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This paper presents the theoretical basis of the algorithm designed for the generation of leaf area index and diur-
nal course of its sunlit portion from NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep
Space Climate Observatory (DSCOVR). The Look-up-Table (LUT) approach implemented in theMODIS operation-
al LAI/FPAR algorithm is adopted. The LUT, which is the heart of the approach, has been significantly modified.
First, its parameterization incorporates the canopy hot spot phenomenon and recent advances in the theory of
canopy spectral invariants. This allows more accurate decoupling of the structural and radiometric components
of themeasured Bidirectional Reflectance Factor (BRF), improves scaling properties of the LUT and consequently
simplifies adjustments of the algorithm for data spatial resolution and spectral band compositions. Second, the
stochastic radiative transfer equations are used to generate the LUT for all biome types. The equations naturally
account for radiative effects of the three-dimensional canopy structure on the BRF and allow for an accurate dis-
crimination between sunlit and shaded leaf areas. Third, the LUT entries aremeasurable, i.e., they can be indepen-
dently derived from both below canopy measurements of the transmitted and above canopy measurements of
reflected radiation fields. This feature makes possible direct validation of the LUT, facilitates identification of its
deficiencies and development of refinements. Analyses of field data on canopy structure and leaf optics collected
at 18 sites in the Hyytiälä forest in southern boreal zone in Finland and hyperspectral images acquired by the EO-
1 Hyperion sensor support the theoretical basis.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard
NOAA's Deep Space Climate Observatory (DSCOVR) mission was
launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point
where it began to collect radiance data of the entire sunlit Earth every
65 to 110min in June 2015. It provides imageries in near backscattering
directionswith the scattering angle between 168° and 176° at ten ultra-
violet to near infrared (NIR) narrow spectral bands centered at 317.5
(band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm,
433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0
(1.0) nm and 779.5 (2.0) nm (https://epic.gsfc.nasa.gov/epic). The

reflectance of vegetation reaches its maximum in the backscattering di-
rection. This phenomenon is known as the hot spot effect (Gerstl, 1999
Knyazikhin and Marshak, 1991 Kuusk, 1991 Qin et al., 1996 Ross and
Marshak, 1988). It has been widely recognized that the hot spot region
represents the most information-rich directions in the directional dis-
tribution of canopy reflected radiation (Gerstl, 1999 Goel et al., 1997
Qin et al., 2002 Ross and Marshak, 1988). The uniqueness of the
DSCOVR EPIC observing strategy is its ability to provide frequent obser-
vations of every region of the Earth in near hot spot directions that the
existing Low-Earth-Orbiting and Geostationary satellites do not have.
The EPIC level 1 data and accompanying documentation are available
from the NASA Langley Atmospheric Science Data Center (https://
eosweb.larc.nasa.gov/project/dscovr/dscovr_table).

The EPIC team is responsible for development and validation of algo-
rithms for producing a series of products which include vegetation
green Leaf Area Index (LAI) and its sunlit portion at 10 km spatial
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resolution.Whereas LAI is a standard product ofmany satellitemissions
(Garrigues et al., 2008 Yan et al., 2016b), the Sunlit Leaf Area Index
(SLAI) is a new satellite-derived parameter. Sunlit and shaded leaves ex-
hibit different radiative response to incident Photosynthetically Active
Radiation (400–700 nm) (Mercado et al., 2009 Stenberg, 1998), which
in turn triggers various physiological and physical processes required
for the functioning of plants. Leaf area and its sunlit portion are key
state parameters in most ecosystem productivity models (Bonan et al.,
2003 Chen et al., 2012 Dai et al., 2004 He et al., 2013 Mercado et al.,
2009 Norman, 1982) and carbon/nitrogen cycle (Chen et al., 2003
Doughty and Goulden, 2008 Wang et al., 2001). Our objective is to de-
velop an algorithm for the retrieval of leaf area index and diurnal course
of sunlit leaf area index from EPIC Bidirectional Reflectance Factor (BRF)
of vegetated land.

LAI and SLAI are defined as the total hemi-surface (Chen and Black,
1992) and sunlit leaf areas per unit ground area. We adapt the retrieval
approach implemented in theMODIS operational LAI/FPAR algorithm to
retrieve these parameters (Knyazikhin et al., 1998a Knyazikhin et al.,
1998b). The algorithm compares measured spectral BRF with those
evaluated from model-based entries stored in a look-up-table (LUT).
All canopy structural variables and ground reflectance for which
modeled andmeasured BRFs agreewithin uncertainties in the observed
and modeled canopy reflectances are considered as acceptable solu-
tions. The mean value of a structural variable of interest (LAI, SLAI)
and its dispersion are taken as the solution of the inverse problem and
its retrieval uncertainty. In addition to the measured BRFs, the observa-
tion and model uncertainties are also inputs to the retrieval technique
(Wang et al., 2001). The former come largely from the correction of
the in-orbit data for atmospheric and other environmental effects
whereas the latter are determined by the range of natural variation in
biophysical parameters not accounted for by the LUT.

A biome classification map is another important ancillary data layer
used as input to the algorithm. The global classification of canopy struc-
tural types utilized in the Collection 6 MODIS LAI/FPAR algorithm is
adopted (Yan et al., 2016a). Global vegetation is stratified into eight can-
opy architectural types, or biomes. The eight biomes are grasses and cere-
al crops, shrubs, broadleaf crops, savannas, evergreen broadleaf forests,
deciduous broadleaf forests, evergreen needle leaf forests and deciduous
needle leaf forests. The biome map reduces the number of unknowns in
the inverse technique through the use of simplifying assumptions. The
LUT is generated for each biome type. The 8-biome map is provided by
the MODIS Global Land Cover Type product (https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table).

Thus, the EPIC algorithm inputs BRFs at red (680.0 nm) and NIR
(779.5 nm) spectral bands, their uncertainties, canopy structural type,
and outputs mean LAI, SLAI and their dispersions. The LUT is a key ele-
ment of the retrieval technique that determines its performance. Our
primary objective is to develop a new LUT that incorporates recent ad-
vances in the theory of canopy spectral invariants, accounts for the
uniqueness of the EPIC observation geometry and allows for the integra-
tion of retrieving SLAI into the operational MODIS LAI algorithm. Our
goal is not only to incorporate spectral invariants into the retrieval tech-
nique but also resolve known issues in the theory. The hot spot phe-
nomenon is one of them. A special emphasis therefore is given to its
integration into the spectral invariant technique.

Whereas protocols for validation of satellite derived LAI are well ad-
vanced (Garrigues et al., 2008), there are neither ground truth SLAI data
nor methods for obtaining such data from fieldmeasurements. Our sec-
ondary objective therefore is to outline approaches to groundmeasure-
ments that would allow us not only to validate satellite derived SLAI but
also help product developers to identify deficiencies in the operational
algorithm and develop refinements.

This paper is organized as follows. A parameterization of the process
of photon-canopy interactions in terms of spectrally invariant parame-
ters and how they are linked to variables measurable in the field are
discussed in Section 2 and Appendices A–C. Study area, field data on

canopy structure, leaf and ground spectral reflectance as well as
hyperspectral images needed to validate the LUT are described in
Section 3. The stochastic radiative transfer equations are used to gener-
ate the LUT entries. Its initialization and analyses of its ability to provide
relationships between BRF and canopy structural variables are demon-
strated in Sections 4, 5 and Appendix D. The differences between the
MODIS and EPIC LUTs are discussed in Section 6. Finally, Section 7 sum-
marizes the results.

2. Theoretical basis

We introduce a directional variable, Visible Fraction of Leaf Area,
VFLA(Ω) defined as the fraction of the total hemi-surface leaf area that
is visible from outside the canopy along the direction −Ω. Visible Leaf
Area Index, VLAI(Ω), in the direction Ω is the product of LAI and VFLA.
Their values give the Sunlit Fraction of Leaf Area (SFLA) and Sunlit
Leaf Area Index (SLAI) in the hot spot direction, i.e., when the direction
Ω coincides with the direction to the sun. Understanding the relation-
ship between canopy BRF, VFLA and VLAI is our main focus.

The fraction of photons incident on the canopy that are intercepted
by phytoelemets is called the canopy interceptance (Stenberg et al.,
2016). The canopy directional uncollided transmittance is the fraction
of photons that are transmitted directly through gaps in the canopy.
These variables depend on canopy structure and vary with the solar di-
rection.We use the symbols i0(Ω) and t0(Ω) to signify the interceptance
of, and directional uncollided transmittance through, the vegetation il-
luminated from above by a monodirectional beam in the direction
−Ω. Clearly, i0(Ω)+ t0(Ω)=1. Note that t0(Ω) can be estimated from
field measurements of canopy transmitted radiation using, e.g., a direc-
tional gap fraction sensor LAI-2000 PCA (Rautiainen and Stenberg,
2015). The VFLA(Ω), i0(Ω) and t0(Ω) do not depend on wavelength.

The intercepted photons initiate the process of photon-canopy mul-
tiple interactions. We will use the concept of recollision probability to
describe this process (Huang et al., 2007 Knyazikhin et al., 2011
Stenberg, 2007 Stenberg et al., 2016 Wang et al., 2003). This variable
is the probability that a photon scattered by a phytoelement in the can-
opywill interact within the canopy again. The scattered photons can es-
cape the vegetation through gaps between phytoelements. This event is
quantified by the escape probability. Fig. 1 illustrates these definitions.
The solid arrows depict photons incident on both sides of leaf surfaces
from different directions. Their total number is N. A fraction of these
photons will be scattered and hit leaves again (dashed arrows). The

Fig. 1. Recollision and escape probabilities. Solid arrows depict photons incident on leaf
surfaces from different directions. A fraction of these photons will be scattered and hit
leaves again (dashed arrows). The scattering event is quantified by the wavelength
dependent leaf albedo, ωλ, defined as the fraction of radiation incident on a leaf that is
reflected or transmitted. Given total numbers, N and N′, of photons incident on leaf
surfaces before (“solid arrows”) and after one interaction (“dashed arrows”) with leaves,
the recollision probability is just p=N′/(ωN). The directional escape probability is the
probability by which a scattered photon will escape the vegetation in a given direction
Ω (“dash-dot arrows”).
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scattering event is quantified by thewavelength dependent leaf albedo,
ωλ, defined as the fraction of radiation incident on the leaf that is
reflected, or transmitted. Let N′ be the total number of scattered pho-
tons that hit leaves (“dashed arrows” in Fig. 1). Given N, N′ and ωλ,
the recollision probability is p=N′/(ωλN). With the probability (1−p)
the scattered photonswill escape the vegetation. Their angular distribu-
tion is given by the directional escape probability density, ρ(Ω), defined
as ρ(Ω)∣μ ∣dΩ=πM(Ω)dΩ/(ωλN). Here M(Ω)dΩ is the number of
scattered photons exiting the canopy in the direction Ω (“dash-dot ar-
rows”); μ=cosθ and θ is the polar angle of Ω. Spherical integration of
π−1ρ(Ω)∣μ ∣ results in (1−p). Note that whereas the leaf albedo de-
pends onwavelength, the recollision and escape probabilities are deter-
mined by the structure of the canopy rather than photon frequency or
the optics of the canopy (Knyazikhin et al., 2011). Our goal is to param-
eterize the process of photon-canopy interactions in terms of spectrally
invariant parameters that include VFLA, canopy interceptance,
recollision and escape probabilities.

