to other biome types in C6. Compared
to other biomes, biome 3 has the largest proportion of differently classified biome cases. Around 50%
of biome 3 pixels in C5 are classified into biome 1 in C6. We note that most of the differently classified
pixels change to their neighboring biome types, which have similar canopy structural characteristics in
RT realization. For instance, most of the “changed” pixels in biome 3 (broadleaf crops) are labeled as
biome 1 (grass and cereal crop) in C6. This result agrees with [24].
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Figure 6. Impact of input biome map change on LAI/FPAR retrievals. (a) Areal proportion of globally
changed biome type from static C5 to dynamic C6 input biome type (2001-2003). Proportions of C6
biomes are calculated with respect to total area in each C5 biome type; (b) Histogram of the difference
between C5 and C6 LAI values in tile h11v04 (red box in Figure 7) during 12th—19th July of 2003. The
blue line and green line show consistent biome type and changing biome type, respectively; (c) Spatial
distribution of relative difference in LAI between C5 and C6 in tile h11v04 (dominant biome type is
broadleaf crops); (d) Spatial distribution of BTDF (biome type disagreement factor) showing how many
500 m C6 pixels in a 1 km C5 pixel are different with the C5 biome type.
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Figure 7. Spatial distribution of relative difference (100 x (C6-C5)/C5) for pixels with the same biome
types (BTDF = 0) during 12th July to 19th July in 2003. (a) LAL (b) FPAR. Detailed results from two tiles
(h11v04 and h22v03) shown as red and blue boxes are given in Figure 8.
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Figure 8. Density scatter plots of land surface reflectance (BRFs) of red band (left panels) and NIR band
(right panels) of the two example tiles (a) and (b) are for tile h11v04; (c) and (d) are for h22v03 shown
as boxes in Figure 7.

To quantify the impact of biome type change on LAI retrievals, we investigate the tile
(1200 by 1200 km) h11v04 as an example as 53% of this region shows changes between C5 and
C6. We divide all pixels into two categories, pixels with consistent and changed biome types, and
compare the LAI differences. Histograms of the difference for these two categories and for all pixels
are shown in Figure 6b. The mean difference of all pixels with consistent biome type (about 27% of
pixels) is —0.072, which is obviously smaller than that of all pixels with changing biome types (0.968).
The mean difference of all pixels in this tile is 0.475. Such biased patterns are depicted in Figure 6¢,d.
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For further investigation, we define the biome type disagreement factor (BTDF) as the proportion
of pixels with changing biome type. As four 500 m C6 pixels compose a 1 km C5 biome type, this
factor can be 0, 1/4,1/2,3/4 or 1. It can be seen that when there is no biome type change, the relative
difference in LAI will be within +5%. This can be as high as +100% in pixels with changing biome
type. In particular, note that the directionality of observed difference is not uniform across cases of
biome change.

The mean value and standard deviation of the difference and RMSE between C5 and C6 LAI are
listed in Table 1 (Table S1 shows the same for FPAR). When the biome type disagreement factor is small
(0/4 or 1/4), Cé6 retrievals underestimate C5 for most biome type cases. Interestingly, the discrepancy
between C5 and C6 gets larger with increasing biome type disagreement factor. With the same biome
input (BTDF = 0/4), the mean RMSE of LAI and FPAR are 0.29 and 0.091, respectively, but biome type
disagreement worsened the consistency (LAI: 0.39, FPAR: 0.102). Overall C6 estimates global LAI and
FPAR by C5-0.01 and C5-0.004, respectively.

Table 1. Biome specific differences between C5 and C6 LAI at the global scale in 2003. Mean value and
standard deviation of the difference and RMSE (values in brackets) between C5 and C6 (C6 minus C5)

are listed in the table.
Biome Type BTDF = 0/4 BTDF = 1/4 BTDF = 2/4 BTDF = 3/4 BTDF = 4/4
Grasses/Cereal 0.00 + 0.24 —0.01 + 0.30 0.01 + 0.33 0.02 + 0.39 0.08 + 0.43
crops (B1) (0.24) (0.30) (0.33) (0.39) (0.44)
Shrubs (52) ~0.01 +0.15 0.02 + 0.21 0.04 + 0.24 0.06 + 0.25 0.05 + 0.23
(0.15) (0.21) (0.24) (0.25) (0.24)

Broadleaf crops (B3 002022 0.11 + 023 021+ 0.28 0.31 +0.35 0.42 + 0.40
(0.22) (0.25) (0.35) (0.46) (0.57)

Savanna (B4) 0.00 + 0.26 —004+030  —007+036  —011+042  —0.16+0.40
(0.26) (0.30) (0.37) (0.43) (0.43)

1 EBE (85) _008+0.62  -045+065  —088+071  -132+08  —171+1.00
(0.63) (0.79) (1.12) (1.55) (1.98)

2 DB (B6) 009 +048  —0.01 + 048 0.05 + 0.52 0.10 + 0.58 0.03 + 0.52
(0.49) (0.48) (0.52) (0.58) (0.52)

S ENF (87) ~017+051 0234050  —031+054  —040+060  —045+ 073
(0.54) (0.55) (0.62) (0.72) (0.85)

. 0194057  —026+056  —038+061 0494068  —0.58+ 0.82
DNF (B8) (0.60) (0.62) (0.72) (0.84) (1.00)

Mean 0024029  —003+033  —002+040  —0.02+ 050 0.02 + 0.60
(0.29) (0.33) (0.40) (0.50) (0.60)

Overall ~0.01 + 0.39 (0.39)

1 Evergreen broadleaf forest; 2 Deciduous broadleaf forest; 3 Evergreen needleleaf forest; 4 Deciduous
needleleaf forest.

4.2. Benefits from Surface Reflectance Improvement

To elucidate the impact of changes in input surface reflectance, we only focus on pixels with
consistent biome type (BTDF = 0). Between Table 1 and Table S1, we can see that C6 LAI and FPAR
values of all biomes, except biomes 1 and 4 for LAI and biome 4 for FPAR, are smaller than C5.
Figure 7a,b shows the global distribution of relative difference (100 x (C6-C5)/C5) of LAI and FPAR.
h11v04 (red box) and h22v03 (blue box) are two example tiles showing lower and higher C6 LAI
estimation cases, respectively. As expected, both LAI and FPAR display similar spatial patterns. By
only considering biome input consistent pixels, differences in LAI and FPAR between C5 and C6
vary within +15%. Possible explanations for this discrepancy are two-fold: surface reflectance input
changes and scale effect of the algorithm, further discussed below.

Comparisons of reflectance between C5 and C6 are shown in Figure 8. Panels (a) and (b) are for
tile h11v04 (Figure 7) in which C6 underestimates C5. Panels (c) and (d) are for tile h22v03 (Figure 7) in
which C6 overestimates C5. In both tiles, NIR (near-infrared) band reflectance shows good consistency
between the two versions. However, the red band reflectances in C6 are relatively higher than in
C5, especially at the lower range of reflectances. As leaves in the canopy absorb more red photons,
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higher red reflectances will lead to lower LAI retrievals. These changes in reflectances resulted from
refinements to the atmospheric correction algorithm. The overestimation in C6 over the tile h22v(03
could be explained by the scale effects which are discussed below.

4.3. Impact of Scale Effect

With the development of quantitative remote sensing, scale effects, as a common phenomenon,
have attracted more and more attention from the community. The term “scale” is widely used in many
other fields as with as remote sensing and has different meanings in various disciplines [29]. In this
paper, scale effects refer to the discrepancy between two products derived from the same algorithm but
at different spatial resolutions. As mentioned above, MODIS LAI/FPAR products improved the spatial
resolution from 1 km to 500 m using the same retrieval algorithm, which raises two questions: (1) what
is the behavior of the scale effect in LAI/FPAR product and algorithm and (2) is the difference caused
by the scale effect negligible? Figure 9 theoretically demonstrates the relationship between the two LAI
products (C5 and C6). The discrepancy between LAI1 and LAI2 is caused by both heterogeneity of
land surface and nonlinear characteristics of the retrieval models [29]. On the one hand, landscape
homogeneity cannot be assumed especially in the case of a coarser spatial resolution footprint. In
other words, a MODIS pixel should be considered as a mosaic of different biome types. On the other
hand, the radiative transfer-based algorithm is scale-dependent [1]. This is because the pixels are
likely to contain an increasing amount of radiative contribution from the background [30]. Thus, the
MODIS LAI/FPAR products are scale-dependent and the scale effect could be one of the causal factors
introducing a certain level of discrepancy between C5 and C6.

| Collection 6 - 500m Case |

LAI .
Sgi){m Retrieval Aggregation
a
1km
} } LAI1
500m 500m
SR. SRy4
. Scalin,
Aggregation Effec tg
A 4 l Collection 5 — 1km Case l

LAI

Retrieval
1km 1km
SR LAI2

Figure 9. Theoretical description of scale effect.