2.1. A simple canopy radiative regime, VFLA and spectral invariants

It follows from the above definitions that the recollision and escape
probabilities depend on radiation field in the vegetation canopy, i.e., on
themagnitude and angular distribution of radiation incident on leaf sur-
faces. We start our analyses with the simplest case where non-absorb-
ing leaves (ωλ=1) in a vegetation canopy are illuminated by spatially
independent isotropic radiation. Here we use a simple stochastic
model of canopy structure to evaluate the spectrally invariant parame-
ters. In this model the vegetation canopy is treated as a stationary
Poisson germ-grain stochastic process (Fig. 2 and Appendix A). For
each realization of the canopy structure we count (a) scattered photons
that recollide or (b) exit the canopy in a given direction Ω, and (c) leaf
area (number of segments, Fig. 2b) from which scattered photons can
exit the canopy through gaps along the directionΩ. From this statistics,
canopy interceptance, i0(Ω), visible fraction of leaf area, VFLA(Ω),
recollision,piso, and directional escape, ρiso(Ω), probabilities are estimat-
ed (Appendix A).We use the subscript “iso” to designate the special case
when leaves are subjected to isotropic radiation. In Sections 2.3–2.4 we
will analyze this technique in the case of more realistic heterogeneous
canopies under varying within-canopy radiation field.

In our simple model, the directional uncollided transmittance fol-
lows Beer's exponential transmission law, i.e., t0(Ω)=exp(−τ(Ω))
where τ(Ω)=G(Ω)LAI/∣μ ∣ represents the mean optical path in the di-
rection Ω and G(Ω) is the geometry factor defined as the mean projec-
tion of unit leaf area onto a plane perpendicular to the direction Ω

(Ross, 1981 Stenberg, 2006). The visible leaf area index can be estimated
as VLAI= i0(Ω)|μ |/G(Ω) (Wilson, 1967). It follows from these relation-
ships that the visible fraction of leaf area is the ratio between canopy
interceptance and the mean optical path, which can be expressed in
terms of the canopy directional uncollided transmittance as

VFLA Ωð Þ ¼ 1−t0 Ωð Þ
∣ ln t0 Ωð Þð Þ∣

: ð1Þ

Fig. 3a shows VFLA vs. LAI curve derived from the stochastic simula-
tions of canopy structure can be accurately approximated by Eq. (1) in
the case of spherically oriented leaves. Fig. 3b shows that this is true
for other types of leaf orientation.

Eq. (1) is expressed in terms of the directional uncollided transmit-
tance, a variable that can be estimated from field measurements of can-
opy transmitted radiation (Rautiainen and Stenberg, 2015). In real
canopy the mean optical path depends on foliage clumping. For exam-
ple, if we replace discs in the stochastic model with coniferous shoots
the mean optical path becomes τ(Ω)=G(Ω)fLAI/∣μ ∣. The clumping fac-
tor f converts area of needles on the shoot to the shoot silhouette area,
which actually is the visible fraction of needle areas of the shoot. The
VFLA calculated using Eq. (1) should be multiplied by the clumping fac-
tor, f, to obtain its true value. In the general case Eq. (1) therefore results
in the effective VFLA, i.e., visible leaf area, VLAI, normalized by the effec-
tive leaf area, f ∙LAI. The visible leaf area index is then VLAI=VFLA ∙ f ∙LAI.
It follows from this simple relationship that VLAI is independent of the
clumping factor in the sense that its specification does not depend on
whether true values, (VFLA ∙ f) and LAI, or their effective counterparts,
VFLA and (f ∙LAI), are used. This property provides a simple approach
to derive VLAI from field data. Indeed, both the effective VFLA and effec-
tive LAI can be estimated from measured directional uncollided trans-
mittance. The former is calculated using Eq. (1) whereas the latter
using the standard technique based on Miller (1967) equation.

In our simple model, the directional escape probability density is re-
lated to canopy interceptance as

ρiso Ωð Þ ¼ 0:5
i0 Ωð Þ
LAI

: ð2Þ

Spherical integration of π−1ρiso(Ω)∣μ ∣ results in the following relation-
ships

1
π

Z

4π

ρiso Ωð Þ μj jdΩ ¼ 1−piso ¼
idif
LAI

: ð3Þ

Fig. 2. Stochastic model of canopy structure. Points are scattered in a volume V according to a stationary Poisson point process of intensity d (panel a). On each of these points a disc of
radius r (panel b) is placed. Their random orientation is generated with a leaf normal distribution function. The discs represent bi-Lambertian leaves, i.e., the incident photons are
reflected from, or transmitted though, the disc in a cosine distribution about its upward normal. The disc is divided into n equal areas, which represent smallest resolvable scale. Panel
(a) shows a realization of canopy structure with 207 leaves, each containing n = 36 equal areas. The leaf radius to canopy height ratio, r/H, and mean leaf area volume density, uL, are
0.03 and 0.5, respectively. Leaf normals are shown as blue bars. More details are in Appendix A.
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Here idif is the interceptance of the vegetation canopy illuminated by the
isotropic sky radiation. This relationship was originally documented in
Stenberg (2007). It follows from Eqs. (2) and (3) that

ρiso Ωð Þ
1−piso

¼ 0:5
i0 Ωð Þ
idif

: ð4Þ

The left hand side of this equation is the fraction of photons exiting the
canopy in the directionΩ relative to the total number of canopy leaving
photons. Air- and satellite-borne sensors measure the canopy reflected
radiation and thus the fraction of exiting photons can potentially be es-
timated from satellite data. On the other hand, it can also be derived
from canopy directional uncollided transmittance. Eq. (4) therefore
provides an important link between satellite and ground-based
measurements.

Thus the VFLA, fraction of canopy leaving photons, recollision and
escape probabilities for our simple model are expressed in terms of
structural variables, i0(Ω) and idif, which in turn can be estimated from
below canopy measurements of the canopy directional uncollided
transmittance using, e.g., the LAI-2000 plant analyzer (Rautiainen et
al., 2009 Rautiainen and Stenberg, 2015 Stenberg, 2007). The VLAI and
consequently SLAI can be estimated from VFLA without knowledge of
foliage clumping and leaf normal orientation. Theoretically the VFLA
could be derived from measurements of the above canopy radiation
using Eqs. (1)–(4) if leaves were illuminated by a spatially homoge-
neous isotropic radiation. This of course is not the case in reality. The
question then arises if there is a relationship between this simple case
and real canopy reflectance. This will be discussed in Sections 2.3–2.4,
which generalize the results to 3D heterogeneous canopy structure in-
cluding clumping.

2.2. Stochastic reflecting boundary

The BRFof the vegetation reaches itsmaximum in the backscattering
direction. This is so-called hot spot effect. The EPIC sensor therefore sees
the brightest portion of the canopy reflected radiation. To account for
the hot spot phenomenon in the spectral invariants we introduce a sto-
chastic reflecting canopy boundary as points on leaf surfaces from
which incident photons can enter the vegetation canopy. For a vegeta-
tion canopy illuminated by a monodirectional solar beam, the sunlit
leaves form the boundary, which depends on the direction, −Ω0, of
the incident beam and the distribution of sunlit leaves within the cano-
py space. Since the sunlit leaves can occur, with a certain probability,
anywhere in the canopy, the boundary is subjected to both the direct

solar beam and within-canopy diffuse radiation. The boundary scatters
the intercepted photons, which in turn can exit or enter the canopy.
The direct incident beam causes leaf shadowing. At strongly absorbing
wavelength such as the blue or red spectral intervals a fraction of pho-
tons scattered by the boundary that enter the canopy will be absorbed
with a high probability. This makes the diffuse radiation negligible.
The canopy reflected radiation is mainly determined by the canopy
boundary in this case. Atweakly absorbingwavelength, e.g., the near in-
frared spectral region, the diffuse radiation is strong, which in turn
tends to weaken the shadows and consequently makes the sunlit and
shaded leaves less contrasting (Kuusk, 1991 Nilson, 1991).

The canopy boundary is an important structural parameter that im-
pacts canopy reflective properties. To characterize its stochastic proper-
ties we use a Bi-directional Sunlit Fraction of Leaf Area, BSFLA(Ω&Ω0),
defined as a fraction of leaf area that is simultaneously visible from out-
side the canopy along directions,−Ω and−Ω0. Fig. 4a shows BSFLA for
our simple stochastic model. We also plot VFLA(Ω), VFLA(Ω)VFLA(Ω0)
(Fig. 4a) and the correlation coefficient of VFLA(Ω) and VFLA(Ω0)
given by Eq. (A2) (Fig. 4b). There are two important features notewor-
thy in relation between the leaf areas. First, the events of seeing gaps
from leaf surfaces in two directions are not independent (Fig. 4b and
Eq. (A2) in Appendix A). This is effect of finite sizes of the foliage
(Kuusk, 1991 Nilson, 1991), which in turn causes the canopy hot spot
effect, i.e. a sharp increase in canopy reflected radiationwhen scattering
directionΩ approaches the direction to the sunΩ0 (Kuusk, 1991Nilson,
1991 Qin et al., 1996 Ross and Marshak, 1988). Second, with the in-
crease in the angle between Ω0 and Ω, the correlation decreases from
its maximum to zero, and then levels off (Fig. 4b). Its width decreases
with a decrease of leaf sizes and vanishes for infinitesimal scatters. Be-
yond a point at which the correlation saturates, the events become
uncorrelated.