To understand the discrepancy between C5 and C6 products due to scale effects, we conducted
a simulation experiment using biome 6 (deciduous broadleaf forests) as an example. Note that the
simulation results will not be similar across biome types due to biome-specific RT parameterizations.
Only retrievals from the main RT based algorithm were analyzed. We simulated the heterogeneity
in one 1 km (C5) pixel by adding 5% or 15% bias on NIR reflectance (red reflectance is fixed) for
four 500 m (C6) pixels. Figure 10 shows the results of this experiment. The LAI values for C5 were
selected along the black line in the red-NIR spectral space depicted in Figure 10a. It is clear that the
relationship between LAI and reflectance is nonlinear. Moreover, there is a clear division between
the saturated and unsaturated parts. This is more obvious in Figure 10b where both LAI and FPAR
show an inflection point when saturation appears. Irrespective of saturation, the relationship between
LAI and NIR reflectance is roughly a concave function. In this relationship, if reflectance SR2 is the
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mean value of SR1 and SR3, the LAI (SR2) is smaller than the mean value of LAI (SR1) and LAI (SR3).
Before saturation, the relationship between FPAR and NIR reflectance is almost linear. When saturation
appears, the relationship changes to a concave function as well. The short parallel lines at small LAI
and FPAR indicate that LAI or FPAR does not vary with NIR reflectance. This is because of sparse
distribution of retrievals in the LUT at low LAI values [31].

LAl values in Red-NIR spectral space
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Figure 10. Scale effect of MODIS LAI/FPAR main algorithm. Biome 6 (deciduous broadleaf forests)
is used as an example here. The solar zenith angle is fixed at 30° and the view direction is nadir.
(a) Distribution of LAI values derived from the main RT based algorithm in the Red-NIR spectral
space. Equally spaced LAI values along the vertical black line (red = 0.025) are selected as experimental
retrievals from C5 (LAIc5). The corresponding reflectances of C5 are REDc5 and NIRc5. Let the red
reflectance of all the four C6 pixels (REDc6) be equal to REDc5. To satisfy the energy conservation law,
we add a positive bias to NIRc5 to obtain NIRc6_1 for two C6 pixels and add a negative bias to NIRc5 to
obtain NIRc6_2 for the two left C6 pixels. Thus, four C6 LAIs can be derived using REDc6 and NIRc6;
(b) Denotes the variations of LAI (black points) and FPAR (blue points) with NIR reflectance along the
black line in (a). Retrievals with and without saturation are separated by a red line; (c,d) demonstrate
the discrepancy in LAI and FPAR caused by scale effects, respectively. 5% and 15% bias are shown in
blue and red. The saturation index (SI) for different LAI (FPAR) values is also plotted in the figures.

The discrepancy in LAI and FPAR due to scale effects is demonstrated in Figure 10c,d. The x-axis
and y-axis can be seen as C5 products and C6 products, respectively. The four retrievals of C6 pixels
can be partially and completely derived from unsaturated or saturated algorithmic conditions because
of the bias in NIR reflectance. We define the Saturation Index (SI) as the proportion of unsaturated
pixels. When SI equals 0% (all retrievals from the unsaturated part), there is no obvious difference
between C5 and C6 LAI values at a low range of LAI values. However, C6 LAI tends to be higher
than C5 with an increase in LAIL. When SI is about 50% (two retrievals from unsaturated and the other
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two from saturated part), C6 LAI tends to be smaller than C5. When SI equals 100%, C6 LAI increases
again. These changes can be explained by the relationship between LAI and NIR reflectance shown
in Figure 10b. As expected, a 15% bias causes a larger scale effect than a 5% bias (RMSE 0.4 vs. 0.18).
Compared to LAI, FPAR shows less and even negligible scale effects with RMSE 0.01 and 0.03 for 5%
and 15% bias. This is because the FPAR-reflectance relationship is almost linear, especially prior to
saturation conditions. Because of the regional convex relationship when saturation starts to appear, C6
can be lower than C5.

5. Conclusions

This paper presents version consistency and improvements in the latest MODIS LAI/FPAR C6
product. Compared to previous C5, the most important change in C6 is that the products are being
produced at 500 m spatial resolution instead of 1 km. In addition, as discussed here, C6 benefited from
improved surface reflectances and biome type inputs. The refined C6 atmospheric correction algorithm
generates relatively higher red band reflectances, which results in lower LAI/FPAR values. The new
multi-year land-cover product provides biome type input to the algorithm with better accuracy. The
differences caused by scale effects are found to be negligible for FPAR and in cases where LAl is low.
Scale effects can explain some of the discrepancy between 1 km C5 and 500 m C6 products, especially
for cases of high LAI values. In view of these changes in inputs and spatial resolution, a consistency
check of C6 products with C5 was performed in terms of global distributions, spatial coverage of
high quality retrievals, seasonal variations and inter-annual LAI anomalies. From these analyses, we
found no significant discrepancies between C5 and C6 LAI/FPAR products. The proportion of main
radiative transfer algorithm retrievals in C6 increases slightly in most biome types, notably including
17% improvement in evergreen broadleaf forests. With the same biome input, the mean RMSEs of LAI
and FPAR are 0.29 and 0.091, respectively, but biome type disagreement worsens the consistency (LAI:
0.39, FPAR: 0.102). Overall C6 estimates global LAI and FPAR by C5-0.01 and C5-0.004. Moreover,
C5 and C6 shows consistent inter-annual LAI anomalies over two temperature-limited regions and
two precipitation-limited regions. These results produce confidence in the new C6 products. Further
evaluation of MODIS LAI/FPAR C6 products through validation using field measurements and
inter-comparison with other exiting products will be presented in the second part of this series.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/5/359, Figure S1:
Three-year global 500 m eight-biome map used for MODIS LAI/FPAR C6 products from 2001 to 2003; Figure S2:
Color-coded maps of MODIS C5 and C6 FPAR for January (17th—24th January) and July (12th-19th July) of 2003;
Figure S3: Seasonal variations of globally averaged MODIS LAI and FPAR from C5 and C6 in 2003; Figure S4:
Seasonal variations of algorithm path of C5 and C6 in 2003; Table S1: Biome type specific differences between C5
and C6 FPAR for global scale in 2003.
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Abbreviations
The following abbreviations are used in this manuscript:

MODIS Moderate Resolution Imaging Spectroradiometer
LAI Leaf Area Index
FPAR Fraction of Photosynthetically Active Radiation
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C3 Collection 3
C4 Collection 4
C5 Collection 5
Cé6 Collection 6
RT Radiative Transfer
LUT Look-Up-Table
BRF Bi-directional Reflectance Factors
NDVI Normalized Difference Vegetation Index
QC Quality Control
BTDF Biome Type Disagreement Factor
RI Retrieval Index
SI Saturation Index
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Abstract: The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product
(MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three
approaches: validation with field measurements, intercomparison with other LAI/FPAR products
and comparison with climate variables. Comparisons between ground measurements and C6,
as well as C5 LAI/FPAR indicate: (1) MODIS LAl is closer to true LAI than effective LAI; (2) the
C6 product is considerably better than C5 with RMSE decreasing from 0.80 down to 0.66; (3) both
C5 and C6 products overestimate FPAR over sparsely-vegetated areas. Intercomparisons with
three existing global LAI/FPAR products (GLASS, CYCLOPES and GEOV1) are carried out at site,
continental and global scales. MODIS and GLASS (CYCLOPES and GEOV1) agree better with
each other. This is expected because the surface reflectances, from which these products were
derived, were obtained from the same instrument. Considering all biome types, the RMSE of
LAI (FPAR) derived from any two products ranges between 0.36 (0.05) and 0.56 (0.09). Temporal
comparisons over seven sites for the 2001-2004 period indicate that all products properly capture the
seasonality in different biomes, except evergreen broadleaf forests, where infrequent observations
due to cloud contamination induce unrealistic variations. Thirteen years of C6 LAI, temperature
and precipitation time series data are used to assess the degree of correspondence between their
variations. The statistically-significant associations between C6 LAI and climate variables indicate
that C6 LAI has the potential to provide reliable biophysical information about the land surface when
diagnosing climate-driven vegetation responses.

Keywords: Leaf Area Index (LAI); Fraction of Photosynthetically-Active Radiation (FPAR); MODIS;
Collection 6; evaluation; validation; intercomparison

1. Introduction

The Leaf Area Index (LAI) and Fraction of Photosynthetically-Active Radiation absorbed by
vegetation (FPAR) are two key biophysical variables required by most global models of climate,
ecosystem productivity, biogeochemistry, hydrology and ecology [1]. Satellite remote sensing is
the most effective way of collecting these variables at a large scale over a long period of time on
a regular basis [2]. The MODerate resolution Imaging Spectroradiometer (MODIS) instruments on
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board NASA'’s Terra and Aqua platforms are designed for monitoring the Earth’s atmosphere, ocean
and land surface and started operational production and distribution of the LAI/FPAR products
from 2000. These datasets are widely used as inputs for land surface models and as training data for
neural-network-based LAI/FPAR products, such as GLASS and GEOV1 [3,4]. During the past sixteen
years, the MODIS science team aimed to provide users with better products by updating product
cohorts, which are called collections. Collection 6 (C6) represents the latest such cohort and contains
the entire time series from February 2000 to the present. C6 was released and distributed free of charge
to the public from August 2015 and is expected to benefit from improvements of the input data [5].

It is critical to understand the accuracy of the product in order to effectively use LAI/FPAR in
land surface models [6-11]. There are several schemes to evaluate remote sensing products, including
direct validation, intercomparison and other indirect approaches. Many evaluation efforts for previous
collections of MODIS LAI/FPAR products can be found in the literature from both the MODIS
science team and interested users [9-13]. Special attention has been paid to the accuracy of the
estimates, improvements in a new version and consistency with other global products. Collection 5
(C5) products were found to benefit from refinements of algorithm and input data [9]. Intercomparisons
with other global products suggested that C5 products are reliable and consistent [8,11]. The main
drawbacks of C5 LAI/FPAR were reported to be unrealistically strong temporal variability and
systematic overestimation of FPAR over sparsely-vegetated areas [8].

The recently released C6 products have not been validated with ground measurements or
compared to existing global products. Thus, it is critical to evaluate the new products, as users
are advised to switch to Cé6. In this context, the primary objectives of this paper are to evaluate the
MODIS LAI/FPAR C6 products and to investigate the differences between MODIS products and other
global products. This is achieved comprehensively through three approaches: (1) direct validation
with ground measurements; (2) intercomparison with GLASS, CYCLOPES and GEOV1 products; and
(3) comparison with climate variables.

This paper is organized as follows. Section 2 provides a general description of the datasets used
in this study, including global LAI/FPAR products, validation sites and time series of climate variables.
Section 3 details three approaches used for validating and intercomparing the LAI/FPAR products.
Results and discussion from the various evaluation analyses are documented in Section 4. Concluding
remarks are presented in Section 5.

2. Datasets

2.1. Global LAI/FPAR Products

In this section, the main characteristics of the remotely-sensed global LAI/FPAR products under
study are described. A brief summary of these characteristics is given in Table 1.

2.1.1. MODIS LAI/FPAR

As described in [2,14], the main algorithm generating the MODIS LAI/FPAR products is based on
a three-Dimensional Radiative Transfer (3D RT) model in which atmospherically-corrected reflectances
observed by the MODIS instrument and a biome map are used to generate the retrievals. Given daily
land surface Bi-directional Reflectance Factors (BRFs) and their uncertainties, the algorithm finds
the best LAI and FPAR estimates from biome-specific Look-Up-Tables (LUTs). A back-up empirical
method based on the relationships between the Normalized Difference Vegetation Index (NDVI) and
LAI/FPAR are utilized to produce estimates with relatively poor quality. LAI and FPAR are produced
daily. The LAI value corresponding to the maximum FPAR is selected over the four-day or eight-day
compositing period. Vegetation clumping is accounted for at the plant and canopy scales through the
model. Therefore, the LAI corresponds to true LAl in all biomes. However, in the case of needle-leaf
forest, shoot clumping is not accounted for. The FPAR is defined as the instantaneous black-sky value
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at the time of the Terra overpass (10:30 a.m.). MODIS products store the corresponding Quality Control
(QC) data layers, and the users are advised to consult the quality flags when using these products.

C6 represents the latest version of MODIS LAI/FPAR [5]. The most important change in C6
is that products are being produced at 500-m spatial resolution instead of 1 km, as in C5. A new
version of MODIS surface reflectances (MODO9GA C6) is used to replace the previous used 1-km
intermediate dataset (MODAGAGG). C6 also replaces the 1-km static land cover input with new
multi-year land cover maps at 500-m resolution. From a consistency check of C6 with C5 [5], there are
no significant discrepancies between the two collections in terms of global distributions, seasonal
variations, interannual LAI anomalies and the spatial coverage of high quality retrievals. A simulation
experiment suggested that the differences caused by scale effects are negligible for FPAR and low
in the case of LAI [5]. In this study, we only use data from Terra (MOD) instead of Aqua (MYD) or
the combined product (MCD) for three reasons: (1) the earlier overpass time of Terra results in more
successful retrievals due to low cloud contamination; (2) the GLASS, CYCLOPES and GEOV1 products
have a similar acquisition time s Terra; and (3) the GLASS and GEOV1 products have partly been
based on MODIS LAI/FPAR from the Terra-MODIS sensor [15].

Table 1. Global LAI/FPAR products investigated in this study. GSD, LUT, RT, GRNN, ANN, tLAI
and eLAl stand for “Ground Sampling Distance”, “Look-Up Table”, “Radiative Transfer”, “General
Regression Neural Network”, “Artificial Neural Network”, “true LAI” and “effective LAI”, respectively.

Product GSD Frequency Projection Sensor Main Algorithm LAI Type Ref.
MODIS

c5 1 km 8-day SIN 4 MODIS LUT based on 3D RT tLAI [2,14]
M(é?IS 500 m 8-day SIN MODIS LUTbasedon3DRT  tLAI (5]

ATy a0day D ver ANNImRAWIh g 7

CEOVI® 1mz 10day PR wer AN faned with ;vjtit?:ll (48]

1 MODIS period; 2 CYCLOPES; ® VGT period; 4 Sinusoidal; ® clumping-corrected CYCLOPES, "MOD" stands
for "MODIS"; * stands for "CYCLOPES".

2.1.2. CYCLOPES LAI/FPAR

The CYCLOPES LAI/FPAR product (http:/ /postel. mediasfrance.org) was produced with data
from the SPOT-VGT sensor at 1/112° (about 1 km at the Equator) spatial resolution and a 10-day
temporal resolution, in a Plate Carrée projection, for the period 19992007 [17,18]. The algorithm
used the red, near-infrared and short-wave infrared reflectances, which had been normalized to a
standard geometry. LAI and FPAR were estimated using a neural network trained from simulations
from a coupled leaf and canopy radiative transfer model (PROSAIL [19]) without using land cover
input. Clumping at the plant and canopy scales was not represented in the algorithm, but landscape
clumping was represented by considering mixed pixels made of a fraction of pure vegetation and a
complement fraction of pure bare soil. Therefore, the LAI corresponds to effective LAI rather than true
LAI The FPAR is defined as the instantaneous black-sky FPAR at 10:00 a.m., referring only to the green
elements. The CYCLOPES product was provided with the corresponding error estimate and a quality
flag. The early saturation of LAI was reported as the main drawback of the CYCLOPES product [8].

2.1.3. GLASS LAI

The Global Land Surface Satellite (GLASS) LAI dataset was generated and released by Beijing
Normal University (http://www.bnu-datacenter.com) [16]. This product has a temporal resolution
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of eight days and spans from 1982-2012. From 1982-1999, the product was generated from AVHRR
reflectances and provided in a geographic projection at the resolution of 0.05°. From 2000-2012,
the product was derived from MODIS land surface reflectance (MOD09A1) and provided in a
sinusoidal projection at a resolution of 1 km for the globe. In this study, we only focus on the
product during the MODIS period. GLASS LAI was derived from reprocessed MODIS reflectance
data using General Regression Neural Networks (GRNNs) [3]. GRNNs were trained by a database
that was generated from MODIS and clumping-corrected CYCLOPES LAI products over BELMANIP
(Benchmark Land Multisite Analysis and Intercomparison of Products) sites during the period from
2001-2003. MODIS LAI and clumping-corrected CYCLOPES LAI were fused in a weighted linear
combination in order to obtain the best LAI estimate as follows:

LAIfyseq = WLAILypq + (1 — w)LAIC*yC, with (1)

w = fmod/(fmod + nyC) (2)

where, LAIfs. is a combined estimate of LAI, LA, is the smoothed and gap-filled MODIS LA,
LAl is the true LAI converted from the CYCLOPES LAI and w is the normalized weight for the
MODIS LAL Thus, linear regressions were constructed between MODIS and CYCLOPES for each
biome type. The weights for each biome were determined by the deviation of MODIS and CYCLOPES
(i-e., fnoa and feyc) from the ground-measured LAls. A quality control layer was attached to show the
processing status, the quality of inputs and contamination by snow, clouds and shadows.