The fraction of leaf surface areas “visible” outside the canopy along
the direction −Ω can be expressed as VFLA(Ω) =[1−hiso(Ω; -
Ω0)]VFLA(Ω)+hiso(Ω;Ω0)VFLA(Ω). The summands represent fractions
of shaded and sunlit leaf areas (Appendix A), and hiso is the correlation
coefficient of VFLA(Ω) and SFLA (Fig. 4b). The probability that photons
scattered by shaded leaves will exit the vegetation in the direction Ω
is [1−hiso(Ω;Ω0)]ρiso(Ω) (Appendix A). Some of the photons scattered
by the boundary will escape vegetation canopy with unit probability.
Their fraction is given by jiso(Ω;Ω0)h(Ω;Ω0) where jiso is the anisotropy
of the boundary reflected radiation, which is determined by the area
scattering phase function and geometry factor (Appendix A).

Thus, the escape probability density, ρb,iso(Ω;Ω0), for our simple
model with the stochastic boundary in the direction Ω0 is a weighted

Fig. 3. Visible Fraction of Leaf Area (VFLA). Panel a: VFLA for spherically oriented leaves as a function of Leaf Area Index (LAI) for a zenith angle of 9.44° estimated directly from the
stochastic model (legend “Stochastic model”) and calculated with Eq. (1) (legend “Equation”). Panel b: Correlation between VFLA estimated from the stochastic model (vertical axis)
and Eq. (1) (horizontal axis) for LAI and zenith angle ranges from 1 to 8, and from 0° to 60°, respectively. The scatter plot includes spherical, planophile, erectophile, plagiophile,
extremophile and uniform leaves (Appendix A). The VFLAs from the stochastic model were estimated as described in Appendix A.
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sum of the escape probabilities for shaded and sunlit leaves, i.e.,
ρb,iso(Ω;Ω0)=[1−hiso(Ω;Ω0)]ρiso(Ω)+ hiso(Ω;Ω0)jiso(Ω;Ω0). Spheri-
cal integration of π−1ρb,iso(Ω)∣μ ∣ results in (1−pb,iso) where pb,iso is
the recollision probability. Some of the boundary scattered photons
will escape the vegetation with unit probability. This lowers the proba-
bility for photons to recollide (i.e., pb,iso≤piso) and consequently en-
hances the likelihood of photons escaping the vegetation (i.e.,
ρb,iso(Ω;Ω0)≥ρiso(Ω)). Our next step is to demonstrate validity of
these relationships in the general case of 3D heterogeneous canopy.

2.3. Generalization to 3D heterogeneous vegetation canopies

The goal of this section is to generalize our results presented in
Sections 2.1 and 2.2. This will be done based on analyses of the stochas-
tic radiative transfer equations (SRTE) (Appendix B). These equations
accurately account for the canopy structure over a wide range of scale
through the use of the pair-correlation function (Huang et al., 2008).
Here we focus on the 3D vegetation canopy bounded from below by a
non-reflecting surface. A physically based technique to account for con-
tributions from reflecting canopy backgroundwill be detailed in Section
5 as part of our validation efforts.

Let the 3D vegetation canopy bounded from below by a non-
reflecting surface be subjected to a monodirectional beam in the direc-
tion−Ω0. We represent the directions to the Sun,Ω0, and sensor,Ω, by
cosines of the sun, μ0=cosθ0, and sensor, μ=cosθ, polar angles, and
their associated azimuths. The sunlit leaves in the direction Ω0 form
the canopy boundary. The incoming photons scattered by the boundary
will interact with both shaded leaves and the boundary. The singly
scattered photons that have not exited the canopy undergo the second
interaction, resulting in a radiation field generated by photons scattered
two times. A fraction of these photons in turnwill recollide and give rise
to a radiation field generated by photons scattered three times, etc. Let
Im(z,Ω) and Fm be the horizontal average radiance of radiation field gen-
erated by photons scatteredm times and associatedmean irradiance on
leaf sides (Eq. (B2) in Appendix B.1), respectively. By definition (Fig. 1),
the escape and recollision probabilities are ρm(Ω;Ω0)=πIm(zb,Ω)/
(ωλFm−1) and pm=Fm/(ωλFm−1). Here zb=0 represents the upper ho-
rizonal surface above the canopy in the case of upward directions, and
a surface beneath the canopy, zb=H, for downward directions. Here
symbols Ω and −Ω designate upward and downward directions. We
start our analyses assuming that the foliage does not absorb radiation
i.e., ωλ=1.

The Directional Area Scattering Function (DASF) is defined as the
BRF of a vegetation canopy with non-absorbing leaves (ωλ=1) and

bounded underneath by a non-reflecting surface (Knyazikhin et al.,
2013). It can be expanded in successive order of scattering, or in Neu-
mann series (Huang et al., 2007),

DASF Ω;Ω0ð Þμ0
¼ ρ1 Ω;Ω0ð Þ þ ρ2 Ω;Ω0ð Þθ1 þ…þ ρmþ1 Ω;Ω0ð Þθmm þ⋯

! "
i0 Ω0ð Þ; ð5Þ

where θm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2…pmm

p
. The escape probability corresponding to the

mth scattering order can be represented as

ρm Ω;Ω0ð Þ ¼ 1−hm Ω;Ω0ð Þ½ &ρ0m Ωð Þ þ jiso Ω;Ω0ð Þhm Ω;Ω0ð Þ: ð6Þ

Here ρm and ρ0m are escape probability densities for canopies with
and without the stochastic boundary, respectively, and hm is the corre-
lation coefficient calculated as detailed in Appendix B.2. Integration of
π−1ρm ∣μ ∣ over the unit sphere results in 1−pm (Huang et al., 2007).
The aim of this subsection is to understand relationships between ρiso,
piso, ρm and pm. Here we closely follow the theory documented in
Huang et al. (2007). All calculations were performed using the stochas-
tic radiative transfer equations.

Fig. 5 shows the escape, ρm(Ω;Ω0), and recollision, pm, probabilities
as functions ofm. For view directions outside of the hot spot region, i.e.,
hm(Ω;Ω0)~0 and ρm(Ω;Ω0)~ρ0m(Ω), the escape probabilities for up-
and downward directions varywith the number of successive scattering
and reach plateaus from above and below after about 7–8 iterations
(Fig. 5a). The semi-sum, ρmðΩ;Ω0Þ ¼ 0:5½ρmðΩ;Ω0Þ þ ρmð−Ω;Ω0Þ&,
saturates faster, after two to three scattering events in this example.
The corresponding recollision probability pm is related to ρm via Eq.
(3) and thus it converges at the same or a faster rate. The limits ρm
and pm approximate ρb,iso(Ω) and pb,iso. In the hot spot direction (Fig.
5b), i.e., when Ω~ Ω0 (and hm(Ω;Ω0)~1), the escape probability
ρm(Ω;Ω0) is almost independent of the scattering order and approxi-
mates jiso(Ω;Ω0)hm(Ω;Ω0), suggesting a negligible variation of hm
with m.

Fig. 6a shows an important feature of radiation fields corresponding
to scattering orders at which the escape probability density saturates:
I8(z,Ω;Ω0) is proportional to I7(z,Ω;Ω0), i.e., I8(z,Ω;Ω0)=p8I7(z,Ω;Ω0).
It means that the radiative field generated by photons scattered 7 times
is reduced by a factor p8 as result of one interaction. The coefficient of
proportionality is the recollision probability, i.e., p8=F8/F7 (Huang et
al., 2007). It follows from these relationships that I8(z,Ω;Ω0)/
F8= I7(z,Ω;Ω0)/F7. This example illustrates a fundamental property of
the 3D radiative transfer equation, i.e., the sequences pm=Fm/Fm−1

and em(z,Ω;Ω0)= Im(z,Ω;Ω0)/Fm, m=1,2 ,⋯, converge to the unique

Fig. 4. Bi-directional Sunlit Fraction of Leaf Area, BSFLA(Ω&Ω0), derived from the stochasticmodel of canopy structure (Fig. 2). Panel a: BSFLA(Ω&Ω0) as a function of zenith angle θ of the
directionΩ (legend “BSFLA”). Zenith angle ofΩ0 is 41°. Also shown are VFLA(Ω) (legend “VFLA”) and VFLA(Ω)VFLA(Ω0) (legend “VFLA*SFLA”). Here r/H=0.005; d=6366; uL=πr2d=
0.5. Panel b: Correlation coefficient of VFLA(Ω) and SFLA=VFLA(Ω0) as a function of θ for relative leaf sizes r/H=0.01, 0.005 and 0.0025. Its definition is given in Appendix A.
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positive eigenvalue p∞ of the radiative transfer equation, corresponding
to the unique positive (normalized to unity) eigenvector e∞(z,Ω;Ω0)
(Huang et al., 2007 Vladimirov, 1963). For a sufficiently large number
of scattering events, the radiance Im(z,Ω;Ω0) and, consequently, the es-
cape probability density can be accurately approximated as Im(z,Ω; -
Ω0)=p∞

m e∞(z,Ω;Ω0) and ρm(Ω;Ω0)=p∞e∞(zb,Ω;Ω0). In this example
em reaches its limit after 6–7 iterations, i.e., Im(z,Ω;Ω0)=p∞

m

e7(z,Ω;Ω0), and because pm saturates after two to three scattering
events (Fig. 5a), p∞ ≈ ffiffiffiffiffiffiffiffiffiffi

p1p2
p ≈ piso. In general case the rate of conver-

gence depends on p∞: the higher its value, the slower the convergence
(Huang et al., 2007).

Fig. 6b illustrates Eq. (6) form=7. The boundary lowers the proba-
bility for photons to recollide and consequently enhances the likelihood
of photons escaping the vegetation. This is seen in Fig. 6b:ρm(Ω;Ω0) dif-
fers from ρ0m(Ω) by factor (1−h7) and therefore ρm(Ω;Ω0)≥ρ0m(Ω).
This yields an opposite inequality for the recollision probabilities. The
escape probability densities ρ0m(Ω) and ρ0m(−Ω) converge to their
limits almost symmetrically from above and below for all directions.
Their semi-sum therefore approximates ρiso(Ω) for all directions, too.
This is because the sensitivity of the term ρ0m(Ω) to Ω0 diminishes

with the scattering orderm. Its limit becomes independent on the direc-
tion of the incident beam in the case of canopies without stochastic
boundary.