2.1.4. GEOV1 LAI/FPAR

The GEOV1 LAI/FPAR is the first version of the global biophysical products under the Geoland2
project (http://www.copernicus.eu/projects/geoland2). More than 30 years (1981-present) of the
global LAI and FPAR were derived from AVHRR, SPOT-VGT and PROBA-V observations during three
temporal periods using neural networks. In this study, we use the product during the VGT-derived
period (1998-2014). LAI and FPAR during this period were derived at 1/112° spatial resolution with a
10-day step in a Plate Carrée projection (http:/ /land.copernicus.vgt.vito.be) [4,8]. The MODIS and
CYCLOPES products were first fused to obtain the best LAI (same for FPAR) estimate as follows:

LAIfy50q = WLALyoq + (1 — w)LALyc, with 3)

1

where LAlg 4 is a combined estimate of LAI, LAl  is the MODIS LAI, LAl is the CYCLOPES
LAI and w is the weight for MODIS LAIL The weight is determined by LAl and a threshold value
(LAIyc = 4), which corresponds to the value when CYCLOPES starts to saturate. Neural networks
were trained between the fused LAI and the VGT surface directionally-normalized reflectances over
BELMANIP sites without biome type specification. Once trained, these networks were run to provide
LAI/FPAR every 10 days within the 30-day composite period from the VGT sensor along with quality
flags and quantitative uncertainties. The GEOV1 LAI is the combination of true and effective LAI,
because MODIS and CYCLOPES LAI correspond to true and effective LAI, respectively. GEOV1 FPAR
corresponds to the instantaneous black-sky value around 10:15 a.m. and is calculated by selecting
70% of the cumulative FPAR distribution of daily values within the compositing period instead of the
maximum FPAR, as in the case of MODIS [2].

2.2. Validation Sites and BELMANIP Network

The validation dataset is from a collection of sites for which ground measurements have been
collected and processed according to the CEOS/WGCV-LPV guidelines [7,20]. An empirical “transfer
function” between high spatial resolution radiometric data and the biophysical measurements was
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used to scale local ground measurements up to the 3 km x 3 km area of the site. There are currently
113 such datasets available, corresponding to sites and various dates of measurements.

The BELMANIP network of sites was designed to represent the global variability of vegetation
types and climatological conditions [21]. This network was mainly built using sites from existing
experimental networks (FLUXNET, AERONET, VALERI, BigFoot, etc.) and complemented with
additionally sites from the GLC2000 land cover map. The site selection was performed for each band of
latitude (10° width) by keeping the same proportion of biome types within the selected sites as within
the whole latitude band. Attention was paid so that the sites were homogeneous over a 10 x 10 km?
area, almost flat and with a minimum proportion of urban area and permanent water bodies. Note that
there are no ground measurements for most of these sites, and therefore, this network is always used
for intercomparison, rather than direct validation. Representing the latest version, the BELMANIP2.1
currently contains 445 sites and is used in this study.

2.3. Time Series of Climate Variables

This study uses the Time Series (TS) datasets of global surface temperature and precipitation
that were produced by the Climatic Research Unit (CRU) at the University of East Anglia [22].
Climate variables were calculated for each 0.5° x 0.5° latitude/longitude grid, monthly, by employing
a triangulated linear interpolation method. Through the auspices of the World Meteorological
Organization (WMO) in collaboration with the U.S. National Oceanographic and Atmospheric
Administration (NOAA), archives provided by more than 4000 meteorological stations were used to
cover the world’s land areas. At present, the latest time series data (TS 3.23) were generated by the
CRU for the period 1901-2014 and publicly available from http://www.cru.uea.ac.uk.

3. Methodology
3.1. Direct Validation with Ground Measurements

3.1.1. Selection of Reliable Ground Measurements

We use the spatially-averaged values over a 3 km x 3 km reference map as the “ground truth” at
each validation site, as in previous studies [7,8]. However, several sources of uncertainties reduce the
reliability of these measurements. First, optical instruments (e.g., LAI2000) that are generally used for
point-scale measurements only provide effective LAI (eLAI), which may result in an underestimation
of true LAI (tLAI) [23] up to 70% in coniferous forests [24]. Second, the scale effect in indirect ground
measurement can result in obvious uncertainties when the sampling length is not properly selected
and this has often been ignored [25]. Third, the up-scaling scheme using an empirical “transfer
function” between high spatial resolution reflectances and point-scale biophysical measurements
requires a relatively large homogenous area, which may not be satisfied at some sites. Last but not
least, uncertainties can arise due to the effects of the point spread function and geo-location errors of
the satellite pixel. The overall uncertainty at each site differs with vegetation type, surface homogeneity,
equipment used, sampling strategy, etc. [26]. However, absolute uncertainties of LAI reference maps
corrected for clumping and non-green elements are expected to be smaller than 1 LAI unit in most
sites [27]. The uncertainty is expected to be around 0.1 for FPAR [8].

Figure 1 shows the biome type distribution within each 3 km x 3 km validation site based
on the MODIS land cover product (500-m resolution, C5). The upper part of the plot denotes the
information entropy of the biome type for each site. This serves as an indicator of surface homogeneity.
The information entropy is calculated using the proportion of each biome type within a specific site
as follows:

11

H = - (P;log,P;) (5)
i=1
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where H is information entropy and P; represents the proportion of the area covered by the i-th biome
type. The value 11 corresponds to the total number of MODIS land cover types. We screened out some
of the 113 sites to improve the overall accuracy of these measurements. This screening was based on
four criteria: (1) Presence of 500 m x 500 m pixels labeled as “water” with the 3 km x 3 km site; (2) the
information entropy of biome type was greater than 1; (3) the proportion of invalid MODIS pixels
(based on QC in Table 2) was larger than 40%; and (4) suspicious LAI/FPAR values (e.g., LAI < 2 for
dense forests, Site #42) based on field experience and literature reports [8].

Biome Type Distribution within Each Site

3 -
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Figure 1. Biome type distribution within each 3 km x 3 km validation site based on the 500-m resolution
MODIS C5 land cover product. The bottom part of the plot shows biome types and the corresponding
proportion of coverage within each site. EBF, DBF, ENF and DNF stand for “Evergreen Broadleaf
Forest”, “Deciduous Broadleaf Forest”, “Evergreen Needleleaf Forest” and “Deciduous Needleleaf
Forest”, respectively. The top part of the plot shows the biome type information entropy of each site
calculated using Equation (5). Zero means there is only one biome type in the site or the site is a
homorganic site. A larger entropy value means larger heterogeneity.

Table 2. Quality control for the four products under study.

Product Quality Flag Snow  Cloud Shadow Aerosol Cirrus Suspect Overall
FparLaiQC Clear Clear - No No - -
MODIS FparExtraQC - Clear Clear - - - Good
GLASS QC Clear Clear Clear - - - Good
CYCLOPES SM Clear - - Pure - No Good
GEOV1 QFLAG Clear - - Pure - No Good

3.1.2. Validation of MODIS LAI/FPAR Product

We compared both MODIS C5 and C6 products with ground measurements. The spatial and
temporal mismatch between the remote sensing product and ground truth is the main issue related to
such a comparison [4,18]. A 3 x 3 array of surrounding pixels has been recommended for calculating
the mean value to reduce geolocation uncertainties [8]. Considering that reference maps cover
a 3km x 3 km area, which contains about 36 (6 x 6) MODIS C6 pixels and 9 (3 x 3) C5 pixels,
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we averaged all of the valid pixels within the reference map. The corresponding 8-day composite,
which includes the date of ground measurements was extracted. Thus, the maximum temporal
mismatch is about 7 days, which should have minimal impact in most cases. Compared to the overall
uncertainties of the LAI reference maps, uncertainties caused by spatial and temporal mismatch may be
thus ignored. As suggested by the MODIS product user guide, the QC layers were consulted to exclude
retrievals with poor quality caused by snow, clouds or high aerosol content (details in Section 3.2.1).
Only retrievals from the main algorithm were used for the validation analyses reported here.

3.2. Intercomparison with Existing Global Products

3.2.1. Quality Control for Products

All of the four products under study provide QC layers, and users are advised to consult the
quality flags when using them. Therefore, we performed quality control for each product using the
criteria listed in Table 2. In agreement with other studies [6-8,10,18], land pixels contaminated by
clouds or marked as “snow”, “aerosol”, “cirrus” or “suspected” according to the QC information were
marked as invalid data. Note that quality control for different products was not identical because of
different QC layers. For instance, MODIS and GLASS were masked by cloud, while CYCLOPES and
GEOV1 were not. The MODIS biome map was used to exclude bare areas from this analysis. This study
used retrievals from both the main and back-up algorithms in order to show the performance of the

products instead of algorithms.

3.2.2. Comparison of Spatial Distribution

This study evaluated the four global LAI/FPAR products at the continental and global scale
to characterize their performances. These products must be resampled to an identical projection
and period to enable pixel-by-pixel comparisons. The four products were first quality controlled as
described in Section 3.2.1 and then resampled to the Plate Carrée projection with a quarter degree
spatial resolution. The LAI/FPAR values for each 0.25° x 0.25° pixel were computed as the average
of all valid native pixels falling within the coarser grid. A no-data value was assigned if more than
30 percent of the native pixels were composed of invalid data (based on QC in Table 2). The datasets
with different temporal compositing periods were averaged into a monthly time step. The pixel was
assigned with a no-data value if there were no valid data within the whole month.

Pixel-by-pixel absolute differences (MODIS minus other products) between MODIS and the other
three LAI products and other two FPAR products were calculated and mapped at the global scale
for visual comparison. Histograms of global LAI and FPAR from each product were computed and
compared. Two particular months—]January and July in 2001—were selected to represent the boreal
winter and summer, respectively. In addition, the spatial consistency of LAI over the African continent
was investigated. As in [7], we extracted and compared latitudinal LAIs from the four products along
the longitudes between 20° E and 25° E.