Solutions of the radiative transfer equation describe photons just be-
fore their interactions with scattering centers. In vegetation canopies it
is radiance incident on the leaf surface. Distribution of photons just after
their interactions is treated as distribution of sources on leaf surfaces,
which is given by the source function (Eq. (B3) in Appendix B.1). Fig.
7a shows vertical profiles of the horizontal and angular averages of
source functions, Sm, generated by the normalized radiance em(z,Ω) in-
cident on leaf surfaces. Spherical integration of em(z,Ω) (as defined by
Eq. (B3) in Appendix B.1) significantly lowers the angular variation in
the source function (Davis and Knyazikhin, 2005 Knyazikhin et al.,
2011). In this example the coefficient of angular variation of the source
function (std/mean) is below 1.7% (Fig. 7b).

Thus, the scattering properties of the vegetation canopy are calculat-
ed as the sum of contributions from photons of different scattering or-
ders (Eq. (5)). For sufficiently large m, the within canopy radiation
regime is generated by spatially varying almost isotropic sources on
leaf surfaces (Fig. 7). This feature makes the radiative regime similar

Fig. 5. Panel a: Directional escape probability densities in up-, ρm(Ω), and downward, ρm(−Ω), directions, their mean, 0.5[ρm(Ω)+ρm(−Ω)] (left axis), and recollision probability, pm
(right axis) for 11 scattering orders. Here solar zenith angle (SZA) and view zenith angle (VZA) are 41° and 49.1°, respectively. Panel b: Directional escape probabilities in up-, ρm(Ω),
and downward, ρm(−Ω), directions for SZA = VZA = 49.1° and 11 scattering orders. ρiso(Ω) is shown on both plots. The stochastic radiative transfer equations were used to derive
these variables. LAI = 5, ground cover was 0.8.

Fig. 6. Panel a: Relationship between I8(z,Ω;Ω0) and I7(z,Ω;Ω0) for z=0,0.2,0.4,⋯ ,1 (in relative units) and 217 upward directions. Panel b: Escape probabilities ρ7(Ω;Ω0), ρ07(Ω)
(vertical axis on the left side) and the correlation coefficient h7 (vertical axis on the right side) in the principal plane as functions of view zenith angle of Ω. The probabilities are
related as ρ7(Ω;Ω0)=(1−h7)ρ07(Ω)+h7jiso(Ω;Ω0) where the correlation coefficient h7 was calculated as described in Appendix B.2. The stochastic radiative transfer equations with
inputs as in Fig. 5 were used to derive these variables.
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to our simple model where the leaf-scattered radiation generates per-
fectly isotropic sources. Spatial variation of sources does not impact
the recollision and escape probabilities. This is not true for low scatter-
ing orders. Our next step is to understand their impact on the average
escape and recollision probabilities.

2.4. DASF and BRF

Based on Eq. (5) we define the average escape probability density as

ρA Ω;Ω0ð Þ ¼ ∑
∞

m¼1
ρm Ω;Ω0ð Þwm−1: ð7Þ

The weightwm=θmm/∑k=0
∞ θkk, with θ0 set to 1, accounts for the con-

tribution of the mth scattering order. Because spherical integration of
π−1ρm(Ω)∣μ ∣ results in 1−pm for eachm (Huang et al., 2007), the aver-
age escape probability also follows this relationship, i.e.,

1
π

Z

4π

ρA Ω;Ω0ð Þ∣μ∣dΩ ¼ 1− ∑
∞

m¼1
pmwm−1 ¼ 1−pA; ð8Þ

where pA is the average recollision probability (Stenberg, 2007
Stenberg et al., 2016). Note that the weight wm can be expressed
as wm=θmm(1−pA). In terms of these notations the DASF takes the fol-
lowing form,

DASF Ω;Ω0ð Þ ¼ ρA Ω;Ω0ð Þi0 Ω0ð Þ
1−pA

: ð9Þ

The escape and recollision probabilities were introduced as condi-
tional probabilities, i.e., they refer to photons that “survive” the scatter-
ing event (Fig. 1). The joint probabilities of recollision, escape and
scattering events are ωλρA and ωλpA. The BRF therefore becomes,

BRFλ Ω;Ω0ð Þ ¼ ωλρA Ω;Ω0ð Þi0 Ω0ð Þ
1−ωλpA

¼ DASF∙Wλ pAð Þ; ð10Þ

where

Wλ pAð Þ ¼ ωλ
1−pA

1−ωλpA
; ð11Þ

is the canopy scattering coefficient (Knyazikhin et al., 2013 Lewis and
Disney, 2007 Smolander and Stenberg, 2005 Stenberg et al., 2016). Eq.
(10) is the solution of the stochastic radiative transfer equations for
the mean radiance formulated for a vegetation canopy bounded from
below by a non-reflecting surface. We point out some features that are

useful for developing inverse remote sensing techniques and their
validation.

First, for vegetation canopies with a dark background or for suffi-
ciently dense vegetation where the impact of the canopy background
is negligible, the DASF and the scattering coefficient can be directly re-
trieved from the BRF spectrum without the use of canopy reflectance
models, prior knowledge, or ancillary information regarding the leaf op-
tical properties using a simple algorithm documented in Knyazikhin et
al. (2013). TheDASF, which is stored in the LUT, can be directly assessed
using hyperspectral reflectance data acquired over dense canopies. We
also use this algorithm to obtain the average escape and recollision
probabilities from solutions of the stochastic radiative transfer equa-
tions (Appendix C).

Second, the decomposition Eq. (6) is also valid for the average es-
cape probability density, i.e., ρA is a weighted sum of the averaged es-
cape probability densities for shaded, ρ0A(Ω), and sunlit, jiso(Ω;Ω0),
leaves. The DASF therefore can be represented as

DASF Ω;Ω0ð Þμ0 ¼ 1−h Ω;Ω0ð Þ½ &ρ0A Ωð Þi0 Ω0ð Þ
1−pA

þ h Ω;Ω0ð Þ jiso Ω;Ω0ð Þi0 Ω0ð Þ
1−pA

¼ 1−h Ω;Ω0ð Þ½ &DASF0 Ω;Ω0ð Þμ0 þ h Ω;Ω0ð ÞDASFb Ω;Ω0ð Þμ0:

ð12Þ

Fig. 8a shows the average probabilities ρA(Ω;Ω0), ρ0A(Ω;Ω0), and
the correlation coefficient h. Our analyses suggest that the correlation
coefficient varies insignificantly with scattering order (Fig. 5b). Fig. 8b
reinforces this feature: the correlation coefficient derived from full solu-
tions of the stochastic radiative transfer equations compares well with
its 7th order approximation. This property has a simple physical inter-
pretation. Indeed, photons scattered by the boundary toward the sun
will escape vegetation with unit probability. Their amount depends on
the boundary area, which in turn is determined by the canopy structure
rather than within-canopy radiation regime.

Finally, the semi-sum ρ0mðΩÞ and geometric mean θm of
recollision probabilities converge to ρiso(Ω) and piso very fast
(Fig. 5a). Approximating ρ0mðΩÞ and θm in Eq. (7) by their limiting
values, one obtains an approximation of the average semi-sum,
i.e., ρ0AðΩÞð1−pisoÞ=ð1−pAÞ ≈ ρisoðΩÞ: For view directions outside of
the hot spot region therefore the following relationship takes place,

ρiso Ωð Þ
1−piso

i0 Ω0ð Þ ≈ ρA Ωð Þ
1−pA

i0 Ω0ð Þ: ð13Þ

The left hand side of this equation is the Directional Area Scattering
Factor, DASFiso, in the case when leaves are subjected to isotropic radia-
tion. This variable can be estimated from below canopy measurements

Fig. 7. Vertical profiles of horizontal and angular averages of source functions (panel a) and coefficient of variation (std/mean, panel b) due to radiative filed em(z,Ω) for 10 scattering
orders. The dimensionless vertical axes show values of z/H where H is the canopy height. The stochastic radiative transfer equations with inputs as in Fig. 5 were used. The source
function is defined by Eq. (B3).
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of the canopy directional uncollided transmittance using Eq. (4). Eqs.
(1)–(4) therefore provide a basis for validation of the radiative transfer
approach and assessments of retrieval techniques based on this
approach.

Thus the BRF of a vegetation canopy bounded from below by a non-
reflecting surface is expressed as a solution of the stochastic radiative
transfer equations parameterized in terms of the measurable spectrally
invariant parameters. This underlies our theoretical basis for developing
LUT for the use with the DSCOVR EPIC data.

3. Study area and data used

3.1. Site description

This research is focused on Hyytiälä forest (Fig. 9) in the southern
boreal zone in central Finland (61°50′N, 24°17′E). Dominant tree spe-
cies areNorway spruce (Picea abies), Scots pine (Pinus sylvestris) and Sil-
ver birch (Betula pendula). Understory vegetation is classified as xeric,
sub-xeric, mesic or herb-rich vegetation based on the species richness
and abundance. The understory typically consists of two layers: the
ground layer, which is mainly composed of mosses and lichens, and
the upper layer, which is composed of, for example, dwarf shrubs and
grasses. The growing season typically begins in early May and senes-
cence in late August. Eighteen study sites representing different species
and understory compositions were chosen for our analyses (Table 1). A
detailed description of the study sites can be found in Heiskanen et al.
(2013).

3.2. Field data

Data used in our researchwere sampledduring peak growing season
(June–July) on 18 locations (Fig. 9) in 2010 and 2012 (Lukeš et al., 2013
Rautiainen and Lukeš, 2015 Rautiainen et al., 2011).

The effective leaf area index and canopy directional uncollided
transmittances were estimated from LAI-2000 Plant Canopy Analyzer
data collected on selected locations between June 22 and July 4, 2010
when foliage had reached its maximum size. The measurements were
taken shortly after (before) sunset (sunrise), or during overcast days,
when forestwas illuminated only by diffuse light. The sampling scheme
was a cross with 12 measurement points: two perpendicular 6-point
transects with 4-meter intervals between the measurement points.
The forest measurements were made without view restrictors. The un-
derstory was excluded from the field of view since the measurements
were taken at a height of 0.7 m. In addition to LAI-2000 measurements,
stand basal area (BA), fractions of pine, spruce and birch trees (based on
basal area), mean stem diameter at breast height (DBH), mean crown
lengths and understory type for all 18 plots were measured (Table 1).
The stand density was calculated as BA/[π ∙(0.5DBH)2] (in stem/m2).
Angular profiles of canopy directional uncollided transmittances and ef-
fective LAI are shown in Fig. 10a. A detailed description of the measure-
ments is documented in Heiskanen et al. (2012)and Rautiainen and
Lukeš (2015).