3.2.3. Comparison at the Site Scale

We compared four LAI products and three FPAR products over 445 BELMANIP2.1 sites. Products
were masked by QC flags and aggregated into a monthly time step. LAl and FPAR values from the
60 months of the 2001-2005 period were used to assess the discrepancies between different products
through scatterplots. In this exercise, the original projections of the products were kept, and a 1-km
(for MODIS and GLASS) or 1/112° (for CYCLOPES and GEOV1) spatial resolution was adapted. This
is because of two reasons: (1) the high homogeneity of these sites reduces the geolocation uncertainties
due to different projection systems, target shift and different point spread functions [21]; and (2) any
additional processing including reprojection and resampling would introduce more uncertainties [6].

The MODIS land cover map was used to divide the 445 sites into three broad vegetation classes
in terms of canopy structure and leaf shape. The three classes are non-forest (Biomes 1-4), broadleaf
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forests (Biomes 5 and 6) and needleleaf forests (Biomes 7 and 8). Regression equations for any two
products, as well as the corresponding coefficient of determination (R?) and root-mean-squared error
(RMSE) were computed to assess the consistency.

3.2.4. Temporal Comparison

We evaluated temporal LAI/FPAR profiles of the four products extracted over seven validation
sites where some ground measurements were available during the period from 2001-2004. Each site
represented one vegetation type in the MODIS classification scheme. There was no validation site that
could be used for DNF. Monthly LAI/FPAR estimates were first calculated using the same approach
described in Section 3.2.3. Then, the seasonal variations of the four products were compared for both
LAI and FPAR with R? and RMSE denoting the consistency.

3.3. Comparison with Climate Variables

Using independent geographic variables to explain the interannual variations of LAI/FPAR is a
novel approach of indirectly evaluating these products. Due to a lack of long-term data, this evaluation
method has not been used for MODIS LAI/FPAR previously. In this study, we applied this approach
using thirteen years (2002-2014) of MODIS C6 LAI data. 2000 and 2001 were not included because
of the missing data in these two years. The C5 and C6 LAI products were firstly resampled to the
Plate Carrée projection and aggregated to a half degree spatial resolution and a monthly time step. QC
information was taken into account to exclude retrievals with poor quality. In this manner, the LAI
dataset matched the datasets of climate variables both spatially and temporally. Further averaging over
some specific regions and over the whole year or some specific months was done to obtain the time
series for statistical analyses. An area-weighted approach was used to eliminate geometrical effects.
Anomalies of LAI, temperature and precipitation were computed by subtracting the thirteen-year
mean from data of specific years. We calculated standardized anomalies (anomalies normalized
by their standard deviations) of LAI and surface temperature during the beginning of the growing
season (April and May) for four temperature-limited regions within 60°N-90°N. We also calculated
standardized anomalies of annual averages of LAI and precipitation for two water-limited regions.
In addition, the correlation between annual averaged LAI and annual total precipitation in the tropical
latitudes (23° S-23° N) was investigated.

4. Results and Discussion
4.1. Direct Validation

4.1.1. Characteristics of Measurements

As mentioned above, the validation data used in this paper is from a collection of sites all over the
world. Therefore, the method of ground measurement (e.g., destructive sampling, LAI-2000, digital
hemispherical photos, TRAC, AccuPAR and allometry) may vary from site to site and from date
to date. Details of these sites can be found on http://calvalportal.ceos.org/web/olive. Note that
effective LAI measured by optical instruments may differ significantly from true LAI, particularly
in forests [24]. These indirect measurements that have been corrected for clumping effect are also
considered as true LAI in this study. Measurements without clumping correction were discarded in
some studies [7,8], but were investigated separately in this study. We also compared the MODIS FPAR
with ground measurements, which was seldom done in previous studies. Measurements at the same
site, but different dates were considered independently.
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Table 3. Biome-specific information of ground measurements after pre-selection. The numbers of ground measurements of tLAI, eLAI and FPAR for each biome are
listed. The mean values and standard deviations of both ground measurements and retrievals from the C5 and C6 products are also provided (mean value + standard

deviation).

Biome # of Ground MODISC5 MODISC6 #of Ground MODIS C5 MODIS Ceé # of Ground MODIS C5 MODIS Cé
Type tLAI tLAI LAI LAI eLAI eLAI LAI LAI FPAR FPAR FPAR FPAR
B1! 12 1.37 £ 1.01 1.20 £ 0.80 1.32 £ 0.85 49 0.93 + 0.94 0.83 + 0.50 0.94 + 0.62 36 0.26 + 0.24 0.32 +0.14 0.33 +£0.16
B22 2 0.18 +0.19 0.21 +0.01 0.21 +0.01 1 0.03 + 0.00 0.20 + 0.00 0.20 + 0.00 2 0.26 + 0.34 0.28 + 0.21 0.31 +0.24
B33 0 N/A N/A N/A 3 2.14 +0.75 2.09 +0.43 2.14 + 0.55 0 N/A N/A N/A
B44 15 1.61 + 0.55 1.43 + 0.69 1.46 + 047 15 1.26 + 0.36 1.43 + 0.69 1.46 + 0.47 4 0.44 +0.14 0.56 + 0.18 0.53 + 0.15
B5° 2 4.65 + 0.39 444 +1.66 4.65 + 0.39 2 3.27 £ 0.18 444 +1.66 495 +1.02 2 0.92 + 0.04 0.73 £ 0.20 0.79 £ 0.10
B6© 14 3.58 +0.40 3.77 + 0.99 3.79 + 0.82 7 3.78 +1.26 474 +1.10 4.67 + 0.59 0 N/A N/A N/A
B77 9 2.69 £+ 0.76 2.58 + 1.08 242 +0.73 5 1.72 £ 0.48 2.31 +0.80 2.60 £+ 0.97 1 0.49 + 0.00 0.53 + 0.00 0.61 £+ 0.00
B8 8 0 N/A N/A N/A 0 N/N N/A N/A 0 N/A N/A N/A

Overall 54 231 +1.26 225+ 146 2.28 +1.38 82 137 £1.21 1.49 +1.36 1.59 +£1.35 45 0.31 +£0.27 0.36 + 0.18 0.38 + 0.19

1 Grasses/ cereal crops; 2 shrubs; 3 broadleaf crops; 4 savanna; ° EBF; ® DBF; 7 ENF; 8 DNFE.



Remote Sens. 2016, 8, 460 10 of 26

Table 3 shows biome-specific information of ground measurements after pre-selection,
as described in Section 3.1.1. The mean values and standard deviations of both ground measurements
and retrievals from C5 and C6 products are provided. After pre-selection, there are 54 true LAI, 82
effective LAl and 45 FPAR measurements left for further analyses. Note that there are no valid true LAI
and FPAR measurements for broadleaf crops, and there are no FPAR measurements for DBE. We also
lack LAI and FPAR measurements for DNF. The absence of a valid ground truth suggests that more
field measurements are needed in the future to further refine this assessment. Ground measurements
and MODIS estimates indicate the same vegetation density sequence: broadleaf forests > needleleaf
forests > savannas > grasses/cereal crops > shrubs. LAI/FPAR values extracted from the C5 and
C6 products show good agreement in all vegetation types. The slight overestimation in C6 relative
to C5 is due to scale effects and refinements to surface reflectances [5]. C5 shows the most obvious
underestimation in savanna, which is in agreement with [28]. This issue has been mitigated by C6 to
some extent. We note that MODIS LAI overestimates the ground measurements in DBE, which was also
reported by [8]. As expected, effective LAls are lower than true LAIs for all biomes due to the lack of
correction for clumping. MODIS LAI estimates are found to be closer to true LAI rather than effective
LAI The largest difference between measured LAI and C5 is achieved in EBF. However, this difference
is corrected in C6. Considering all biomes, measured LAI (2.31) agrees with C6 (2.28) better than
with C5 (2.25). Broadleaf forests show large differences between measured effective LAl and MODIS
estimates, which is due to the unneglectable clumping effects. MODIS FPAR shows overestimation in
all biomes, except for EBF, where radiative signals may saturate.

4.1.2. Comparison with Ground Measurements

Figure 2a,b compares measured LAI with MODIS C5 and C6 LAI respectively. As expected,
MODIS shows better agreement with true LAI than with effective LAL. MODIS retrievals are found
to systematically overestimate effective LAI measurements, especially in forests, which agrees with
Stenberg et al. [29], who suggested that an effective LAI can produce errors of 30%—70%. In comparison
with true LAI measurements, C6 performs better than C5 with the RMSE decreasing from 0.8 down to
0.66 and R? increasing from 0.70-0.77. Large uncertainties are found in high LAI values, which can
be explained by relatively lower algorithm accuracy due to signal saturation. Overall, most of the
data are within +1 LAI bias, indicating that the total uncertainty of this validation work is less than
1 LAI unit. Note that this uncertainty comes from both MODIS products and other sources, including
the uncertainties of reference maps and mismatch in spatial and temporal domains. We also note
that the distribution of the measurements is problematic with an over-representation of low values.
This is expected to be solved by adding more ground measurements, especially for broadleaf crops
and forests, according to the CEOS/WGCV-LPV guidelines.