Nadir hemispherical-conical reflectance factors (HCRF) of the un-
derstory in the spectral region from 325 nm to 1075 nm at spectral res-
olution of approximately 3 nm at 700 nmweremeasured between June

Fig. 8. Panel a: Average escape probabilities ρA(Ω;Ω0), ρ0A(Ω) (vertical axis on the left side) and the correlation coefficient h (vertical axis on the right side) as functions of view zenith
angle of Ω. Panel b: Comparison of the correlation coefficients derived from the SRTE (horizontal axis) and radiative field generated by photons scattered 7 times (vertical axis).

Fig. 9. Hyytiälä forest and distribution of study sites. The true color composite image is from Hyperion hyperspectral cube acquired on July 3, 2010.
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29 and July 6, 2010 under diffuse light conditions using a FieldSpec UV/
VNIR Spectroradiometer without fore-optics (i.e. the field-of-view was
25°). Forty measurement points were made for each understory type at
intervals of 0.7 m on a 28 m long permanent transect. The ground area
sampled at each point was approximately a circle with radius of 25 cm
(Rautiainen et al., 2011). Spectra of understory HCRFs are shown in Fig.
10(b). Note that we follow standard reflectance nomenclature used in re-
mote sensing (Martonchik et al., 2000 Schaepman-Strub et al., 2006)

Directional-hemispherical reflectance (DHRF) and transmittance
(DHTF) of abaxial and adaxial sides of Norway spruce, Scots pine and
Silver birch needles and leaves from theHyytiälä forestsweremeasured
under laboratory conditions using ASD RTS-3ZC integrating sphere and
ASD FieldSpec 3 PRO spectroradiometer in the spectral interval from
350 to 2500 nm with a spectral resolution of 3 nm at 700 nm and
10 nm at 1400 and 2100 nm between June 11 and 28, 2012 (Lukeš et
al., 2013). Leaf albedowas calculated as sumof DHRF andDHTF. Tomea-
sure conifer needle optical properties, the needles were secured in a
special holder developed by Malenovský et al. (2006) at distances
equal to or smaller than their thickness. The needle samples were
scanned using a desktop document scanner, from which between-nee-
dle gap fractions were estimated using Otsu's automatic threshold
method (Otsu, 1975). The gap fraction was used to correct DHRF and
DHTF of conifer needles. A detailed description of this data set andmea-
surement technique are documented in Lukeš et al. (2013). Mean spec-
tra of leaf albedos used in our research are shown in Fig. 10(c).
Maximum values of standard deviations were 0.029 (birch), 0.038
(pine) and 0.047 (spruce). The data are publicly available through the
SPECCHIO database (Hueni et al., 2009).

3.3. Hyperion data

We used hyperspectral data from EO-1 Hyperion image (L1B prod-
uct) acquired over the Hyytiälä forest on July 3, 2010. Hyperion is a nar-
rowband imaging spectrometer that registers radiance in 242 spectral
bands from 356 to 2577 nm, with about 10 nm bandwidth. Data spatial
resolution is 30m. The swathwidth is 7.7 km, and data are typically col-
lected in 7.5 km by 100 km images (Pearlman et al., 2003). The striping,
missing lines and spectral smile were removed from images or
corrected using spectral moment matching (Sun et al., 2008), local
destriping (Goodenough et al., 2003), interpolation and the pre-launch
calibration measurements, respectively. The atmospheric correction
was performed with the Fast Line-of-sight Atmospheric Analysis of

Spectral Hypercubes (FLAASH) algorithm (Matthew et al., 2000). This
technique results in an approximation of surface BRF. A detailed de-
scription of the processing of Hyperion images acquired over our
study area can be found in Heiskanen et al. (2013) and Rautiainen and
Lukeš (2015). The solar and view zenith angles were 41° and 13.8°;
the relative azimuthal angle (RAA) of the Hyperion sensor was 62.73°.
BRF spectra of pure Silver birch (B3), Scots pine (P1), Norway spruce
(S3) and mixed (B7) plots are shown in Fig. 10(c). In our analyses, a
plot was defined “pure” when at least 90% of the trees (by stem
count) belonged to the given tree species.

4. Initialization of the stochastic radiative transfer equations

Structural variables that the stochastic radiative transfer equations
admit include the conditional pair-correlation function, K(z,ξ,Ω), the
fraction, a(z), covered by tree crowns at depth z, and extinction coeffi-
cient, σ(Ω) (Appendix B.1). Our goal is to derive these variables from
field data. We use analytical equations for K and a developed for mean
tree crown idealized as a vertical solid, i.e., volume obtained by rotating
a curve about the vertical axis (Huang et al., 2008). Under this assump-
tion the conditional pair-correlation function and fraction a(z) are ex-
plicit functions of the aspect ratio (crown length to crown diameter
ratio) and stand density (Schull et al., 2011).

Specification of the extinction coefficient, σ(Ω)=uLG(Ω), requires
effective leaf area volume density uL (in m2/m3) and geometry factor
G(Ω). The latter is determined by the type of leaf orientation (Ross,
1981 Stenberg, 2006).Weuse the inclination index of foliage area to pa-
rameterize the geometry factor (Ross, 1981). This index characterizes
the deviation of leaf orientation from the spherical distribution and al-
lows us to approximate the extinction coefficient for leaf and needle
canopies as σ(Ω)=0.5βuL, where the weight β varies between 0 and
2. In the framework of the stochastic approach the effective leaf area
volume density is related to the effective leaf area index, LAI, mean
crown length, Hc, and stand density, d, as (Schull et al., 2011)

LAI ¼ uL

ZHc

0

1− exp −dπr2 zð Þ
! "$ %

dz ð14Þ

Here r(z) is themean radius of the crown horizontal cross section at
depth z, which in turn depends on the crown shape and aspect ratio
(Schull et al., 2011).

Thus, data on stand density, d, mean crown length, Hc, leaf orienta-
tion, β, leaf area volume density, uL, and crown aspect ratio, A, are need-
ed to specify the coefficients that appear in the stochastic radiative
transfer equations. The Norway spruce, Scots pine (Rautiainen et al.,
2008) and Silver birch stands were idealized as forests consisting of el-
lipsoidal in shape trees. The stand density was calculated from the BA
and DBH data as described in Section 3. The leaf area volume density
can be estimated from Eq. (14) if the aspect ratio, crown length and ef-
fective LAI are known.

The site specific crown aspect ratio, A, and parameter β were esti-
mated by selecting the most probable pair (A,β) for which angular pro-
files of canopy directional uncollided transmittance predicted by the
stochastic radiative transfer equations (Eqs. (B1a) and (B1b) in
Appendix B.1), agree with their measured counterparts (Fig. 10a) to
within measurement uncertainties as follows. First, we expressed the
effective leaf area volume density as a function of aspect ratio using
Eq. (14) and measured effective LAI, stand density and mean crown
length. Second, for each pair (A, β) we solved the stochastic radiative
transfer equations for the directional uncollided transmittance
(Appendix B.1) to obtain the angular profile of the directional
uncollided transmittance as a function of the aspect ratio and leaf orien-
tation. Next, we generated a set of acceptable solutions, which
contained pairs (A,β) for which the RMSE between the modeled and
measured profiles was below measurement uncertainty, which was

Table 1
Species compositions, mean stem diameter at breast height (DBH), mean crown length,
mean stand basal area (BA) and understory type for 18 plots in Hyytiälä forest. The Silver
birch dominated site B7 and Norway spruce dominated site S4 are also treated as mixed
forests.

Site
ID

Scots
pine, %

Norway
spruce, %

Silver
birch, %

DBH,
cm

Crown
length, m

BA,
m2/ha

Understory

B1 0 12.1 87.9 16.3 9.5 10.7 Mesic
B2 0 0 100.0 12.2 10.6 10.7 Herb-rich
B3 0 0 100.0 12.3 7.9 21.0 Mesic
B4 0 2.7 97.3 12.0 5.8 20.6 Herb-rich
B5 0 11.1 88.9 8.9 4.9 27.0 Herb-rich
B6 0 8.1 91.9 14.2 5.8 20.9 Mesic
B7 0 48.2 51.8 24.3 10.1 27.2 Mesic
P1 99.6 0.4 0 17.7 6.6 20.4 Mesic
P2 83.8 14.7 1.5 25.1 3.3 20.5 Sub-xeric
P3 95.2 1.5 3.2 20.0 8.6 24.3 Mesic
P4 65.4 26.9 7.7 24.3 6.2 26.0 Sub-xeric
S1 22.6 70.7 6.7 17.8 11 24.9 Mesic
S2 4.0 89.0 7.0 18.9 9.7 20.9 Mesic
S3 0.7 99.3 0 8.8 6.9 10.0 Mesic
S4 8.1 51.0 40.9 14.2 8.1 22.2 Mesic
S5 0 76.1 23.9 18.7 11.1 27.5 Mesic
S6 0 99.0 1.0 14.4 7.3 31.7 Mesic
S7 9.1 76.9 13.9 17.3 10.5 29.1 Xeric
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set to 0.025. Finally, we selected most probable pair (A,β) from histo-
grams of the acceptable A and β values. This algorithm estimates
mean within-crown extinction coefficient by correcting mean optical
paths for crown geometry effects.

The above procedure was applied to each of 18 sites. Comparisons
between simulated and predicted angular profiles suggest that the sto-
chastic radiative transfer equations with the site specific structural pa-
rameters provide accurate estimates of the canopy directional
uncollided transmittance (Fig. 11).