In comparisons to ground measurements, MODIS FPAR performs relatively poorly compared
to LAI (Figure 2c,d). The RMSE of C5 and C6 are 0.16 and 0.15, respectively. The R? increases from
0.68-0.74 from C5 to C6. We notice a significant overestimation of MODIS retrievals in both C5 and
C6 at low FPAR values. This systematic overestimation of FPAR over sparsely-vegetated areas was
reported as a main drawback of the MODIS FPAR product [8]. However, the disagreement in this
study may also be due to the fact that understories are usually not taken into account in ground
measurements, which will underestimate the true FPAR [15]. Overall, most data are within 4+0.2 bias
with all uncertainties included.
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Figure 2. Comparisons between ground measured LAI (a,b) and FPAR (c,d) with MODIS C5 (left
panels) and C6 (right panels) retrievals. Fifty four true LAI, 82 effective LAI and 45 FPAR measurements
are used here. The 3 km x 3 km sites dominated by different biome types are depicted by different
colors. Circles (triangles) in (a) and (b) represent ground LAI measurements corrected (not corrected)
for clumping.

4.2. Intercomparison

4.2.1. Global LAI/FPAR Distribution

Figure 3a—c displays the global distribution of absolute LAI differences between MODIS and
three other products in July 2001. Figure 3d,e shows the corresponding FPAR. As expected, the four
products generally show a continuous LAI/FPAR distribution at the global scale. We notice that
CYCLOPES and GEOV1 do not provide LAI or FPAR estimates at high latitudes (>74°) due to the
absence of SPOT-VGT observations in these regions. South Asia and Southeast Asia are the largest
regions with missing data for MODIS, CYCLOPES and GEOV1. This is caused by the frequent cloudy
weather related to the southwest monsoon in these regions [30]. The reason why the GLASS product
has valid data is due to gap-filling. MODIS also has missing data over the high latitudes of North
America due to cloud contamination or poor atmospheric conditions.
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Figure 3. Global distribution of absolute differences between (a) MODIS and GLASS LAL (b) MODIS
and CYCLOPES LAI (c) MODIS and GEOV1 LAIL (d) MODIS and CYCLOPES FPAR; and (e¢) MODIS
and GEOV1 FPAR in July 2001. The spatial resolution is 0.25 degrees.

MODIS is found to agree best with GLASS, as expected, with absolute differences within +0.5 LAI
units for most of the land surface (Figure 3a). The reasons are two-fold: (1) the surface reflectance
data input to the two algorithms are from the same MODIS instrument; (2) MODIS LAI products are
used as one part of the ANN training data for GLASS. Compared to GLASS, most overestimation of
MODIS LAI is seen in tropical densely-vegetated regions. From Figure 3b,d, we notice significant
underestimation from CYCLOPES, especially in densely-vegetated regions. These discrepancies
between MODIS and CYCLOPES can reach to two for LAl and 0.2 for FPAR. This result agrees with
previous studies and was found related to premature saturation in the CYCLPOES algorithm [7,8].
This issue was reportedly solved in GEOV1 by using the MODIS product as the training data when
LAl is larger than four [4]. Indeed, we find that MODIS agrees better with GEOV1 than CYCLOPES.
However, GEOV1 still shows underestimation in some regions, e.g., forests in the Amazon and South
Asia. Note that the distributions of discrepancies between MODIS and GEOV1 are not consistent for
LAI and FPAR.

In Figure 4a,b, the four products show smooth and consistent LAI distributions at the global scale
for both January and July. Differences between global distributions are smaller in January than in July,
indicating that most inconsistency occurs during the growing season of northern latitudes. The global
mean LAIs calculated from MODIS, GLASS, CYCLOPES and GEOV1 are 1.42,1.43,1.02 and 1.15in
January and increase to 2.02, 2.09, 1.53 and 1.81 in July, respectively. Note that the number of valid
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overlapping pixels also increases from 96,346 in January to 180,603 in July. This increase is caused by
better atmospheric conditions and less cloud or snow contamination in the boreal summer season.
Unlike other products, CYCLOPES shows a peak at around LAI = 2.5 and drops rapidly to zero after
LAI = 4 in July, which confirms the early saturation issue reported previously. Compared to LAI, FPAR
discrepancies are found to be relatively larger (Figure 4c,d). The global mean FPARs calculated from
MODIS, CYCLOPES and GEOV1 are 0.4, 0.31 and 0.35 in January and increase to 0.54, 0.43 and 0.5 in
July, respectively. The frequency of low LAl and FPAR values is considerably smaller for MODIS than
for other products, which is due to the overestimation of the MODIS product in sparsely-vegetated
regions [7].

Histograms of Global LAl (Bin = 0.25) Histograms of Global LAI (Bin = 0.25)
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Figure 4. Histograms of global LAI (a,b) and FPAR values (c,d) from four products analyzed in this
study during the months of January and July of 2001. The frequency is given as the percentage of
the total number of global vegetated pixels. Global mean LAI values are depicted by vertical lines.
The bins used for LAI and FPAR are 0.25 and 0.05, respectively.

4.2.2. Continental Consistency

The African continent, which is divided by the equator, was selected to assess the spatial
consistency among LAIs from the four products at the continental scale. Figure 5a—c indicates that the
best spatial agreement is achieved between MODIS and GLASS, with LAI differences ranging within
+1. A significant underestimation (>2 LAI unit) is found over the central Africa forests in the case
of CYCLOPES. This is somewhat alleviated in GEOV1. Missing data are not found in these annual
average datasets, except in the case of MODIS near the boundaries of water bodies or barren areas.
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Figure 5. Comparisons of annual averaged LAI from the MODIS, GLASS, CYCLOPES and GEOV1
products over Africa in 2001. (a—c) Absolute differences between MODIS C6 and GLASS, CYCLOPES
and GEOV1; (d) LAI from four products along the transect in Africa between 20° E and 25° E.

Figure 5d displays LAls from MODIS, GLASS, CYCLOPES and GEOV1 along the transect within
the longitude bands between 20° E and 25° E. The most obvious inconsistency is seen in equatorial
forests, where LAI differences can reach one unit. CYCLOPES underestimates other products in
these regions with unrealistically low LAI values. The products agree better over open shrublands
and savannas. GEOV1 and CYCLOPES also show good consistency over the subtropical wooded
grasslands, while GLASS overestimates them significantly. Two product groups (MODIS-GLASS
and GEOV1-CYCLOPES) can be distinguished clearly over the bush lands and meridional African
grasslands. This suggests that the input data sources to the algorithms play an important role in
affecting the variation and magnitude of LAI/FPAR retrievals.

4.2.3. Comparison over BELMANIP Sites

Density scatter plots of monthly LAI extracted from the four products over BELMANIP2.1 sites
during the period from 2001-2005 are shown in Figure 6. Results for three broad vegetation classes
(non-forest, broadleaf forests and needleleaf forests) are shown separately in Table 4.
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Table 4. Statistics of the intercomparisons among four LAI/FPAR products over BELMANIP sites during 2001-2005. Eight biome types are grouped into three broad
categories (1-4: non-forest; 5-6: broadleaf forests; 7-8: needleleaf forests). R?, RMSE and regression equations are provided.

Biomes

MODIS-GLASS

MODIS-CYCLOPES

MODIS-GEOV1

GLASS-CYCLOPES

GLASS-GEOV1

CYC-GEOV1

LAI

FPAR

14
5-6
78
All
1-4
5-6
7-8
All

0.82/0.41/y = 1.03x + 0.10
0.82/0.63/y = 0.66x + 1.11
0.63/0.62/y =0.74x + 0.86
0.90/0.53/y = 0.83x + 0.31

N/A

N/A

N/A

N/A

0.83/0.36/y = 0.94x — 0.01
0.72/0.66/y = 0.50x + 0.81
0.58/0.59/y = 0.65x + 0.66
0.83/0.53/y = 0.64x + 0.26
0.89/0.07/y = 1.04x — 0.08
0.75/0.08/y = 0.77x + 0.07
0.53/0.10/y = 0.75x + 0.09
0.91/0.08/y = 0.95x — 0.05

0.81/0.42/y =1.05x — 0.03
0.79/0.74/y = 0.69x + 0.73
0.64/0.61/y = 0.76x + 0.64
0.88/0.56/y = 0.82x + 0.19
0.88/0.08/y =1.17x — 0.08
0.80/0.08/y = 0.88x + 0.09
0.59/0.10/y = 0.82x + 0.12
0.91/0.09/y = 1.08x — 0.05

0.86/0.34/y = 0.85x — 0.03
0.77/0.59/y = 0.69x + 0.17
0.65/0.57/y = 0.73x + 0.25
0.89/0.44/y = 0.74x + 0.06

N/A

N/A

N/A

N/A

0.83/0.41/y = 0.94x — 0.06
0.80/0.72/y = 1.03x + 0.10
0.70/0.60/y = 0.86x + 0.16
0.91/0.50/y = 0.95x — 0.06