We used Eq. (13) to assess the ability of the stochastic radiative
transfer equations to predict diffuse canopy radiation regime. The left
hand side of this equation can be estimated from data on canopy direc-
tional uncollided transmittance, t0(Ω) (Fig. 10a), which sums with the
interceptance i0(Ω) to unity, i.e., i0(Ω)=1− t0(Ω), and the diffuse
interceptance, idif, which is directly obtainable from the LAI-2000 Plant
Canopy Analyzer readings (Rautiainen et al., 2009 Stenberg, 2007). It
follows from Eq. (4) and (13) that DASFiso=0.5(1− t0(Ω))(1− -
t0(Ω0))/idif. The right hand side of Eq. (13) can be estimated from solu-
tions of the diffuse stochastic radiative transfer equations for
vegetation canopy with non-reflecting leaves and bounded underneath
by a non-reflecting surface (Section 2.4). Fig. 12 illustrates that the
DASFiso predicted by the diffuse stochastic radiative transfer equations

Fig. 10. Panel a: Angular profile of canopy directional uncollided transmittance (vertical axis on the left side) and effective leaf area index (vertical axis on the right side) for 18 locations
(Table 1). Canopy directional uncollided transmittances are centered at five zenith angles: 7°, 23°, 38°, 53°, and 68° (legends “Tran 7” through “Tran 68”). Panel b: HCRF spectra of four
understory types: herb-rich, mesic, sub-seric and xeric. Panel c: Leaf spectral albedo of Scots pine, Norway spruce needles, and Silver birch leaf (dashed lines, vertical axis on the left
side). BRF spectra of pure Silver birch (B3), Scots pine (P1), Norway spruce (S3) and mixed (B7) plots (solid lines, vertical axis on the right side).

Fig. 11. Correlation between measured directional uncollided transmittances (horizontal
axis) and predicted by the stochastic radiative transfer equations (vertical axis) for five
zenith angles, 7°, 23°, 38°, 53° and 68° (legends “Tran 7” through “Tran 68”) over 18
study plots.
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with site specific structural parameters agree well with its measured
counterpart.

Thus, we derived site specific wavelength independent extinction
coefficients, conditional pair-correlation functions and vertical profiles
of fraction covered by tree crowns, i.e., canopy structural variables that
the stochastic radiative transfer equations require as input. These pa-
rameters are used in all our radiative transfer calculations.

5. Canopy-ground multiple interactions

The theoretical framework for the canopy BRF and DASF presented
in Section 2 was developed under the assumption that the vegetation
canopy is bounded from below by a non-reflecting surface. A radia-
tive-transfer-based technique developed for the MODIS LAI/FPAR oper-
ational algorithm (Knyazikhin et al., 1998a) is adapted here to account
for ground contributions.

The BRF of the vegetation canopy with a reflective ground can be
represented as a sum of two components: the BRF calculated for the
vegetation canopy with a non-reflecting underlying surface (termed
as the “black soil” problem) and the contribution due tophotonmultiple
interactions with canopy and ground, i.e.,

BRFλ Ω;Ω0ð Þ ¼ BRFBS;λ Ω;Ω0ð Þ þ rλ
1−rλ∙RS;λ

TBS;λ Ω0ð ÞIS;λ Ωð Þ: ð15Þ

Here TBS,λ represents the total directional transmittance (uncollided
and diffuse) for the black soil problem, and rλ is the effective ground re-
flectance. The terms IS,λ(Ω) and RS,λ are solutions of so-called “S prob-
lem,” i.e, they represent canopy leaving radiance and downward
reflectance if our canopy were illuminated from below by isotropic
sources uniformly distributed over the canopy ground. Because IS,λ(Ω)
and RS,λ are solutions of the radiative transfer equation with non-
reflecting ground, the spectral invariant approach presented in Section
2 is applicable to these terms. The BRF of the vegetated canopy with a
reflective ground therefore can be expressed in terms of thewavelength
dependent effective ground reflectance and leaf albedo, and spectrally
invariant canopy interceptance, recollision and escape probabilities.

Results presented in Section 4 suggest that the stochastic radiative
transfer equations can predict the canopy DASF, which a purely struc-
tural variable. Its estimation does not require information about leaf
scattering properties. Specification of the basic structural element and
its scattering coefficient is needed to estimate the canopy spectral BRF.
In coniferous canopies, for example, clumped shoot structure causes
multiple scattering within a shoot. The stochastic radiative transfer
equations are not applicable at the needle scale because fluctuations
of the number of needles in a shoot do not follow Poisson statistics. In
radiative transfer models for conifers the shoot can be taken as the

basic structural element (Smolander and Stenberg, 2003 Smolander
and Stenberg, 2005). Its scattering coefficient,ωs,λ, is related to the nee-
dle albedo, ω0λ as (Smolander and Stenberg, 2003 Smolander and
Stenberg, 2005)

ωs;λ ¼ ω0λ
k0

1−p0ω0λ
; ð16Þ

where the wavelength independent coefficients k0 and p0 depend on
needle surface properties and their arrangement at a finer scale, i.e.,
within the shoot. The coefficients sum to unity if impact of needle sur-
face properties can be neglected (Knyazikhin et al., 2013
Latorre-Carmona et al., 2014 Yang et al., 2016). The basic structural ele-
ment can be associated e.g. with leaf, shoot, branch or tree crown. In all
cases the relationship between their scattering coefficients and the leaf
or needle albedo follows Eq. (16)where k0 and p0 account for the foliage
distribution at a finer hierarchical level.

Solutions of the radiative transfer equation for the black soil and S
problems have the form of Eq. (10). The canopy scattering coefficient,
Wλ, is calculated using Eq. (11) with ωλ representing the scattering co-
efficient of the basic structural element. The basic structural element
specifies the recollision probability that appears in the canopy scatter-
ing coefficient Wλ. The DASF contains the ratio between the escape
probability density and its spherical integral (see Eq. (9)). This makes
this variable independent of the choice of the basic structural element
(Eqs. (7) and (8) in Schull et al., 2011). The scaling properties of the
scattering coefficient, recollision and escape probabilities underlie a
technique to adjust retrieval algorithms for the sensor spatial resolution
and spectral band composition (Ganguly et al., 2008b): the structural
parameters can be pre-calculated at a fixed base scale (e.g., tree
crown); the spectral BRF can be adjusted for the sensor resolution by
transforming the measured leaf or needle albedo to the scattering coef-
ficient of the basic structural element using Eq. (16) (Ganguly et al.,
2008b).

In our case the tree crown is taken as the base scale. Leaves or
needles are distributed within the crown in a certain fashion. We illus-
trate the technique outlined above to achieve consistency between the
canopy scattering coefficient, within crown foliage arrangement and
the spectral BRF at the Hyperion spatial resolution using data from the
spectral interval between 710 and 790 nm. In this spectral interval albe-
do of any green leaf is related to a fixed spectrum via Eq. (16)
(Knyazikhin et al., 2013 Latorre-Carmona et al., 2014 Schull et al.,
2011 Yang et al., 2016) and thus two wavelength independent parame-
ters, k0 and p0, suffice to specify the canopy scattering coefficient. The
following algorithmwas implemented. First, the spectrally invariant pa-
rameterswere pre-calculated for the black soil and S problemsusing the
stochastic radiative transfer equations with input collected at our sites.
Note that the solution IS,λ(Ω) of the S problem also have the form of
Eq. (10) with the difference that spectrally invariant parameters pA, ρA
and i0 are calculated assuming that our canopy is isotropically illuminat-
ed from below. Second, for each pair (ks,p0) the spectral BRF was calcu-
lated using scattering coefficient, ωs,λ(ks,p0), obtained by transforming
measured leaf albedo with Eq.(16), pre-computed structural parame-
ters, andmeasured understory reflectance rλ. Finally, we selected values
of ks and p0 that minimized the RMSE between Hyperion and simulated
BRF in the spectral interval between 710 nm and 790 nm. Fig. 13 illus-
trates proximity of the Hyperion and simulated BRF spectra for our 18
study plots.

To summarize, the spectral invariant approach is applicable in the
general case of canopy reflective ground. The use of spectral invariants
to parameterize the canopy spectral BRF makes the stochastic radiative
transfer equations scalable, i.e., its solutions calculated at a fixed base
scale can be adjusted for the sensor resolution and spectral band com-
position by changing the leaf or needle albedo with the spectrally in-
variant parameters unaltered.

Fig. 12. Correlation between DASFiso derived from field measurements (horizontal axis)
and predicted by the stochastic radiative transfer equations (vertical axis) for the
Hyperion sun-sensor geometry: SZA = 41°, VZA = 13.8° and RAA = 62.73°.
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6. Discussion

We adapted retrieval approach implemented in the MODIS opera-
tional LAI/FPAR algorithm (Knyazikhin et al., 1998a Knyazikhin et al.,
1998b). The algorithm compares measured spectral BRF with those
evaluated frommodel-based entries stored in the LUT. All canopy struc-
tural variables and ground reflectance forwhichmodeled andmeasured
BRFs agree within uncertainties in the observed and modeled canopy
reflectances are considered as acceptable solutions. The mean value of
a structural variable of interest (e.g., LAI, VFLA and SLAI=LAI ∙VFLA)
and its dispersion are taken as the solution of the inverse problem and
its retrieval uncertainty. In addition to the measured BRFs, biome type
and uncertainties in model and observations are also inputs to the algo-
rithm (Wang et al., 2001). The LUT is a key element of the retrieval tech-
nique that determines its performance. Here we discuss differences
between MODIS and EPIC LUTs.

Both LUTs are based on the representation of the modeled BRF via
solutions of the black soil and S problems (Section 5), which are stored
in the LUT. The EPIC LUT contains pre-calculated values of DASF, escape
and recollision probabilities for the black soil and S problems, which
correspond to various combinations of the sun-sensor geometry and
canopy structural organization. The BRF for the black soil problem and
solution of the S problem, IS,λ, are calculated using Eq. (10). The spectral
leaf albedo that appears in this equation becomes a biome-dependent
configurable parameter that accounts for the sensor resolution and
spectral band composition. Its specification is a part of the algorithm cal-
ibration and is based on analyses of the measured and simulated BRFs
over validation sites representing various biome types as outlined in
Section 5. Given sun-sensor geometry and biome type, the spectral
BRF is modeled using Eq. (15), pre-calculated structural variables and
spectral patterns of the effective ground reflectance (which are also
stored in the LUT).

Note that Eq. (10) not only provides a highly accurate approximation
of solutions of the radiative transfer equations for vegetation canopies
with non-reflecting ground, but also follows scaling relationships be-
tween the basic structural element, its scattering spectrum and spectral
BRF. This feature underlies the scale-dependent formulation of the radi-
ative transfer process in vegetation canopies. The spectrally invariant
relationships for canopy transmittance, absorptance and reflectance
used in various process orientedmodels (Stenberg et al., 2016) are spe-
cial cases of Eq. (15) that naturally follow from its hemispherical inte-
grations (Huang et al., 2007).