N/A

N/A

N/A

N/A

0.95/0.23/y = 1.09x — 0.01
0.89/0.55/y = 1.26x + 0.05
0.85/0.43/y = 1.07x + 0.06
0.95/0.36/y = 1.23x — 0.07
0.97/0.04/y =1.12x + 0.01
0.93/0.05/y = 1.06x + 0.06
0.82/0.07/y = 0.93x + 0.11
0.97/0.05/y =1.12x + 0.01
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Figure 6a—c shows comparisons over non-forest sites where the best agreements between any two
products are observed. LAl values over these sites range from 0-2. Within this range, reflectances are
not saturated, and the respective algorithms perform well. Regression lines are close to the 1:1 line with
R? better than 0.81 and RMSE smaller than 0.42 (LAI) and 0.08 (FPAR) in all cases. This result satisfies
the target accuracy (0.5 LAI unit) expected by the Global Climate Observation System (GCOS) [31].
MODIS seems to underestimate GLASS and GEOV1, but slightly overestimates CYCLOPES. Minimum
bias (R? = 0.95, RMSE = 0.23) is achieved between CYCLOPES and GEOV1.
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Figure 6. Density scatter plots of monthly MODIS LAI and three other LAI products (left: GLASS;
middle: CYCLOPES; right: GEOV1) over BELMANIP sites during the time period from 2001-2005.
The plots show a correlation between MODIS and other products for non-forest ((a—c) Biomes 1-4)
in the first row, broadleaf forests ((d—f) Biomes 5 and 6) in the second row and needle leaf forests
((g—i) Biomes 7 and 8) in the third row. The red lines and blue lines are the 1:1 lines and regression lines
derived from the scatter plots, respectively.

Figure 6d—f shows the case for broadleaf forests where the largest discrepancies are observed.
The largest RMSE (0.74) is seen in the MODIS versus GEOV1 comparison and the smallest (0.55)
between CYCLOPES and GEOV1. The plots show an interesting pattern where the data are in two
clusters, which may be due to the monthly temporal resolution in this analysis resulting in missing
some parts of the seasonality of deciduous forests. MODIS tends to underestimate in the low-LAI
domain and overestimate in the high-LAI domain, relative to other products.
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Similar comparisons over needleleaf forests are shown in Figure 6g—i. The total number of
observations is less than 900, and this may result in additional uncertainties. CYCLOPES and GEOV1
agree well in terms of R? (0.85 for LAI and 0.82 for FPAR) and minimum RMSE (0.43 for LAI and
0.07 for FPAR). The discrepancies between MODIS and other products are similar with R? around 0.6.
A slight underestimation can be noticed for MODIS at low values, especially compared to GLASS.

When considering all biome types, the RMSE of LAI (FPAR) derived from any two products
ranges from 0.36 (0.05)-0.56 (0.09). The sequence from best to worst agreement is: CYCLOPES-GEOV]1,
GLASS-CYCLOPES, GLASS-GEOV1, MODIS-GLASS, MODIS-CYCLOPES and MODIS-GEOV1.

4.2.4. Temporal Comparison

Temporal Continuity

In the time series of LAI/FPAR products, there would be some gaps (missing data) mainly due to
cloud or snow contamination, poor atmospheric conditions or technical problems, which will limit
their use in land surface models [7,8]. Here, we define the “annual missing data rate” as the percent of
months without valid data during the whole year. It represents the fraction in time of missing data.
Note that the quality control applied for different products could be an important factor affecting
this criterion.

The four lines in the upper part of Figure 7 represent variations of missing data for MODIS,
GLASS, CYCLOPES and GEOV1 through four years (2001-2004). Missing data are also indicated by
gaps in the LAI/FPAR time series. The missing data rate ranges from 0%-40% (five months of no
data) over the seven sites. Most missing data are in the winter season, which is related to cloudiness,
snow and poor atmospheric conditions, especially for high latitude sites. Sites with shrubs, broadleaf
crops, savannas and broadleaf forests show low missing data rates (<20%). The four products exhibit
different behaviors over different sites, and no clear conclusions can be drawn. GLASS tends to have
low missing data, which may be due to a gap-filling procedure in its algorithm. GEOV1 shows a similar
missing data rate as CYCLOPES, which may be expected, as both products use the same preprocessed
SPOT-VGT data. MODIS shows a moderate missing data rate for most sites, which is not in agreement
with some other studies [8]. This may be because our study is based on a normalized monthly temporal
step instead of the native temporal resolution of each product. In addition, quality control procedures
applied to the different products also affect the number of valid data in the time series.
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Figure 7. Temporal comparisons of LAI and FPAR among MODIS C6, GLASS, CYCLOPES and GEOV1
products over seven validation sites. Monthly averaged LAI and FAPR values for the time period from
2001-2004 are shown here. Circles, stars and triangles represent ground measurements of true LAI,

effective LAI and FPAR, respectively. The four lines plotted at the top represent variations in missing
data in each year. (a) Grasses; (b) shrubs; (c) broadleaf crops; (d) savanna; (e) EBF; (f) DBF; and (g) ENF.
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Temporal Consistency

The consistency of the temporal trajectory of each product over seven validation sites for the
period from 2001-2004 is discussed in this section (Figure 7). All available ground measurements are
plotted in these figures as a reference. Statistics (R and RMSE) of these temporal comparisons are
given in Table 5.

The four products show smooth and consistent annual variations in the case of the Zhangbei
grassland site in China, with some gaps in the winter season that may be due to snow contamination
(Figure 7a). LAI and FPAR exhibit bell-shaped profiles, with LAI ranging from almost zero in
winter to more than one in summer and FPAR ranging from 0-0.5. CYCLOPES displays systematic
underestimation, as documented previously [8]. MODIS C6 is still found to systematically overestimate
FPAR in sparse canopies, a problem also seen in C5 [15].

All of the products achieve good temporal continuity in shrubs (Figure 7b). LAI and FPAR are
relatively low, as rainfall is limited over this site. GLASS, CYCLOPES and GEOV1 agree well, especially
at low values of LAI and FPAR. MODIS shows a generally different seasonal profile, which may be
realistic [32]. We find that all products overestimate both LAI and FPAR ground measurements.

Figure 7c shows the temporal variations of broadleaf crops over the AGRO site. This site shows
similar temporal variations as the Zhangbei site, being about the same latitude, but there are differences
in magnitude. LAI and FPAR values can reach four and 0.8, respectively. GLASS, CYCLOPE and
GEOV1 agree with each other well, especially in the years 2001 and 2002. However, MODIS shows an
underestimation for LAI during the growing season and overestimation of FPAR in the winter season.
The LAI difference between MODIS and GEOV1 is larger than two in 2003.

The savanna site shows a different pattern of seasonality as compared to grasses, shrubs and
broadleaf crops (Figure 7d). The seasonality is relatively damped with LAI values ranging from 0.5-2.
The four products show similar LAI/FAPR variations and agree with ground measurements well.
MODIS has no missing data during the four years.

The consistency between the four products is the worst over the EBF site (Figure 7e). This site
is in Budongo rainforests where the dry season only spans from December—February and June/July.
The field campaign conducted in October/November 2005 reported that LAI varies between 5.19 and
10.47 [33]. However, no clear seasonality is captured by any of the products from LAI or FPAR with
high missing data rate. Similar results were reported by other studies [7,8]. This can be explained by
the poor quality of satellite products due to cloud contamination and poor atmospheric conditions.
The ground measurement in 2003 shows good agreement with MODIS LAI

Figure 7f shows the case for a DBF site located in the northern high latitude. GEOV1 and MODIS
agree best and are the closest to ground measurements for both LAI and FPAR in 2002. As expected,
CYCLOPES underestimates all of the other products because of a lack of correction for clumping effects.
Compared to others, GLASS shows artifacts related to smoothing and/or gap-filling procedures.

The four products show very similar seasonality over the ENF site (Figure 7g). LAI at this site
ranges from 1-5. Thus, saturation effects are prominently seen in CYCLOPES. The MODIS profiles are
noisier due to the sensitivity of retrievals to noise in reflectances at high values of LAI [7]. All products
generally agree with available ground measurements. We note that CYCLOPES is closer to effective
LAI measurements that is smaller than true LAI due to clumping effects.

Table 5 shows the statistical results from temporal comparisons among the four LAI/FPAR
products over the seven sites during 2001-2004. R?> and RMSE are provided as indicators of consistency.
The best agreement among four products is seen in the grasses (B1) and broadleaf crops (B3) sites,
with R? better than 0.9. The agreement between MODIS and other products is least over the EBF
(B5) site. Over this site, the RMSE between MODIS and CYCLOPES is 2.56 and 0.19 for LAI and
FPAR, respectively. Lager RMSE values over densely-vegetated sites (B4-B7) are observed between
CYCLOPES and other products, which is due to premature saturation in the CYCLOPES algorithm [8].
Overall, MODIS agrees best with GLASS, and CYCLOPES agrees best with GEOV1. This is not
surprising, as these pairs of products have the same underlying reflectances.
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Table 5. Statistics of temporal comparisons among four LAI/FPAR products over seven validation sites during 2001-2004. R?> and RMSE are provided. Values out of
and in blankets are for LAI and FPAR, respectively.

MODIS-GLASS MODIS-CYC MODIS-GEOV1 GLASS-CYC GLASS-GEOV1 CYCLOPES-GEOV1
Site and Biome

R? RMSE R2 RMSE R? RMSE R2 RMSE R2? RMSE R2 RMSE
#78:B1 0.96 0.14 0.91(0.91) 0.17(0.09) 0.94(0.93) 0.15(0.07) 0.95 0.16 0.94 0.17 0.97(0.97) 0.10(0.05)
#88:B2 0.65 0.12 0.61(0.69) 0.20(0.11) 0.76(0.60) 0.16(0.10) 0.82 0.11 0.87 0.10 0.86(0.88) 0.10(0.06)
#1:B3 0.98 0.66 0.96(0.96) 0.62(0.08) 0.93(0.94) 0.95(0.10) 0.98 0.20 0.94 0.39 0.95(0.98) 0.45(0.05)
#103:B4 0.84 0.21 0.75(0.72) 0.42(0.10) 0.79(0.80) 0.40(0.06) 0.89 0.42 0.90 0.38 0.96(0.95) 0.1(0.06)
#96:B5 0.08 1.01 0.01(0.00) 2.56(0.19) 0.00(0.00) 1.70(0.08) 0.53 1.61 0.45 0.76 0.81(0.80) 1.01(0.13)
#58:B6 0.54 1.12 0.89(0.66) 0.57(0.12) 0.86(0.66) 0.56(0.08) 0.50 1.15 0.48 1.12 0.91(0.76) 0.74(0.10)
#68:B7 0.89 0.72 0.45(0.34) 0.69(0.12) 0.74(0.64) 0.68(0.06) 0.57 0.81 0.83 0.53 0.76(0.58) 0.74(0.11)
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4.3. Evaluation with Climate Variables

Spatial and temporal variations of biophysical variables can be assessed for consistency with
changes observed in meteorological fields. Several studies have focused on the relationship between
the temporal variation of LAI and climate variables that govern plant growth in particular regions.
From these studies, obvious correlation between LAI and precipitation in tropical regions and
temperature in high latitudes regions have been reported [7,11,34,35]. In this section, we discuss
the correlation between C6 LAI and temperature in northern latitudes and precipitation in some ENSO
(El Nifo-Southern Oscillation)-affected regions.

4.3.1. LAI Variation with Surface Temperature

Here, we present interannual variations of C6 LAI and assess their correlation to surface
temperature, which can be helpful in verifying the variations in the LAI product. The spatial
(60° N-90° N) and temporal (April and May) averages of standardized anomalies of LAI and surface
temperature are shown in Figure 8a,b for forests and tundra, respectively. The greening trend in
Eurasia was reported to be more obvious than in North America [36]. Therefore, the analysis was done
separately for these two continents.
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Figure 8. Evaluation of the MODIS LAI C6 product with temperature in the northern latitudes and
precipitation in the ENSO-affected regions. (a) Temporal variations of the standardized anomalies of
the growing season start period (April and May) averages of LAI and temperature for forest pixels in
the northern latitudes; (b) same as (a), but for tundra pixels; (c) temporal variations of the standardized
anomalies of annual summed LAI and precipitation in eastern Australia (20° S—40° S, 145° E-155° E)
and northeastern Brazil (3° S-12° S, 35° W—45° W); (d) correlation between annual averaged LAI and
annual total precipitation in the tropical latitudes (23° S-23° N). Standard deviations of LAIs and
precipitations are denoted by blue shadow and horizontal error bars, respectively.
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The anomaly time series of surface temperature and LAI correlate remarkably well, especially in
Eurasian forests with a 0.907 correlation coefficient. The linkage is stronger in Eurasia than in North
America. This is because North American boreal forests have experienced declining photosynthetic
activity due to recent warming-induced drought, wild fires and pest infestations [37]. Our results
also indicate that correlations in tundra are considerably weaker than in forests. This could be due to
fewer valid data over tundra resulting from poor Sun-sensor geometry and illumination conditions.
Nevertheless, we observe a slight warming and greening trend in Eurasian forests (p = 0.033 in a
Mann-Kendall trend test [38]). However, no statistically-significant trend is found in tundra or North
American forests (p > 0.1), which agrees with [11,35].

4.3.2. LAI Variation with Precipitation

The standardized anomalies of thirteen years of LAI and precipitation in two semiarid regions
are shown in Figure 8c. Significant coherence between LAI and rainfall anomalies are found in both
eastern Australia (r = 0.87, p < 0.001) and northeastern Brazil (r = 0.851, p < 0.001). We do not find
particular directional changes in precipitation or vegetation greenness in these two regions during the
period of our study. However, the high precipitation events leading to damaging Australian floods in
2010-2011 [39] are obvious with a peak in both precipitation and LAI variations. Moreover, we notice
a severe drought with corresponding vegetation browning occurring in northeastern Brazil in 2012,
which has been confirmed in [40].

Figure 8d shows the correlation between annual averaged LAI and annual total precipitation
in the tropical latitudes (23° S—23° N). Note that this analysis was not for a specific year, but for the
average of thirteen years. The precipitation range (04000 mm/year) was divided into 40 intervals.
The mean and standard deviation of annual averaged LAI in each of the 40 precipitation bins were
first computed for each of the thirteen years and then averaged over the thirteen years. We find a
highly significant correlation (R? = 0.97, p < 0.001) between the two variables when precipitation is less
than 2200 mm/year from where this relationship turns to saturated. Large standard deviations of LAI
within each precipitation interval indicate the role of other factors in governing plant growth [35].

5. Conclusions

The objective of this paper is to evaluate the newly-released MODIS LAI/FPAR C6 product
(MOD15A2H). This is achieved comprehensively through three independent approaches: validation
with ground measurements, intercomparison with other satellite products and comparison with
climate variables. Fifty four true LAI, 82 effective LAI and 45 FPAR ground measurements with high
reliability extracted from 113 sites were used to validate the C6 and C5 LAI/FPAR products. The results
showed that MODIS LAl is closer to true LAI rather than effective LAI, due to the clumping correction
in the algorithm. We found that MODIS C6 performed considerably better than C5 in comparisons
to true LAI measurements. The RMSE decreased from 0.80 down to 0.66, which is close to the target
accuracy (+0.5) as required by the GCOS. Both C5 and C6 showed an overestimation of FPAR over
sparsely-vegetated areas, as noted previously in other studies.

Intercomparisons with three other satellite products (GLASS, CYCLOPES and GEOV1) were
carried out at the site, continental and global scales to investigate the differences. The four products
showed similar spatial distributions of LAI and FPAR in both January and July. MODIS and GLASS
(CYCLOPES and GEOV1) were found to achieve the best agreement, most likely because the surface
reflectances used as inputs to the respective algorithms were acquired from the same instrument.
CYCLOPES underestimated LAI and FPAR systematically due to the lack of correction for clumping
effects and premature saturation. Temporal comparisons for the 2001-2004 period indicated that
the products properly captured the seasonality of different biomes, except in EBF, where the poor
quality of satellite products resulted in erratic and unrealistic seasonal profiles. The four products
showed different performances at different sites in terms of missing data, and no clear conclusion
could be drawn.
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To further imbue confidence in the LAI product, we assessed correlations between the variations
of satellite-derived LAI and station-measured temperature and precipitation data over a thirteen year
period. Statistically-significant agreements between these data series indicated that the interannual
variations in LAI are not an artifact of remote sensing data or the algorithm.

The research presented here is critical for the further understanding and proper use of C6
LAI/FPAR products in land surface models. Furthermore, the validation and intercomparison
approaches presented in this work can be used for the evaluation of similar products in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

MODIS Moderate Resolution Imaging Spectroradiometer
LAI Leaf Area Index

FPAR Fraction of Photosynthetically-Active Radiation
C5 Collection 5

Cé6 Collection 6

RT Radiative Transfer

LUT Look-Up-Table

BRF Bi-directional Reflectance Factors

NDVI Normalized Difference Vegetation Index

GSD Ground Sampling Distance

ANN Artificial Neural Network

GRNN General Regression Neural Network

tLAI True LAI

eLAI Effective LAI

QC Quality Control

GLASS Global Land Surface Satellite

BELMANIP Benchmark Land Multisite Analysis and Intercomparison of Products
TS Time Series

CRU Climatic Research Unit

WMO World Meteorological Organization

NOAA National Oceanographic and Atmospheric Administration
NASA National Aeronautics and Space Administration
EBF Evergreen Broadleaf Forest

DBF Deciduous Broadleaf Forest

ENF Evergreen Needleleaf Forest

DNF Deciduous Needleleaf Forest

ENSO El Nifio-Southern Oscillation
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