The MODIS LUT stores the ratio between BRF and directional hemi-
spherical reflectance (DHR) at a fixed wavelength for the black soil
and S problems as a function of the sun-sensor geometry and canopy
structure (Knyazikhin et al., 1998a Knyazikhin et al., 1998b). The spec-
tral DHR is expressed via spectral canopy transmittance and

absorptance, which in turn are calculated using spectrally invariant re-
lationships for the canopy transmittance and absorptance. The BRF is as-
sembled using Eq. (15), pre-calculated ratio, spectral DHR and patterns
of the effective ground reflectance. The biome dependent spectral leaf
albedo is also configurable parameter that controls consistency between
the basic structural element and canopy spectral transmittance and ab-
sorptance at the sensor spatial resolution. The scaling properties how-
ever are not fully realized in the MODIS LUT because the spectrally
invariant relationships are utilized only for the special cases of canopy
reflectance and transmittance. This results in higher model uncer-
tainties due to adjustments of the LUT for the sensor characteristics
compared to the EPIC LUT.

Another important distinction between the EPIC and MODIS LUTs is
that the former accounts for the stochastic boundary whereas the latter
assumes infinitesimal scatters. The MODIS LUT based algorithm does
not perform retrievals if the view direction falls within the hot spot re-
gion. Recall that DASF for the vegetation canopy with the stochastic
boundary is a weighted sum of DASF0 calculated assuming infinitesimal
scatters and DASFb of the stochastic boundary (Eq. (12)). The EPIC LUT
incorporates this decomposition, i.e., it contains DASF0, DASFb and the
correlation coefficient h. The correlation coefficient depends on a
model used to simulate the hot spot effect. This feature allows for inte-
gration of various hot spot models into the retrieval technique without
recalculating DASF0 and DASFb.

The parameterization of the LUT in terms of structural variables ob-
tainable from both space and ground measurements is the key advan-
tage of the EPIC LUT over its MODIS counterpart. For example, for
vegetation canopies with a dark background or for sufficiently dense
vegetation where the impact of the canopy background is negligible,
the DASF can be directly retrieved from the BRF spectrum in the 710
to 790 nm interval without the use of canopy reflectance models,
prior knowledge, or ancillary information regarding the leaf optical
properties using a simple algorithm documented in Knyazikhin et al.
(2013). The DASF can be compared with LUT entries. In general case
the removal of the ground contribution to BRF should precede retrieval
of DASF. Eq. (15), which is incorporated in the LUT, provides physical
basis for removing ground influences from measured spectral BRF. The
field and hyperspectral data therefore can be used to assess the EPIC
LUT, to diagnose its deficiencies and to develop refinements. We illus-
trate this feature using field data and hyperspectral images.

First, we used the pre-calculated site specific spectral invariants for
the black soil and S problems (Section 4), measured ground reflectance
and the sensor adjusted leaf albedo to evaluate the term in Eq. (15) that
accounts for ground contributions. This term was subtracted from the
Hyperion BRF to estimate BRFBS,λ(Ω;Ω0). We applied the algorithm re-
ported in Knyazikhin et al. (2013) to BRFBS,λ to derive Hyperion
DASF(Ω;Ω0) (Appendix D) over our study sites. The view direction of

Fig. 13. Panel a: Correlation between Hyperion BRFH,λ(Ω) and SRTE-estimated BRFλ(Ω) in the 710- to 790 nm spectral interval for 18 study plots. Panel b: Simulated (dashed lines) and
Hyperion (solid lines) BRF spectra of pure Silver birch (B3), Scots pine (P1), Norway spruce (S3) and mixed (B7) forests. The RMSE (and R2) for the 500 to 700 nm interval are 0.007
(0.845), 0.003 (0.831), 0.005 (0.778) and 0.004 (0.807), respectively. The remaining sites showed similar behavior.
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the Hyperion sensor was outside of the hot spot region (i.e.,
h(Ω;Ω0)≈0) and thus the retrieved DASF provides an estimate of
DASF0 in the direction to the sensor.

Next, we calculated DASF in the direction −Ω using the stochastic
radiative transfer equations and site specific canopy structural parame-
ters. The simulated and Hyperion DASFs were then used to evaluate
DASFiso as the semi-sum of their values for up- and downward direc-
tions. The correlation between DASFiso derived from Hyperion images
and field data shown in Fig. 14 suggests that the modeled DASF is accu-
rate for our broad- and needle leaf dominant forest sites at theHyperion
resolution and LAI range between 2 and 5.

Finally, we estimated i0(Ω) from Eq. (4) as i0(Ω)=2DASFisoidif/
i0(Ω0) with the ratio idif/i0(Ω0) calculated using the stochastic radiative
transfer equations and site specific canopy structural parameters. The
canopy interceptance in the direction Ω was then converted to
VFLA(Ω) with Eq. (1). The VFLA(Ω) can also be directly estimated
from below canopy measurements of the canopy directional uncollided
transmittance. The correlation between VFLA derived from field mea-
surements andHyperion image shown in Fig. 15 suggests the LUTdevel-
oped for our sites provides an accurate relationship between canopy
BRF and VFLA at the Hyperion resolution and consequently supports
our theoretical basis.

7. Concluding remarks

This paper presents the theoretical basis of the algorithm designed
for the generation of leaf area index and its sunlit fraction from NASA's
EPIC instrument onboard NOAA's DSCOVR spacecraft. The algorithm in-
gests spectral surface BRF data, canopy architectural type (or biome),
model and observation uncertainties. The technique used in the
MODIS LAI/FPAR operational algorithm is adapted to selectmost proba-
ble values of LAI, SFLA, SLAI=SFLA ∙LAI and their uncertainties. The use
of spectral invariants in the parameterization of theMODIS LUT imbued
scale dependency to the algorithm,which is among key requirements to
generate long-term records of biophysical parameters from remote
sensing measurements of multiple sensors (Ganguly et al., 2008a
Ganguly et al., 2008b). The theoretical basis of the MODIS LUT however
has not been revised since 1998 when the first spectrally invariant pa-
rameter, maximum eigenvalue of the radiative transfer equation, was
originally introduced (Knyazikhin et al., 1998a Knyazikhin et al.,
1998b). The purpose of our study has been to modify the LUT through
incorporations of the canopy hot spot phenomenon and recent ad-
vances in the theory of canopy spectral invariants (Stenberg et al.,
2016) and to integrate the retrieval of the VFLA into the MODIS algo-
rithm. The modifications improve decoupling of the structural and ra-
diometric components of the BRF and algorithm scaling properties,

which are important prerequisites for achieving consistency and com-
plementarity between DSCOVR EPIC and existing satellite derived land
surface biophysical parameters. The stochastic radiative transfer equa-
tions are used to generate the EPIC LUT for all biome types. The equa-
tions naturally account for the effects of the three-dimensional canopy
structure on the BRF and therefore an accurate discrimination between
sunlit and shaded leaf areas is expected. The entries of the EPIC LUT are
measurable, i.e., they can be independently derived from both below
canopy measurements of the transmitted and above canopy measure-
ments of reflected radiation fields. This is the key advantage of the
EPIC LUT over its MODIS counterpart because this feature makes possi-
ble direct validation of the LUT, facilitates identification of its deficien-
cies and development of refinements. Analyses of field data and
hyperspectral images suggest that the EPIC LUT accurately follows reg-
ularities expected from the theory.
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Appendix A. Stochastic model of canopy structure and radiation
regime

We use the Boolean model of random set to simulate 3D canopy
structure (Stoyan et al., 1995). The following stationary Poisson germ-
grain stochastic process of intensity d (in number per volume) is imple-
mented. A random number k=dV of leaves within a volume V = HS is
selected using the Poisson distribution PðkÞ ¼ ðkÞ

k
expð−kÞ=k!where k

is themean value of the randomvariable k. Random locations of k leaves
inV are generatedwith a uniformdistribution function.On each of these
points a disc of radius r (Fig. 2b) is placed. Their random orientation is
generated with a leaf normal distribution function gL(ΩL). The volume
Vwith k randomly oriented leaves (Fig. 2a) is a realization of the canopy
structure. The leaf area volume density of the canopy realization is πr2k/
V. Its ensemble average value results in uL=πr2d. In the terminology the
points of the Poisson process are the germswhile the discs represent the
grains (Stoyan et al., 1995).

The discs simulate bi-Lambertian leaves, i.e., the incident photons
are reflected from, or transmitted though, the disc in a cosine distribu-
tion about its normal. Its scattering properties are parameterized in
terms of leaf transmittance, τL, and reflectance, rL. Their sum is the leaf
albedo, ω=τL+rL. The leaf normal distribution function for spherically
oriented leaves is gL(ΩL)=1. For non-spherically oriented leaf normal

Fig. 14. Correlation between DASFiso derived from field measurements (horizontal axis)
and Hyperion image (vertical axis) for 18 study sites. Here SZA = 41°, VZA = 13.8° and
RAA= 62.73°.

Fig. 15. Correlation between VFLA derived from field measurements (horizontal axis) and
Hyperion image (vertical axis) for 18 study sites. Here SZA=41°, VZA=13.8° and RAA=
62.73°.
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ΩL=(θL,φL), a trigonometrical representation of gL(ΩL) is used (Bunnik,
1978), i.e.,

gL ΩLð Þ ¼ 2
π

1þ a cosbθL
sinθL

& '
: ðA1Þ

This model includes planophile (a=1,b=2), erectophile
(a=−1,b=2), plagiophile (a=−1,b=4), extremophile
(a=1,b=4) and uniform (a=0) leaves.

Each disc is divided into n equal sub-areas s0=πr2/n, which repre-
sents smallest resolvable scale (Fig. 2b). The bi-Lambertian scattering
is simulated for each sub-area s0. The disc radius is expressed relative
to the canopy height H, i.e., r/H=α. We define the indicator function
χ(x,Ω) of gaps such that it is 1 if there is a free line of sight through
the canopy from the point x on a sub-area s0 in the direction Ω, and 0
otherwise (Stenberg, 2007). Since the canopy structure is treated as a
stochastic process, the gap distribution χ(x,Ω) is a stochastic function
of space. Its ensemble average value describes gap density per unit
solid angle per unit leaf area.

For each realization of canopy structure and a set of NΩ directions
distributed on a unit sphere, we count photons that recollide,
N′=∑x,Ω [1−χ(x,Ω)]∣Ω ∙ΩL(x)∣ and exit the canopy through gaps
along the direction Ω, M(Ω)=∑x χ(x,Ω)∣Ω ∙ΩL(x)∣. Realizations
of the total leaf semi-surface area, AT, their visible, AV(Ω),
shaded, Ash(Ω¬Ω0), and bi-directional sunlit, B(Ω&Ω0), areas were
estimated as AT= s0kn, AV(Ω)= s0∑x χ(x,Ω), Ash(Ω¬Ω0)=s0∑x

χ(x,Ω)(1−χ(x,Ω0)), and B(Ω&Ω0)=s0∑x χ(x,Ω)χ(x,Ω0). Ensemble
average values of these random variables were assigned to the
recollision, piso= ⟨N′⟩/⟨AT⟩ and escape 2ρiso(Ω)= ⟨M(Ω)⟩/⟨AT⟩
probabilities, VFLA(Ω)= ⟨AV(Ω)⟩/⟨AT⟩, VFLAsh(Ω¬Ω0)= ⟨Ash(Ω)⟩/⟨AT⟩,
BSFLA(Ω&Ω0)= ⟨B(Ω&Ω0)⟩/⟨AT⟩, and i0(Ω)= ⟨M(Ω)⟩/(Sμ). Here ⟨∙⟩ des-
ignates ensemble averaging, i.e., over all realizations of canopy structure
in V. The correlation coefficient of VFLA(Ω) and SFLA=VFLA(Ω0) was
calculated as

hiso Ω;Ω0ð Þ ¼ BSFLA Ω&Ω0ð Þ−VFLA Ωð ÞVFLA Ω0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VFLA Ωð Þ−VFLA2 Ωð Þ
h i

VFLA Ω0ð Þ−VFLA2 Ω0ð Þ
h ir ðA2Þ

From simulations, the joint probability VFLAsh(Ω¬Ω0) was found to
be equal to [1−hiso(Ω;Ω0)]VFLA(Ω)(1−VFLA(Ω0)), as expected. We
introduce a fraction of shaded leaves visible outside the canopy along
a given direction −Ω as the conditional probability of seeing a shaded
leaf under the condition that the leaf area does not belong to the canopy
boundary, i.e VFLAsh(Ω;Ω0)=VFLAsh(Ω¬Ω0)/(1−VFLA(Ω0))=
(1−h(Ω;Ω0))VFLA(Ω).

The joint probability that a photon scattered by theboundary and es-
cape the vegetation was calculated as ⟨∑r χ(x,Ω)χ(x,Ω0)|Ω ∙ΩL(x)|| -
Ω0 ∙ΩL(x)| ⟩/⟨AT⟩. From simulations, this probability was found to be
equal to BSFLA(Ω&Ω0)Γ(Ω0→Ω)/G(Ω0), as expected, where G and Γ
are the geometry factor and area scattering phase function, respectively
(Ross, 1981). The conditional probability density by which a photon
scattered by the boundary will escape the vegetation in the direction
Ω is jiso(Ω;Ω0)=Γ(Ω0→Ω)/G(Ω0). It describes number of canopy leav-
ing photons per unit sunlit area (i.e., per unit boundary area). The es-
cape probability, ρb,iso(Ω;Ω0), for the stochastic model with the
boundary in the direction Ω0 can therefore be represented as ρb,iso(Ω;-
Ω0)=(1−hiso(Ω;Ω0))ρiso(Ω)+ jiso(Ω;Ω0)hiso(Ω;Ω0). Solving this
equation for hiso one obtains

hiso Ω;Ω0ð Þ ¼
ρb;iso Ω;Ω0ð Þ−ρiso Ωð Þ
jiso Ω;Ω0ð Þ−ρiso Ωð Þ ðA3Þ

We use this equation to evaluate the correlation coefficient from so-
lutions of the stochastic radiative transfer equations as detailed in
Appendix B.2.

Appendix B. Stochastic radiative transfer equations

B.1. Ensemble average intensity and its second moment

Let a stochastic canopy resided in the layer 0≤z≤H be subjected to a
monodirectioanl beam in the directionΩ0=(θ0,φ0) of intensity L0. Ver-
tical profiles of the horizontal average intensity, I(z,Ω), and its second
moment, the mean intensity incident on the leaf surface, U(z,Ω), at
depth z satisfy a system of stochastic equations (Huang et al., 2008).
The vertical profiles, L0I0(z)δ(Ω−Ω0) and L0U0(z)δ(Ω−Ω0), of the
uncollided (direct) intensities in the direction Ω0 are solutions of the
following equations,

I0 zð Þ þ σ Ω0ð Þ
μ0

Zz

0

a ξð ÞU0 ξð Þdξ ¼ 1; ðB1aÞ

U0 zð Þ þ σ Ω0ð Þ
μ0

Zz

0

K z; ξ;Ω0ð ÞU0 ξð Þdξ ¼ 1: ðB1bÞ

Here μ0=cosθ0; σ(Ω) denotes the extinction coefficient; a(ξ) is the
probability offinding a foliated point at depth ξ, andK(z,ξ,Ω) represents
the conditional pair-correlation function, i.e., a(z)K(z,ξ,Ω) is the proba-
bility of finding simultaneously foliated points at depths z and ξ along a
given direction Ω (Huang et al., 2008 Vainikko, 1973). The conditional
pair-correlation function describes spatial correlation between
phytoelements, e.g., clumping of leaves into branches, branches into
crowns, etc. If leaves are not spatially correlated (K=a(ξ)), Eqs. (B1a)
and (B1b) coincide and their solutions are the Beer-Lambert law. Equa-
tions for diffuse components and variousmodels of a andK can be found
in Huang et al. (2008).

Solution of Eqs. (B1a) and (B1b) at the canopy bottom, z= H, is the
canopy directional uncollided transmittance in the direction Ω0. This
variable can be estimated from measurements of downward fluxes
below and above the canopy using the LAI-2000 plant analyzer
(Rautiainen et al., 2009 Rautiainen and Stenberg, 2015 Stenberg,
2007). The canopy interceptance is then i0(Ω0)=1− I0(H).

Themean irradiance on leaf sides, F, and source function, S, are given
by

F ¼
ZH

0

Z

4π

σ Ωð Þa zð ÞU z;Ωð ÞdzdΩ; ðB2Þ

S z;Ωð Þ ¼ 1
π

Z

4π

P Ω0→Ω
( )

σ Ω0( )
U z;Ω0( )

dΩ0 ðB3Þ

where P(Ω′→Ω)=Γ(Ω′→Ω)/G(Ω′). We use the stochastic radiative
transfer equations to simulate BRF of vegetated surface. The method of
successive orders of scattering approximation was used to numerically
solve the system for the diffuse components as well as to estimate
terms in Neumann series (Eq. (5)).

B.2. Correlation coefficient

The radiative transfer equation is formulated for interior points in
the domain in which the radiative transfer process occurs. The shaded
leaves represent the interior points. To exclude the stochastic boundary
from the domain the leaf area volume density is represented as uL[1−-
cHS(Ω;Ω0)] where cHS is a hot spot parameter that accounts for the sta-
tistical dependency of seeing gaps in the direction Ω from the sunlit
areas of leaves. We followed (Kuusk, 1991) techniques to evaluate this
parameter. The escape probability density, ρ(Ω;Ω0), derived from solu-
tions of the boundary value problem for the radiative transfer equation
accounts for both photons scattered by shaded and sunlit leaf areas. If
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cHS is set to zero the corresponding escape probability density, ρ0(Ω),
quantifies the escape event due to photon interactions with shaded
leaves. In this case the equation acts in much the same way as we esti-
mate the probabilities in Section 2.1, i.e., it assumes that there are no
points on leaf surfaces from which photons can escape the vegetation
with unit probability. The correlation coefficient h can be estimated
from Eq. (A3) in which ρ(Ω;Ω0) and ρ0(Ω) are used in place of ρb, -
iso(Ω;Ω0) and ρiso(Ω). Its specification requires to solve the stochastic
equations two times, first with an actual cHS to get ρb(Ω;Ω0), and then
with cHS set to zero in order to obtain ρ0(Ω).

Appendix C. Estimation of average escape and recollision
probabilities

It follows from Eq. (10) that the ratio BRFλ(Ω; Ω0)/ωλ is linearly re-
lated to BRFλ(Ω; Ω0) where slope and intercept give pA and ρA(Ω; -
Ω0)i0(Ω0). We use this obvious property to specify the average
recollision and escape probabilities as follows: solve stochastic radiative
transfer equations for several values of leaf albedo first and then specify
slope and intercept from the BRFλ(Ω;Ω0)/ωλ vs. BRFλ(Ω;Ω0) linear re-
lationship. The slope is the average recollision probability. The average
escape probability is the ratio between the intercept and i0(Ω0). The es-
cape probability can be decomposed into contributions from shaded
and sunlit leaves as described in Sect. B2.

Appendix D. Retrieving DASF from hyperspectral BRF

The algorithm for the estimation of DASF from the BRF spectrum in
the 710 to 790 nm interval uses the transformed reference leaf albedo
ϖ0λ, which is related to the sensor-adjusted leaf albedo, ωs,λ, as
(Knyazikhin et al., 2013)

ωs;λ ¼ 1−pL
1−ϖ0λpL

ϖ0λiL; ðD1Þ

where pL is the wavelength independent within-leaf recollision proba-
bility, and iL represents the fraction of radiation scattered at the surface
of leaves. The latter is a wavelength-independent function of leaf sur-
face properties. The algorithm results in the following estimate of the
DASF (Knyazikhin et al., 2013),

DASF Ω;Ω0ð Þ ¼ ρA Ω;Ω0ð Þi0 Ω0ð Þ
1−pAiL

iL; ðD2Þ

where i0(Ω0), ρA(Ω;Ω0) and pA are the canopy interceptance, average
escape and recollision probabilities. The retrieved DASF should be nor-
malized by (1−pA)iL/(1−pAiL) to obtain its LUT counterpart. Site spe-
cific values of iL can be found from measured spectra of leaf albedo
(Latorre-Carmona et al., 2014 Schull et al., 2011 Vanhatalo et al.,
2014). We followed the methodology documented in Schull et al.
(2011).
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